JPH0920816A - Production of thermosetting compound - Google Patents

Production of thermosetting compound

Info

Publication number
JPH0920816A
JPH0920816A JP17199195A JP17199195A JPH0920816A JP H0920816 A JPH0920816 A JP H0920816A JP 17199195 A JP17199195 A JP 17199195A JP 17199195 A JP17199195 A JP 17199195A JP H0920816 A JPH0920816 A JP H0920816A
Authority
JP
Japan
Prior art keywords
reaction
resin
thermosetting compound
solution
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17199195A
Other languages
Japanese (ja)
Inventor
Kazuo Yamazaki
一雄 山崎
Takafumi Shinpo
尚文 新保
Teruki Aizawa
輝樹 相沢
Yasuyuki Hirai
康之 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP17199195A priority Critical patent/JPH0920816A/en
Publication of JPH0920816A publication Critical patent/JPH0920816A/en
Pending legal-status Critical Current

Links

Landscapes

  • Phenolic Resins Or Amino Resins (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a thermosetting compound by reacting a phenol novolak resin with a primary amine and formaldehyde in an organic solvent, reducing the viscosity of a reactional solution and stably carrying out the uniform reaction without forming a volatile by-product at the time of curing reaction. SOLUTION: A primary amine in an amount of 0.2-0.9mol based on 1mol hydroxyl group in a phenol novolak resin is reacted with formaldehyde in a molar amount of >=2 times based on 1mol hydroxyl group in the phenol novolak resin in an organic solvent such as ethyl acetate, butyl acetate, methyl ethyl ketone or toluene to afford a thermosetting compound having two or more dihydrobenzoxazine rings in one molecule.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、硬化反応時に揮発
性副生物を殆ど生じない新規熱硬化性化合物の製造法に
関する。
TECHNICAL FIELD The present invention relates to a method for producing a novel thermosetting compound which hardly produces a volatile by-product during a curing reaction.

【0002】[0002]

【従来の技術】フェノール樹脂、エポキシ樹脂、不飽和
ポリエステル樹脂、ビスマレイミド樹脂等の熱硬化性樹
脂は、耐熱性、電気絶縁性等の信頼特性により多くの産
業分野で広く用いられている。しかし、フェノール樹脂
は硬化時に揮発性副生物を生じ、エポキシ樹脂、不飽和
ポリエステル樹脂は耐熱、難燃性に劣り、ビスマレイミ
ド樹脂は非常に高価である等、それぞれ固有の問題を有
している。そこで、これらの問題を解決すべく新規の熱
硬化性樹脂の開発が従来より進められてきた。その一つ
に、ジヒドロベンゾオキサジン環を含む熱硬化性化合物
がある(特開昭49−47378号公報、米国特許第5
152939号)。また、これの物性と反応条件を更に
発展させた化合物と製造法として本発明者等はヒドロキ
シル基のオルト位の少なくとも一つが水素であるヒドロ
キシルフェニレン基を1分子中に2以上有する化合物と
1級アミンとホルムアルデヒドとを、前記ヒドロキシル
フェニレン基のオルト位の少なくとも一つが水素である
ヒドロキシル基を1モルに対し、1級アミンを0.2〜
0.9モル及びホルムアルデヒドを1級アミノの2倍モ
ル量以上の比で配合し、還流温度にて反応させる方法を
提案した。(特願平5−330157号) 更に米国特許4561864号には、副反応を抑制する
ため反応系に溶媒を加え、反応後静置分離と真空蒸留及
び冷却固形化をバッチ操作で行い、所望の熱硬化性化合
物を得ようとするものなどが提案されている。
Thermosetting resins such as phenolic resins, epoxy resins, unsaturated polyester resins and bismaleimide resins are widely used in many industrial fields due to their reliability characteristics such as heat resistance and electric insulation. However, phenolic resin has volatile by-products when cured, epoxy resin and unsaturated polyester resin have inferior heat resistance and flame retardancy, and bismaleimide resin is very expensive. . Therefore, in order to solve these problems, development of a new thermosetting resin has been conventionally advanced. One of them is a thermosetting compound containing a dihydrobenzoxazine ring (JP-A-49-47378, US Pat. No. 5).
152939). Further, as a compound and a manufacturing method in which the physical properties and reaction conditions thereof are further developed, the present inventors have found that a compound having two or more hydroxylphenylene groups in which at least one ortho-position of the hydroxyl group is hydrogen in one molecule and a primary The amine and formaldehyde are added in an amount of 0.2 to 10 parts by weight of primary amine to 1 mol of the hydroxyl group in which at least one of the ortho positions of the hydroxylphenylene group is hydrogen.
A method was proposed in which 0.9 mol and formaldehyde were mixed in a ratio of at least twice the molar amount of primary amino and reacted at the reflux temperature. (Japanese Patent Application No. 5-330157) Furthermore, in U.S. Pat. No. 4,561,864, a solvent is added to the reaction system to suppress a side reaction, and after the reaction, stationary separation, vacuum distillation and cooling solidification are carried out by a batch operation to obtain a desired amount. Those that try to obtain a thermosetting compound have been proposed.

【0003】[0003]

【発明が解決しようとする課題】しかし本化合物は公知
の熱硬化性化合物に比べ硬化性が速く、このため生産性
に優れた反応操作が極めて難しく量産時には以下のよう
な問題を生じる。すなわち本発明で対象となる熱硬化性
樹脂は、オキサジン環を形成する合成反応中に部分的に
副反応として重合が起こるため、反応液の粘度の増加が
見られる。具体的には先の特願平5−330157号に
示される実施例1のように、ヒドロキシフェニレン基を
含む化合物としてノボラック樹脂を用い、これをアニリ
ンと混合しホルマリン中へ滴下し、滴下終了後還流温度
に保ち反応を進めると、図1に示すように反応液粘度が
急激に増加する。この粘度上昇のため攪拌の不均一を生
じせしめ、品質バラツキなどの要因となり、また反応終
点において速やかな冷却・反応停止が困難で、時には反
応物がゲル化に至る場合もある。
However, this compound has a faster curability than known thermosetting compounds, and therefore it is extremely difficult to carry out a reaction operation with excellent productivity, and the following problems occur during mass production. That is, the thermosetting resin targeted by the present invention partially undergoes polymerization as a side reaction during the synthetic reaction for forming the oxazine ring, and therefore the viscosity of the reaction solution increases. Specifically, as in Example 1 shown in Japanese Patent Application No. 5-330157, a novolac resin is used as a compound containing a hydroxyphenylene group, which is mixed with aniline and dropped into formalin. When the reaction temperature is maintained at the reflux temperature and the reaction proceeds, the viscosity of the reaction solution rapidly increases as shown in FIG. This increase in viscosity causes non-uniform stirring, which causes quality variations and the like, and it is difficult to quickly cool and stop the reaction at the reaction end point, and sometimes the reaction product may gel.

【0004】[0004]

【課題を解決するための手段】かかる課題を解決するた
めに、本発明者らは以下の製造方法がこのような課題を
解決するものであることを見出し本発明に至った。すな
わち本発明は、フェノールノボラック樹脂のヒドロキシ
ル基1モルに対し1級アミン0.2〜0.9モルおよび
1級アミンの2倍モル以上のホルムアルデヒドとを有機
溶媒中で反応させることを特徴とする。
In order to solve such a problem, the present inventors have found that the following manufacturing method can solve such a problem, and have reached the present invention. That is, the present invention is characterized in that 0.2 to 0.9 mol of a primary amine and 2 times or more mol of formaldehyde as a primary amine are reacted with 1 mol of a hydroxyl group of a phenol novolac resin in an organic solvent. .

【0005】[0005]

【発明の実施の形態】本発明は開環重合を行わしめる反
応系に予め化合物を溶解する溶媒を添加し、溶媒の還流
温度以下で加熱攪拌により合成をすすめる。合成終了後
機械的操作や熱的操作を加え反応系から連続的に溶媒を
除去することにより固形又は液状の樹脂を安定して製造
するものである。添加する溶媒としては、酢酸エチル、
MEK(メチルエチルケトン)、トルエン等、水に対す
る溶解性が小さな溶媒であることがより好ましい。本発
明で用いられるフェノールノボラック樹脂としては特に
制限はなく通常のフェノールノボラック樹脂およびそれ
らの変性樹脂等を用いることができる。また1級アミン
としては芳香族環を有するアミンが耐熱性にすぐれるた
め好ましい。 反応系に化合物を溶解する溶媒を添加す
ることにより、反応液の粘度を下げることができ、この
ため均一攪拌が可能となり、また伝熱能力を支配する境
界面の境膜抵抗が小さくなる。また反応系のモノマー濃
度が希釈され反応速度が抑制される。これらの結果、反
応を安定して進行させ、反応終点で速やかに冷却するこ
とにより反応を停止させることができる。また反応系に
含まれる本化合物は水との溶解性が小さい。そこで樹脂
を溶解するための溶媒に水との溶解性の小さなものを用
いることにより、静置分離や遠心分離等の機械的分離方
法で反応系に含まれる水の大部分を除去できる。以下実
施例により本発明をさらに具体的に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a solvent for dissolving a compound is added in advance to a reaction system for carrying out ring-opening polymerization, and synthesis is promoted by heating and stirring below the reflux temperature of the solvent. After completion of the synthesis, solid or liquid resin is stably produced by continuously removing the solvent from the reaction system by applying mechanical operation or thermal operation. As the solvent to be added, ethyl acetate,
It is more preferable that the solvent has a small solubility in water, such as MEK (methyl ethyl ketone) and toluene. The phenol novolac resin used in the present invention is not particularly limited and ordinary phenol novolac resin and modified resins thereof can be used. As the primary amine, an amine having an aromatic ring is preferable because it has excellent heat resistance. By adding a solvent that dissolves the compound to the reaction system, the viscosity of the reaction solution can be reduced, which enables uniform stirring and also reduces the film resistance of the boundary surface that controls the heat transfer ability. Further, the monomer concentration of the reaction system is diluted and the reaction rate is suppressed. As a result of these, the reaction can be stably progressed, and the reaction can be stopped by rapidly cooling at the reaction end point. Further, the present compound contained in the reaction system has low solubility in water. Therefore, by using a solvent having a low water-solubility as the solvent for dissolving the resin, most of the water contained in the reaction system can be removed by a mechanical separation method such as static separation or centrifugation. Hereinafter, the present invention will be described more specifically with reference to examples.

【0006】[0006]

【実施例】【Example】

〔実施例1〕 (1)ヒドロキシフェニレン基を含む化合物としてのノ
ボラック樹脂の合成 ヒドロキシフェニレン基を含む化合物としてノボラック
樹脂を用いるため、フェノール1.9kg、ホルマリン
(37%水溶液)1.0kg、しゅう酸4gを5リット
ルフラスコに仕込み、還流温度で6時間反応させた。引
き続きフラスコ内を666Pa以下に減圧し脱水と未反
応フェノールの除去を行った。得られた樹脂は軟化点8
4℃、ゲルパーミエーションクロマトグラフィーによる
ピーク面積比で3〜多核体/2核体比が(82/18)
であった。得られたノボラック樹脂の分子量分布曲線を
図2に示す。 (2)ジヒドロベンゾオキサジン環の導入 上記により合成したノボラック樹脂1.7kg(ヒドロ
キシル基16mol相当)をアニリン0.93kg(1
0mol相当)及びMEK0.72kg(ノボラックの
42wt%)と混合溶解し均一な溶液を調整した。5リ
ットルフラスコにホルマリン1.62kgを仕込み80
℃に加温し、ここへノボラック・アニリン溶液を30分
かけて添加した。添加終了後還流温度で更に180分反
応をすすめた後、反応液を急冷し反応を停止させた。反
応終点での反応液粘度は2.5Pa・sであった。 (3)熱硬化性化合物の固形化 1)反応系の樹脂分分離 反応停止後反応液を30分静置させ、樹脂層と水層の2
層に分離した後、下側の樹脂層を取り出し、反応し得る
ヒドロキシル基の71%がジヒドロベンゾオキサジン化
された溶液状熱硬化性化合物を得た。 2)熱硬化性化合物の固形化 上記で得られた溶液状熱硬化性化合物を固形化するため
に、溶液を微粒化するための噴霧機と乾燥用熱風と接触
させるチャンバーを有するスプレードライヤーを用い
て、120℃の熱風と接触させ溶媒を乾燥除去した。得
られた樹脂は平均粒径80μmで残存揮発分5%以下の
流動性に富む固形樹脂である。更に、この固形樹脂を空
気温度75℃の流動乾燥機で90分乾燥したところ、残
存揮発分が2%以下の固形樹脂を得た。
[Example 1] (1) Synthesis of novolak resin as compound containing hydroxyphenylene group Since novolak resin is used as compound containing hydroxyphenylene group, 1.9 kg of phenol, 1.0 kg of formalin (37% aqueous solution), oxalic acid 4 g was charged in a 5 liter flask and reacted at reflux temperature for 6 hours. Subsequently, the pressure inside the flask was reduced to 666 Pa or less to perform dehydration and removal of unreacted phenol. The obtained resin has a softening point of 8
The peak area ratio by gel permeation chromatography at 4 ° C. is 3 to polynuclear body / 2 binuclear body ratio (82/18)
Met. The molecular weight distribution curve of the obtained novolak resin is shown in FIG. (2) Introduction of dihydrobenzoxazine ring 1.7 kg (corresponding to 16 mol of hydroxyl group) of the novolak resin synthesized above was added to 0.93 kg (1
0 mol) and MEK 0.72 kg (42 wt% of novolac) were mixed and dissolved to prepare a uniform solution. Charge 1.62 kg of formalin into a 5 liter flask 80
The mixture was heated to 0 ° C., and the novolak aniline solution was added thereto over 30 minutes. After completion of the addition, the reaction was further allowed to proceed at the reflux temperature for 180 minutes, and then the reaction solution was rapidly cooled to stop the reaction. The reaction solution viscosity at the end of the reaction was 2.5 Pa · s. (3) Solidification of thermosetting compound 1) Separation of resin component of reaction system After the reaction was stopped, the reaction liquid was allowed to stand for 30 minutes, and the resin layer and the water layer were separated.
After separating the layers, the lower resin layer was taken out to obtain a solution thermosetting compound in which 71% of reactive hydroxyl groups were dihydrobenzoxazinized. 2) Solidification of thermosetting compound To solidify the solution thermosetting compound obtained above, a spray dryer having a sprayer for atomizing the solution and a chamber for contacting with hot air for drying is used. Then, the solvent was dried and removed by contact with hot air at 120 ° C. The obtained resin is a solid resin having an average particle diameter of 80 μm and a residual volatile content of 5% or less and having a high fluidity. Further, when this solid resin was dried for 90 minutes by a fluid dryer having an air temperature of 75 ° C., a solid resin having a residual volatile content of 2% or less was obtained.

【0007】〔実施例2〕 (1)〔実施例1〕と同様にノボラック樹脂を合成し
た。 (2)ジヒドロベンゾオキサジン環の導入 〔実施例1〕の(2)で用いたMEKに替えて、トルエ
ンを用いた。配合量は0.72kgとノボラック樹脂と
同量で、滴下時間は30分、反応温度は100℃とし
た。100℃に到達してから100分で反応を停止し液
状の熱硬化性樹脂を得た。 (3)熱硬化性化合物の固形化 1)反応系の樹脂分分離 反応停止後反応液を遠心力3000Gの液・液連続式遠
心分離機に供給し、樹脂層を水層より分離して液状の熱
硬化性樹脂を得た。上記で得られた溶液状熱硬化性化合
物をを固形化するために、シャッケット付加熱蒸発管と
固形物と蒸気を分離する蒸発缶及び蒸気の凝縮コンデン
サよりなる連続真空蒸発機を用いて6400Paの減圧
下と130℃の熱媒温度で溶媒の蒸発乾燥を行った。得
られた樹脂は残存揮発分5%以下の固形樹脂である。
[Example 2] (1) A novolac resin was synthesized in the same manner as in [Example 1]. (2) Introduction of dihydrobenzoxazine ring Toluene was used instead of MEK used in (2) of [Example 1]. The compounding amount was 0.72 kg, the same amount as the novolak resin, the dropping time was 30 minutes, and the reaction temperature was 100 ° C. The reaction was stopped 100 minutes after reaching 100 ° C. to obtain a liquid thermosetting resin. (3) Solidification of thermosetting compound 1) Separation of resin component in reaction system After the reaction is stopped, the reaction liquid is supplied to a liquid / liquid continuous centrifuge with a centrifugal force of 3000 G, and the resin layer is separated from the water layer to form a liquid. To obtain a thermosetting resin. In order to solidify the solution-type thermosetting compound obtained above, a continuous vacuum evaporator consisting of a heat evaporation pipe with a shucket, an evaporator for separating solid matter and vapor, and a condenser for condensing vapor was used at 6400 Pa. The solvent was evaporated and dried under reduced pressure and at a heating medium temperature of 130 ° C. The obtained resin is a solid resin having a residual volatile content of 5% or less.

【0008】〔実施例3〕 (1)〔実施例1〕と同様にノボラック樹脂を合成し
た。 (2)ジヒドロベンゾオキサジン環の導入 〔実施例1〕の(2)で用いたMEKに替えて、酢酸エ
チルを用いた。配合量は0.72kgとノボラック樹脂
と同量で、滴下時間は30分、反応温度は80℃とし
た。80℃に到達してから180分で反応を停止した。
温を50℃ (3)熱硬化性化合物の固形化 1)反応系の樹脂分分離 得られた化合物を液温50℃まで冷却したのち静置さ
せ、60分後に樹脂層を水層より分離して液状の熱硬化
性樹脂を得た。 2)熱硬化性化合物の固形化 上記で得られた溶液状熱硬化性化合物を固形化するため
に、シャッケット付加熱真空チャンバーと被乾燥物搬送
するベルトコンベア及び凝縮コンデンサよりなる連続真
空蒸発機を用いて6500Paの減圧下と120℃の熱
媒温度で溶媒の蒸発を行い、残存揮発分5%以下の固形
樹脂を得た。更に、この樹脂を粉砕し平粒径を50μm
以下とした後、空気温度75℃で100分間流動乾燥し
たところ残存揮発分が2%以下の固形樹脂を得ることが
できた。この分子量分布曲線を図6に示す。
[Example 3] (1) A novolac resin was synthesized in the same manner as in [Example 1]. (2) Introduction of dihydrobenzoxazine ring In place of MEK used in (2) of [Example 1], ethyl acetate was used. The compounding amount was 0.72 kg, the same amount as the novolak resin, the dropping time was 30 minutes, and the reaction temperature was 80 ° C. The reaction was stopped 180 minutes after reaching 80 ° C.
Temperature is 50 ° C. (3) Solidification of thermosetting compound 1) Separation of resin component of reaction system The obtained compound is cooled to a liquid temperature of 50 ° C. and allowed to stand still, and after 60 minutes, a resin layer is separated from an aqueous layer. A liquid thermosetting resin was obtained. 2) Solidification of thermosetting compound In order to solidify the solution thermosetting compound obtained above, a continuous vacuum evaporator consisting of a vacuum vacuum chamber with a shacket, a belt conveyor for conveying the material to be dried, and a condenser is used. The solvent was evaporated under reduced pressure of 6500 Pa and the heat medium temperature of 120 ° C. to obtain a solid resin having a residual volatile content of 5% or less. Further, this resin is crushed to obtain a flat particle size of 50 μm.
After the following, the product was fluidized and dried at an air temperature of 75 ° C. for 100 minutes to obtain a solid resin having a residual volatile content of 2% or less. This molecular weight distribution curve is shown in FIG.

【0009】〔実施例4〕 (1)〔実施例1〕と同様にノボラック樹脂を合成し
た。 (2)ジヒドロベンゾオキサジン環の導入 〔実施例1〕の(2)で用いたMEKに替えて、酢酸ブ
チルを用いた。配合量は0.72kgとノボラック樹脂
と同量で、滴下時間は30分、反応温度は90℃とし
た。90℃に到達してから150分で反応を停止した。 (3)熱硬化性化合物の固形化 1)反応系の樹脂分分離 得られた化合物を液温50℃まで冷却した後静置させ、
60分後に樹脂層を水層より分離して液状の熱硬化性樹
脂を得た。 2)熱硬化性化合物の固形化 上記で得られた溶液状熱硬化性化合物を固形化するため
に、スプレードライヤーを用いて140℃に加熱した窒
素を吹き込み溶媒を乾燥除去した。得られた樹脂は〔実
施例1〕に比べ色相が薄い平均粒径80μmの粒状樹脂
で、残存揮発分は3%以下であった。
[Example 4] (1) A novolak resin was synthesized in the same manner as in [Example 1]. (2) Introduction of dihydrobenzoxazine ring In place of MEK used in (2) of [Example 1], butyl acetate was used. The compounding amount was 0.72 kg, the same amount as the novolak resin, the dropping time was 30 minutes, and the reaction temperature was 90 ° C. The reaction was stopped 150 minutes after reaching 90 ° C. (3) Solidification of thermosetting compound 1) Separation of resin component of reaction system The obtained compound was cooled to a liquid temperature of 50 ° C. and then allowed to stand,
After 60 minutes, the resin layer was separated from the water layer to obtain a liquid thermosetting resin. 2) Solidification of thermosetting compound In order to solidify the solution thermosetting compound obtained above, nitrogen heated at 140 ° C. was blown using a spray dryer to dry and remove the solvent. The obtained resin was a granular resin having an average particle diameter of 80 μm, which had a smaller hue than that of [Example 1], and the residual volatile content was 3% or less.

【0010】〔実施例5〕キシリレン変性フェノール樹
脂(商品名;ミレックスXL−225−3L、三井東圧
化学株式会社)1.7kg(ヒドロキシル基10mol
相当)、アニリン0.52kg(5.6mol)ホルマ
リン0.91kgの配合で〔実施例1〕と同様にノボラ
ック樹脂を合成した。
Example 5 Xylylene-modified phenol resin (trade name; Milex XL-225-3L, Mitsui Toatsu Chemicals, Inc.) 1.7 kg (hydroxyl group 10 mol)
(Corresponding) and aniline 0.52 kg (5.6 mol) formalin 0.91 kg in the same manner as in Example 1 to synthesize a novolac resin.

【0011】〔実施例6〕アニリンに替え、アニリン
0.7kgとトルイジン0.27kgの混合物を用い、
以下〔実施例1〕と同様の方法でジヒドロベンゾオキサ
ジン環が導入された熱硬化性化合物を得た。
Example 6 A mixture of 0.7 kg of aniline and 0.27 kg of toluidine was used in place of aniline,
A thermosetting compound having a dihydrobenzoxazine ring introduced was obtained in the same manner as in [Example 1] below.

【0012】〔比較例1〕 (1)〔実施例1〕と同様にノボラック樹脂を合成し
た。 (2)ジヒドロベンゾオキサジン環の導入 上記で合成したノボラック樹脂1.7kgとアニリン
0.93kgを混合溶解し均一な溶液を調整した。5リ
ットルフラスコにホルマリン1.62kgを仕込み10
0℃に昇温し、ここへ予め調整した混合溶液を滴下し
た。滴下と同時に滴下液周囲が沸騰するため、滴下を終
了させるまでに60分を要した。反応系内の状態は滴下
開始15分後から粘度が増加し還流温度到達30分後に
は700Pa・sに上昇し、攪拌翼への付着や流動性の
著しい低下のため、フラスコからの排出が困難であっ
た。
Comparative Example 1 (1) A novolak resin was synthesized in the same manner as in [Example 1]. (2) Introduction of dihydrobenzoxazine ring 1.7 kg of the novolak resin synthesized above and 0.93 kg of aniline were mixed and dissolved to prepare a uniform solution. Charge 1.62 kg of formalin into a 5 liter flask 10
The temperature was raised to 0 ° C., and a mixed solution prepared in advance was added dropwise thereto. At the same time as the dropping, the surroundings of the dropping liquid boiled, so it took 60 minutes to complete the dropping. In the state of the reaction system, the viscosity increases 15 minutes after the start of dropping and rises to 700 Pa · s 30 minutes after reaching the reflux temperature, and it is difficult to discharge it from the flask because it adheres to the stirring blade and the fluidity is significantly reduced. Met.

【0013】〔比較例2〕 (1)〔実施例1〕と同様にノボラック樹脂を合成し
た。 (2)ジヒドロベンゾオキサジン環の導入 上記により合成したノボラック樹脂1.7kg(ヒドロ
キシル基16mol相当)をアニリン0.93kg(1
0mol相当)、及びMEK0.72kg(ノボラック
の42wt%)と混合溶解し均一な溶液を調整した。5
リットルフラスコにホルマリン1.62kgを仕込み8
0℃に加温し、ここへノボラック・アニリン溶液を30
分かけて添加した。添加終了後還流温度で更に180分
反応をすすめた後、反応液を急冷し反応を停止させた。
反応終点での反応液粘度は2.5Pa・sであった。 (3)熱硬化性化合物の固形化 1)反応系の樹脂分分離 得られた化合物を液温50℃まで冷却した後静置させ、
60分後に樹脂層を水層より分離して液状の熱硬化性樹
脂を得た。 2)熱硬化性化合物の固形化 上記で得られた溶液状熱硬化性化合物を固形化するため
に、6500Paの減圧下で真空蒸留したところ、反応
容器内から溶媒の流出が始まったが、反応液も増粘し攪
拌が不可能となって排出前にゲル化した。
Comparative Example 2 (1) A novolak resin was synthesized in the same manner as in [Example 1]. (2) Introduction of dihydrobenzoxazine ring 1.7 kg (corresponding to 16 mol of hydroxyl group) of the novolak resin synthesized above was added to 0.93 kg (1
0 mol) and MEK 0.72 kg (42 wt% of novolac) were mixed and dissolved to prepare a uniform solution. 5
Charge 1.62 kg of formalin into a liter flask 8
Heat to 0 ° C and add novolac aniline solution to it 30 times.
Added over minutes. After completion of the addition, the reaction was further allowed to proceed at the reflux temperature for 180 minutes, and then the reaction solution was rapidly cooled to stop the reaction.
The reaction solution viscosity at the end of the reaction was 2.5 Pa · s. (3) Solidification of thermosetting compound 1) Separation of resin component of reaction system The obtained compound was cooled to a liquid temperature of 50 ° C. and then allowed to stand,
After 60 minutes, the resin layer was separated from the water layer to obtain a liquid thermosetting resin. 2) Solidification of thermosetting compound In order to solidify the solution thermosetting compound obtained above, vacuum distillation was performed under a reduced pressure of 6500 Pa, and the solvent started to flow out from the reaction vessel. The liquid also thickened and could not be stirred, and gelled before discharging.

【0014】[0014]

【発明の効果】本発明によれば、反応系に化合物を溶解
する溶媒を添加することにより、反応液の粘度を下げる
ことができ、均一な反応を安定して進行させることがで
きる。
INDUSTRIAL APPLICABILITY According to the present invention, the viscosity of the reaction solution can be lowered by adding a solvent that dissolves the compound to the reaction system, and a uniform reaction can be stably proceeded.

【図面の簡単な説明】[Brief description of drawings]

【図1】無溶剤反応系の粘度上昇の様子を示す線図。FIG. 1 is a diagram showing how the viscosity of a solventless reaction system increases.

【図2】実施例1のフェノールノボラック樹脂の分子量
分布曲線。
2 is a molecular weight distribution curve of the phenol novolac resin of Example 1. FIG.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平井 康之 茨城県下館市大字小川1500番地 日立化成 工業株式会社下館工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuyuki Hirai 1500 Ogawa, Shimodate City, Ibaraki Prefecture Hitachi Chemical Co., Ltd. Shimodate Factory

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 フェノールノボラック樹脂のヒドロキシ
ル基1モルに対し1級アミン0.2〜0.9モルおよび
1級アミンの2倍モル以上のホルムアルデヒドとを有機
溶媒中で反応させることを特徴とする1分子中に2個以
上のジヒドロベンゾオキサジン環を有する熱硬化性化合
物の製造方法。
1. A feature of reacting 0.2 to 0.9 mol of a primary amine and 2 times or more mol of formaldehyde of a primary amine in an organic solvent with respect to 1 mol of a hydroxyl group of a phenol novolac resin. A method for producing a thermosetting compound having two or more dihydrobenzoxazine rings in one molecule.
【請求項2】 有機溶剤が酢酸エチル、酢酸ブチル、メ
チルエチルケトン、トルエンの群れから選ばれたもので
ある請求項1記載のジヒドロベンゾオキサジン環を有す
る熱硬化性化合物の製造方法。
2. The method for producing a thermosetting compound having a dihydrobenzoxazine ring according to claim 1, wherein the organic solvent is selected from the group consisting of ethyl acetate, butyl acetate, methyl ethyl ketone and toluene.
【請求項3】 熱硬化性化合物を含む反応溶液より機械
的操作により水分を除去することを特徴とする請求項1
または2記載のジヒドロベンゾオキサジン環を有する熱
硬化性化合物の製造方法。
3. The water is removed from the reaction solution containing the thermosetting compound by mechanical operation.
Or a method for producing a thermosetting compound having a dihydrobenzoxazine ring according to 2 above.
【請求項4】 熱硬化性化合物を含む反応溶液より熱的
操作で連続的に溶媒を除去することを特徴とする請求項
1または2記載のジヒドロベンゾオキサジン環を有する
熱硬化性化合物の製造方法。
4. The method for producing a thermosetting compound having a dihydrobenzoxazine ring according to claim 1, wherein the solvent is continuously removed from the reaction solution containing the thermosetting compound by a thermal operation. .
JP17199195A 1995-07-07 1995-07-07 Production of thermosetting compound Pending JPH0920816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17199195A JPH0920816A (en) 1995-07-07 1995-07-07 Production of thermosetting compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17199195A JPH0920816A (en) 1995-07-07 1995-07-07 Production of thermosetting compound

Publications (1)

Publication Number Publication Date
JPH0920816A true JPH0920816A (en) 1997-01-21

Family

ID=15933506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17199195A Pending JPH0920816A (en) 1995-07-07 1995-07-07 Production of thermosetting compound

Country Status (1)

Country Link
JP (1) JPH0920816A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002072655A1 (en) * 2001-03-12 2002-09-19 Hitachi Chemical Co., Ltd. Method for producing benzoxazine resin
JP2006335671A (en) * 2005-06-01 2006-12-14 Shikoku Chem Corp Method for producing benzoxazine compound
KR101238122B1 (en) * 2007-11-08 2013-02-27 코오롱인더스트리 주식회사 Process for producing a benzoxazine resin and benzoxazine resin

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002072655A1 (en) * 2001-03-12 2002-09-19 Hitachi Chemical Co., Ltd. Method for producing benzoxazine resin
US7041772B2 (en) 2001-03-12 2006-05-09 Hitachi Chemical Co., Ltd. Method for producing benzoxazine resin
CN1332993C (en) * 2001-03-12 2007-08-22 日立化成工业株式会社 Method for producing benzoxazine resin
KR100787726B1 (en) * 2001-03-12 2007-12-24 히다치 가세고교 가부시끼가이샤 Method for Producing Benzoxazine Resin
JP2006335671A (en) * 2005-06-01 2006-12-14 Shikoku Chem Corp Method for producing benzoxazine compound
JP4647398B2 (en) * 2005-06-01 2011-03-09 四国化成工業株式会社 Method for producing benzoxazine compound
KR101238122B1 (en) * 2007-11-08 2013-02-27 코오롱인더스트리 주식회사 Process for producing a benzoxazine resin and benzoxazine resin

Similar Documents

Publication Publication Date Title
JP4096737B2 (en) Method for producing benzoxazine resin
US5142062A (en) Method of increasing the molecular weight in the manufacture of polysuccinimide
CN102307918B (en) Powdery vinyl polymer, curable resin composition and cured article
CN101687833B (en) C10 alkanoic acid glycidyl esters and use thereof
JP4022201B2 (en) Method for producing novolac-type phenolic resin
Hurduc et al. Microwave effects in the synthesis of polyethers by phase transfer catalysis
Gaw et al. Preparation of polyimide-epoxy composites
JP2017538836A (en) Curable benzoxazine composition with improved thermal stability
JPH0920816A (en) Production of thermosetting compound
US7838618B2 (en) Process for the production of phenylene ether oligomer
TWI537294B (en) A narrowly dispersed phenol novolak resin and its manufacturing method
WO2020027257A1 (en) Composition for cured resins, cured product of said composition, method for producing said composition, method for producing said cured product, and semiconductor device
JPH069741A (en) Production of modified phenol resin
JP4435791B2 (en) Method for producing novolac-type phenolic resin and resin-coated sand
Nakano et al. Synthesis and properties of α‐substituted benzylpyridinium salts as cationic initiators
JPS6277363A (en) Production of maleimide resin
JPH10512908A (en) Method for producing multicyanate ester
JPS63150283A (en) Phenolimide compound and production thereof
CN111094372B (en) Method for purifying highly branched polymer having sulfo group and process for producing the same
JPH08183855A (en) Thermosetting resin composition and cured material thereof
JPH07119268B2 (en) Method for producing novolac type phenolic resin
JPH04130120A (en) Production of resol phenolic resin
JPH0340734B2 (en)
JPH0639513B2 (en) Process for producing synthetic resin oligomer having both condensable reactive group and polymerizable reactive group
US2735838A (en) Method of producing a resinous condensation product

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040113

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20040311

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040507

A02 Decision of refusal

Effective date: 20040624

Free format text: JAPANESE INTERMEDIATE CODE: A02