JPH09204818A - Electrical insulating member, power cable, and connecting member for power cable - Google Patents

Electrical insulating member, power cable, and connecting member for power cable

Info

Publication number
JPH09204818A
JPH09204818A JP1223796A JP1223796A JPH09204818A JP H09204818 A JPH09204818 A JP H09204818A JP 1223796 A JP1223796 A JP 1223796A JP 1223796 A JP1223796 A JP 1223796A JP H09204818 A JPH09204818 A JP H09204818A
Authority
JP
Japan
Prior art keywords
ethylene
insulating member
olefin
olefin copolymer
power cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1223796A
Other languages
Japanese (ja)
Inventor
Masaki Kawahigashi
正記 川東
Takeshi Murakami
剛 村上
Hiroshi Kato
寛 加藤
Shigenori Maeda
重徳 前田
Shinryu Uchikawa
進隆 内川
Katsumi Yoshino
勝美 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsubishi Cable Industries Ltd
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd, Mitsui Toatsu Chemicals Inc filed Critical Mitsubishi Cable Industries Ltd
Priority to JP1223796A priority Critical patent/JPH09204818A/en
Publication of JPH09204818A publication Critical patent/JPH09204818A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enhance AC characteristic and withstand voltage characteristic by using a resin composition, containing a syndiotactic polypropylene whose syndiotactic pentad rate is a specific value or more and an ethylene-α-olefin copolymer, for an electrical insulating member or an insulating layer. SOLUTION: 50 to 95wt.% syndiotactic polypropylene(s-PP) with a syndiotactic pentad rate of 0.7 or more is prepared. The polypropylene and 5 to 50wt.% ethylene-α-olefin copolymer in which the α-olefin has 4 to 12 carbons are kneaded together at 180 deg.C using a roll mill to obtain a resin composition. The resin composition is melted and molded at 180 deg.C for fifteen minutes in a compression molding machine and is continuously extruded by an electrical insulating member of a predetermined thickness or by an extruder onto a copper stranded conductor at about 180 deg.C to cover the conductor to form a cable, or is extrusion molded to form a reinforcement insulator used for connecting cable. Thus an insulating member is obtained which has high AC characteristic and impulse withstand voltage characteristic and is excellent in low-temperature brittleness.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は電気絶縁部材、それ
を用いた電力ケーブルおよびケーブル接続部材に関す
る。さらに詳しくはシンジオタクチックポリプロピレン
を含む電気絶縁部材、およびこれを絶縁層または絶縁体
として使用する電力ケーブルおよび電力ケーブル用接続
部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrical insulating member, a power cable using the same, and a cable connecting member. More specifically, it relates to an electrical insulating member containing syndiotactic polypropylene, and a power cable and a connecting member for a power cable using the same as an insulating layer or an insulator.

【0002】[0002]

【従来技術・発明が解決しようとする課題】従来より電
気絶縁材料として使用されてきたアイソタクチックポリ
プロピレン(以下、「i−PP」ともいう)は、本質的
に剛直であるため、バルク材料としての電気絶縁用途に
制限を受けるうえ、薄いシート状、あるいは他の材料と
の複合状態にしても、剛直性、低温脆性(クラックの生
じやすさ)の点から不適である場合が多いのが欠点であ
った。
2. Description of the Related Art Isotactic polypropylene (hereinafter, also referred to as "i-PP") which has been conventionally used as an electrically insulating material is essentially rigid, and therefore is used as a bulk material. In addition to being limited to the electrical insulation applications of the above, it is often inadequate in terms of rigidity and low temperature brittleness (prone to cracking) even in the form of a thin sheet or in a composite state with other materials. Met.

【0003】低温脆性が悪い材料を用いた電力ケーブル
を特に寒冷地で使用した場合、ケーブルの機械的な破壊
が起こりやすい。すなわち、電力ケーブルの布設環境は
厳冬期では例えば−20℃以下になることもある。その
ような場合、i−PPを用いた絶縁層はクラックが生じ
やすく、そのため通電がストップする等の問題が生じる
場合がある。また狭小な場所に電力ケーブルを布設する
場合、布設場所に合わせてケーブルを曲げる必要がある
が、i−PPは剛直であるため曲げることが難しく、布
設が困難、また不必要な布設スペースがいる等という問
題も生じる。電力ケーブルの中間接続構造物中の絶縁部
に、剛直性、低温脆性に問題のある材料を使用した場合
も、上記と同じ問題が生じる。
When a power cable made of a material having a low temperature brittleness is used, especially in a cold region, mechanical breakdown of the cable is likely to occur. That is, the installation environment of the power cable may be, for example, −20 ° C. or lower in the severe winter season. In such a case, the insulating layer using i-PP is likely to be cracked, which may cause a problem such as stopping the energization. Also, when laying a power cable in a narrow place, it is necessary to bend the cable according to the laying place, but since i-PP is rigid, it is difficult to bend, and laying is difficult, and there is an unnecessary laying space. The problem of "etc." The same problem as described above occurs when a material having a problem of rigidity and low temperature brittleness is used for the insulating portion in the intermediate connection structure of the power cable.

【0004】他に使用される汎用電気絶縁部材の材料と
して、低密度ポリエチレン(LDPE)やエチレンプロ
ピレンゴム(EPゴム)等が挙げられる。しかしこれら
を用いた絶縁部材は、高度な電気特性や物性が求められ
る昨今の電力ケーブル等においては、必ずしも満足のい
くものではない。特に電力ケーブルおよび電力ケーブル
における接続部の絶縁体として用いる場合は、より優れ
たAC特性およびインパルス耐電圧特性が要求されてい
る。
Other commonly used materials for electrical insulating members include low density polyethylene (LDPE) and ethylene propylene rubber (EP rubber). However, the insulating member using these is not always satisfactory in recent power cables and the like, which are required to have high electrical characteristics and physical properties. Particularly when used as an insulator of a power cable and a connection portion of the power cable, more excellent AC characteristics and impulse withstand voltage characteristics are required.

【0005】[0005]

【課題を解決するための手段】本発明者らは各種の材料
について、電気絶縁材料への適用可否を検討したとこ
ろ、シンジオタクチックポリプロピレン(以下、「s−
PP」ともいう)とエチレン−α−オレフィン共重合体
とを含む材料が、従来の汎用電気絶縁材料であるLDP
EやEPゴムよりも高度な電気特性を有し、かつi−P
Pよりも耐低温脆性に優れた部材を提供しうることを見
いだした。さらにこれを絶縁層、絶縁体として使用した
電力ケーブルおよびケーブル接続用絶縁体は、高いAC
特性およびインパルス耐電圧特性を示すことを確認し
た。
The inventors of the present invention have investigated the applicability of various materials to electrical insulating materials, and found that syndiotactic polypropylene (hereinafter referred to as "s-
(Hereinafter also referred to as “PP”) and an ethylene-α-olefin copolymer, a conventional general-purpose electrical insulating material is LDP.
It has higher electrical properties than E and EP rubbers, and has i-P
It has been found that a member having lower low temperature brittleness than P can be provided. Furthermore, the power cable and the insulating material for connecting cables, which use this as an insulating layer and an insulating material, have high AC.
It was confirmed that the characteristics and impulse withstand voltage characteristics were exhibited.

【0006】即ち本発明は、シンジオタクチックペンタ
ッド分率が0.7以上のシンジオタクチックポリプロピ
レン50〜95重量%とエチレン−α−オレフィン共重
合体5〜50重量%とを含む樹脂組成物からなる電気絶
縁部材に関する。
That is, the present invention provides a resin composition containing 50 to 95% by weight of syndiotactic polypropylene having a syndiotactic pentad fraction of 0.7 or more and 5 to 50% by weight of an ethylene-α-olefin copolymer. And an electric insulating member comprising

【0007】さらに本発明は、シンジオタクチックペン
タッド分率が0.7以上のシンジオタクチックポリプロ
ピレン50〜95重量%とエチレン−α−オレフィン共
重合体5〜50重量%とを含む樹脂組成物からなる電気
絶縁層を有する電力ケーブル、および電力ケーブル用接
続部材に関する。
The present invention further provides a resin composition containing 50 to 95% by weight of syndiotactic polypropylene having a syndiotactic pentad fraction of 0.7 or more and 5 to 50% by weight of an ethylene-α-olefin copolymer. The present invention relates to a power cable having an electrical insulating layer made of, and a connecting member for a power cable.

【0008】本発明で使用されるs−PPは、シンジオ
タクチック構造を有するポリプロピレンの単独重合体の
みならず、プロピレンと他のオレフィンとの共重合体も
含む概念であり、以下の説明においては、当該共重合体
を含めてs−PPという。本発明においては、ホモポリ
マーであるs−PPが好ましい。
The s-PP used in the present invention is a concept including not only a homopolymer of polypropylene having a syndiotactic structure but also a copolymer of propylene and other olefins. In the following description, , S-PP including the copolymer. In the present invention, s-PP, which is a homopolymer, is preferred.

【0009】本発明で使用されるs−PPは、そのシン
ジオタクチックペンタッド分率が0.7以上であること
が必要である。ここでシンジオタクチックペンタッド分
率とは、135℃の1,2,4−トリクロロベンゼン溶
液で67.8MHzにて測定した13C−NMRスペク
トルにおいてテトラメチルシランを基準として20.2
ppmに観測されるピーク強度(シンジオタクチックペ
ンタッド連鎖に帰属されるメチル基のピーク強度)のプ
ロピレン単位の全メチル基に帰属されるピーク強度の割
合をいう。シンジオタクチックペンタッド分率が0.7
未満のs−PPは、融点が低く、かつ電気的破壊強度や
機械特性も低下するので、本発明の電気絶縁部材を製造
する材料として使用すべきでない。上記シンジオタクチ
ックペンタッド分率は、好ましくは耐電界性の点から
0.8〜0.95、さらに好ましくは加工性の点から
0.86〜0.95である。
The s-PP used in the present invention must have a syndiotactic pentad fraction of 0.7 or more. Here, the syndiotactic pentad fraction refers to 20.2 based on tetramethylsilane in a 13 C-NMR spectrum measured at 1,78,2, 1,2,4-trichlorobenzene solution at 135 ° C.
It refers to the ratio of the peak intensity attributed to all methyl groups of the propylene unit of the peak intensity observed in ppm (peak intensity of methyl group attributed to syndiotactic pentad chain). Syndiotactic pentad fraction 0.7
S-PP of less than 5% has a low melting point and also lowers electric breakdown strength and mechanical properties, and therefore should not be used as a material for producing the electrically insulating member of the present invention. The syndiotactic pentad fraction is preferably 0.8 to 0.95 from the viewpoint of electric field resistance, and more preferably 0.86 to 0.95 from the viewpoint of workability.

【0010】さらに上記s−PPは、ASTM−D−1
238で規定するメルトフローレート(MFR)(荷
重:10kgf、温度:230℃)が、0.1〜20g
/10分の範囲をもつものが好ましい。s−PPのMF
Rが上記範囲内であれば、高温で流動性が過大になりす
ぎることもなく、逆に流動性が過少となりすぎることも
なく、いずれのものも、優れた加工性をもつ電気絶縁部
材となる。上記MFRのさらに好ましい範囲は高温流動
性の点から0.3〜15g/10分、特に好ましい範囲
は押出加工性および成型加工性の点から0.5〜10g
/10分である。
Further, s-PP is ASTM-D-1.
Melt flow rate (MFR) defined by 238 (load: 10 kgf, temperature: 230 ° C.) is 0.1 to 20 g.
Those having a range of / 10 minutes are preferred. s-PP MF
When R is in the above range, the fluidity does not become excessively high at a high temperature and the fluidity does not become excessively low at the high temperature, and any of them becomes an electrically insulating member having excellent workability. . A more preferable range of the MFR is 0.3 to 15 g / 10 minutes from the viewpoint of high temperature fluidity, and a particularly preferable range is 0.5 to 10 g from the viewpoint of extrusion processability and molding processability.
/ 10 minutes.

【0011】上記s−PPの製造法には特に制限はな
い。即ち、用いられる重合触媒としては、対称もしくは
非対称分子構造を有する有機金属錯体系触媒、例えばメ
タロセン化合物等の立体特異性重合触媒等が使用しう
る。また、重合条件にも特に制限はなく、例えば、塊状
重合法、気相重合法、不活性溶媒を用いる溶液重合法等
の方法によって製造しうる。特にメタロセン化合物を触
媒として使用してイオン重合法で得られた重合体が好ま
しい。
There is no particular limitation on the method for producing the s-PP. That is, as the polymerization catalyst to be used, an organometallic complex catalyst having a symmetric or asymmetric molecular structure, for example, a stereospecific polymerization catalyst such as a metallocene compound or the like can be used. The polymerization conditions are also not particularly limited, and for example, bulk polymerization method, gas phase polymerization method, solution polymerization method using an inert solvent, and the like can be used for production. In particular, a polymer obtained by an ionic polymerization method using a metallocene compound as a catalyst is preferable.

【0012】本発明で用いるエチレン−α−オレフィン
共重合体として、たとえば、炭素数3〜12のα−オレ
フィンとエチレンとの共重合体が挙げられる。α−オレ
フィンは直鎖状あるいは分岐状であってもよく、たとえ
ば、プロピレン、1−ブテン、1−ペンテン、1−ヘキ
セン、4−メチル−ペンテン、1−ヘプテン、1−オク
テン等が挙げられる。エチレン−α−オレフィン共重合
体の製造法には特に制限はないが、エチレンと他のα−
オレフィンとの共重合特性の良好な触媒系が好ましく使
用され、対称もしくは非対称分子構造を有する有機金属
錯体系触媒、バナジウム系、チタン系の遷移金属触媒系
が例示される。なかでも低温脆性の点から遷移金属触媒
であるメタロセン化合物を触媒として用いて製造された
ものが特に好ましい。エチレン−α−オレフィン共重合
体のMFR(190℃)は、通常、0.01〜10g/
10分、好ましくは0.3〜5g/10分程度である。
またJIS−K−6301で規定する破断時の伸び〔破
断時の伸び量/元の長さ×100(%)〕は、通常、5
50〜950%、好ましくは650〜900%程度であ
る。エチレン−α−オレフィン共重合体の具体例とし
て、たとえば、エチレン−プロピレン共重合体、エチレ
ン−プロピレン−ジエン共重合体等が挙げられる。これ
らのエチレン−α−オレフィン共重合体は、1種または
2種以上の混合物としても用いることができる。ジエン
として、たとえば、エチリデンノルボルネン、ジシクロ
ペンタジエン、1,4−ヘキサジエン等が挙げられる。
これらの中でも、低温脆性の点から炭素数が4〜12、
特に炭素数が4、6または8のα−オレフィンとエチレ
ンとの共重合体が好ましい。さらに好ましくは、炭素数
4、6または8のα−オレフィンとエチレンとの共重合
体であって、MFRが0.01〜10g/10分、エチ
レン含量が90〜20重量%、破断時の伸びが750〜
900%のもの、そのなかでも低温脆性の点から炭素数
8のα−オレフィンとエチレンとの共重合体であって、
かつMFRが0.3〜5.0g/10分、破断時の伸び
が750〜900%のものが好ましい。
Examples of the ethylene-α-olefin copolymer used in the present invention include a copolymer of an α-olefin having 3 to 12 carbon atoms and ethylene. The α-olefin may be linear or branched, and examples thereof include propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-pentene, 1-heptene and 1-octene. The method for producing the ethylene-α-olefin copolymer is not particularly limited, but ethylene and other α-olefin are not limited.
A catalyst system having a good copolymerization property with an olefin is preferably used, and examples thereof include organometallic complex catalysts having a symmetrical or asymmetrical molecular structure, vanadium-based and titanium-based transition metal catalyst systems. Among them, those produced by using a metallocene compound which is a transition metal catalyst as a catalyst are particularly preferable from the viewpoint of low temperature brittleness. The MFR (190 ° C.) of the ethylene-α-olefin copolymer is usually 0.01 to 10 g /
It is about 10 minutes, preferably about 0.3 to 5 g / 10 minutes.
The elongation at break [elongation at break / original length × 100 (%)] specified by JIS-K-6301 is usually 5
It is about 50 to 950%, preferably about 650 to 900%. Specific examples of the ethylene-α-olefin copolymer include ethylene-propylene copolymer and ethylene-propylene-diene copolymer. These ethylene-α-olefin copolymers can be used alone or as a mixture of two or more. Examples of the diene include ethylidene norbornene, dicyclopentadiene, and 1,4-hexadiene.
Among these, the number of carbon atoms is 4 to 12 from the viewpoint of low temperature brittleness,
Particularly, a copolymer of ethylene with an α-olefin having 4, 6 or 8 carbon atoms is preferable. More preferably, it is a copolymer of an α-olefin having 4, 6 or 8 carbon atoms and ethylene, having an MFR of 0.01 to 10 g / 10 min, an ethylene content of 90 to 20% by weight, and an elongation at break. Is 750
900%, among them, a copolymer of α-olefin having 8 carbon atoms and ethylene from the viewpoint of low temperature brittleness,
Moreover, it is preferable that the MFR is 0.3 to 5.0 g / 10 minutes and the elongation at break is 750 to 900%.

【0013】エチレン−α−オレフィン共重合体の市販
品としては、たとえば、住友化学社製スミカセン−L
FA101−1(MFR:0.8g/10分)、住友化
学社製エクセレンVL−100(MFR:0.8g/1
0分、破断時の伸び:900%)、住友化学社製エクセ
レンEUL−130(MFR:0.8g/10分、破断
時の伸び:770%)、三井石油化学社製タフマーA−
4090(MFR:3.6g/10分、破断時の伸び:
700%)、ダウ・ケミカル社製エンゲージCL800
1(MFR:0.5g/10分、破断時の伸び:880
%)、ダウ・ケミカル社製エンゲージCL8002(M
FR:1.0g/10分、破断時の伸び:800%)、
エクソン社製イグザクト、三菱化学社製カーネル、三井
石油化学社製スーパーポリエチレン等が挙げられる。こ
れらの中でも、特にダウ・ケミカル社製エンゲージCL
8002が好ましい。
Examples of commercially available ethylene-α-olefin copolymers include Sumikasen-L manufactured by Sumitomo Chemical Co., Ltd.
FA101-1 (MFR: 0.8 g / 10 minutes), Sumitomo Chemical's Excellen VL-100 (MFR: 0.8 g / 1)
0 min, elongation at break: 900%), Sumitomo Chemical Co., Ltd. Excellen EUL-130 (MFR: 0.8 g / 10 min, elongation at break: 770%), Mitsui Petrochemical Tuffmer A-
4090 (MFR: 3.6 g / 10 minutes, elongation at break:
700%), Engage CL800 manufactured by Dow Chemical Company
1 (MFR: 0.5 g / 10 minutes, elongation at break: 880
%), Engage CL8002 (M
FR: 1.0 g / 10 minutes, elongation at break: 800%),
Exxon Exact, Mitsubishi Chemical Kernel, Mitsui Petrochemical Super Polyethylene and the like can be mentioned. Among these, especially Engage CL manufactured by Dow Chemical Company
8002 is preferred.

【0014】s−PPとエチレン−α−オレフィン共重
合体との混合比率は、s−PPがs−PPとエチレン−
α−オレフィン共重合体の合計に対して50〜95重量
%で、エチレン−α−オレフィン共重合体がs−PPと
エチレン−α−オレフィン共重合体の合計に対して5〜
50重量%である。s−PPの混合比率が95重量%を
超えると耐低温脆性が低下し、s−PPの混合比率が5
0重量%未満であると電気的破壊特性が低下する。好ま
しい混合比率は、耐低温脆性および電気的破壊特性の点
からs−PPが60〜90重量%、エチレン−α−オレ
フィン共重合体が10〜40重量%であり、さらに好ま
しい混合比率は、s−PPが75〜85重量%、エチレ
ン−α−オレフィン共重合体が15〜25重量%であ
る。
The mixing ratio of s-PP and ethylene-α-olefin copolymer is such that s-PP is s-PP and ethylene-
The ethylene-α-olefin copolymer is 5 to 95% by weight with respect to the total amount of α-olefin copolymer, and the ethylene-α-olefin copolymer is 5 to 5% with respect to the total amount of s-PP and ethylene-α-olefin copolymer.
50% by weight. If the mixing ratio of s-PP exceeds 95% by weight, the low temperature brittleness resistance decreases, and the mixing ratio of s-PP is 5%.
If it is less than 0% by weight, the electric breakdown property is deteriorated. A preferable mixing ratio is 60 to 90% by weight of s-PP and 10 to 40% by weight of an ethylene-α-olefin copolymer from the viewpoint of low temperature brittleness resistance and electrical breakdown characteristics, and a more preferable mixing ratio is s. -PP is 75 to 85% by weight, and ethylene-α-olefin copolymer is 15 to 25% by weight.

【0015】s−PPとエチレン−α−オレフィン共重
合体とを含む樹脂組成物には、必要に応じて、ヒンダー
ドフェノール系、アミン系、チオエーテル系等の酸化防
止剤あるいは安定剤、アミド、ヒドラジッド系等の銅害
防止剤、ベンゾフェノン系、ベンゾイン系等の紫外線防
止剤、高級脂肪酸系あるいはその金属塩系等の滑剤、加
工助剤、有機・無機系顔料、有機・無機系難燃剤、およ
びシリカやクレー等の充填剤等、プラスチックに通常用
いられる添加剤を添加しても良い。
In the resin composition containing s-PP and the ethylene-α-olefin copolymer, a hindered phenol type, amine type, thioether type antioxidant or stabilizer, amide, Copper damage inhibitors such as hydrazide-based, benzophenone-based, benzoin-based ultraviolet protection, higher fatty acid-based or metal salt-based lubricants, processing aids, organic / inorganic pigments, organic / inorganic flame retardants, and You may add the additive normally used for plastics, such as a filler such as silica and clay.

【0016】本発明でいう電気絶縁部材とは、電気絶縁
紙、油浸絶縁体、テープ、シート、スペーサー、プラ
グ、ソケット、パイプ、絶縁棒、各種電装成型品、回路
部品、封止材料等が挙げられ、これらの部材はそれぞれ
既知の方法によって成型される。
The term "electrically insulating member" as used in the present invention means electrically insulating paper, oil-impregnated insulator, tape, sheet, spacer, plug, socket, pipe, insulating rod, various electrical component moldings, circuit components, sealing materials and the like. Each of these members is molded by a known method.

【0017】上記電力ケーブルの製造法に特に制限はな
く、自体既知の方法によって形成される。たとえば、押
出被覆法によって導体上に連続被覆して形成される。ま
た、本発明のケーブルの構造としては、導体上に単独一
層で絶縁体を被覆したもの、さらにシース層を被覆した
もの、導体にセパレーターを施したものが挙げられる。
また、導体上及び絶縁体上に半導電層を付与したもので
あってもよい。
There is no particular limitation on the method of manufacturing the power cable, and the power cable is formed by a method known per se. For example, it is formed by continuous coating on a conductor by an extrusion coating method. Examples of the structure of the cable of the present invention include a conductor coated with an insulator in a single layer, a sheath layer coated, and a conductor coated with a separator.
Further, a semiconductive layer may be provided on a conductor and an insulator.

【0018】本発明でいうケーブル接続部材の絶縁部分
として、その絶縁体が押出し機によってあらかじめ設定
された形状を有する金型内キャビティに連続的に溶融状
態で押出充填されて接続構造体の絶縁部分を構成する押
出モールド型接続部(EMJ)、絶縁体をあらかじめ設
定された形状にまず予備成型し、いったん冷却して得ら
れたプレモールド絶縁体を当該接続部にはめ込んだ後、
これを加圧下で溶融加熱し、接続構造体の絶縁部分を完
成させるブロックモールド型接続部(BMJ)、絶縁体
をまずテープ状に加工し、あらかじめ設定された形状に
沿って巻き上げた後、外部から金型を装着し、これを加
圧下で溶融加熱し、接続構造体の絶縁部分を成型するテ
ープ接続部(TMJ)、全ての接続部構成部分をあらか
じめ成型しておき、それらを接続作業時点で組み立てる
プレハブ接続部(PMJ)等が例示できる。
As the insulating portion of the cable connecting member according to the present invention, the insulating portion is continuously extruded and filled in a mold cavity having a preset shape by an extruder in a molten state to form an insulating portion of the connecting structure. Extruded mold type connection part (EMJ) constituting the first, the insulator is first preformed into a preset shape, and once cooled, the premolded insulator obtained is fitted into the connection part,
This is melted and heated under pressure to complete the insulation part of the connection structure, the block mold type connection part (BMJ), the insulator is first processed into a tape shape, and wound up according to a preset shape, and then externally A mold is attached to the tape, the tape is melted and heated under pressure, the tape connection part (TMJ) for molding the insulating part of the connection structure, all the connection part components are molded in advance, and they are connected The prefabricated connection part (PMJ) and the like assembled in step 1 can be exemplified.

【0019】本発明のs−PPとエチレン−α−オレフ
ィン共重合体とを含む樹脂組成物から製造される絶縁部
材の室温でのインパルス破壊電界強度は、従来の低密度
ポリエチレン(LDPE)よりも14〜19%高く、室
温でのAC破壊電界強度は、LDPEよりも3〜17%
高い。さらに脆化温度はi−PPよりも39〜95℃も
低い。
The insulating member produced from the resin composition containing s-PP and the ethylene-α-olefin copolymer of the present invention has an impulse breakdown electric field strength at room temperature higher than that of conventional low density polyethylene (LDPE). 14-19% higher, AC breakdown electric field strength at room temperature is 3-17% than LDPE
high. Furthermore, the brittleness temperature is lower than i-PP by 39 to 95 ° C.

【0020】上記した本発明の電気絶縁部材は、電気特
性(AC破壊電界強度、インパルス破壊電界強度)に優
れているうえ、脆化温度が−10℃以下と非常に低く、
低温脆性のも優れている。
The above-mentioned electrical insulating member of the present invention is excellent in electrical characteristics (AC breakdown electric field strength, impulse breakdown electric field strength) and has a very low embrittlement temperature of -10 ° C. or less.
It is also excellent in low temperature brittleness.

【0021】以下、実施例を用いて本発明をさらに詳し
く説明するが、本発明はこれら実施例に限定されない。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0022】[0022]

【実施例】【Example】

実施例1〜8、比較例1〜9 表1、2に示す各ポリマー(数字は重量部)をロールミ
ルを用いて180℃にて混練し、圧縮成型器中で180
℃で15分間溶融成型し、厚さ0.3mmおよび10.
0mmのシートを得た。0.3mm厚シートは室温での
インパルス破壊試験およびAC破壊試験を行い、10.
0mm厚シートは脆化温度試験を行った。
Examples 1 to 8 and Comparative Examples 1 to 9 The polymers shown in Tables 1 and 2 (the numbers are parts by weight) were kneaded at 180 ° C. using a roll mill, and then 180 in a compression molding machine.
Melt molding for 15 minutes at a temperature of 0.3 ° C and a thickness of 10.
A 0 mm sheet was obtained. The 0.3 mm thick sheet was subjected to an impulse breakdown test and an AC breakdown test at room temperature.
The 0 mm thick sheet was subjected to an embrittlement temperature test.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】表1、2中のポリマーは以下の通り。 s−PP(1):シンジオタクチックペンタッド分率:0.95 MFR:14.00g/10分 s−PP(2):シンジオタクチックペンタッド分率:0.80 MFR:8.90g/10分 エチレン−α−オレフィン共重合体(3): α−オレフィン:炭素数4(1−ブテン) 住友化学社製、スミカセン−L FA101−1 MFR:0.8g/10分 エチレン−α−オレフィン共重合体(4): α−オレフィン:炭素数6 住友化学社製、スミカセン−α FZ102−0 MFR:0.8g/10分 エチレン−α−オレフィン共重合体(5): α−オレフィン:炭素数6 住友化学社製、スミカセン−α FZ102−0 MFR:0.8g/10分:破断の伸び:770% エチレン−α−オレフィン共重合体(6): α−オレフィン:炭素数4 三井石油化学社製、タフマーA−4090 MFR:3.6g/10分:破断時の伸び:770% エチレン−α−オレフィン共重合体(7): α−オレフィン:炭素数8(1−オクテン) ダウ・ケミカル社製、エンゲージCL8001 MFR:0.5g/10分:破断時の伸び:880% メタロセン触媒を使用して重合 エチレン−α−オレフィン共重合体(8): α−オレフィン:炭素数8(1−オクテン) ダウ・ケミカル社製、エンゲージCL8002 MFR:1.0g/10分:破断時の伸び:800% メタロセン触媒を使用して重合 s−PP(10):シンジオタクチックペンタッド分率:0.60 MFR:1.20g/10分 i−PP(11):三井石油化学製、J600 MFR:7.0g/10分 LDPE(12):三菱化学製、ZF−30 MFR:1.1g/10分、破断時の伸び:740%The polymers in Tables 1 and 2 are as follows. s-PP (1): Syndiotactic pentad fraction: 0.95 MFR: 14.00 g / 10 minutes s-PP (2): Syndiotactic pentad fraction: 0.80 MFR: 8.90 g / 10 minutes Ethylene-α-olefin copolymer (3): α-olefin: carbon number 4 (1-butene) Sumitomo Chemical Co., Sumikasen-L FA101-1 MFR: 0.8 g / 10 minutes Ethylene-α-olefin Copolymer (4): α-olefin: carbon number 6 manufactured by Sumitomo Chemical Co., Sumikasen-α FZ102-0 MFR: 0.8 g / 10 min Ethylene-α-olefin copolymer (5): α-olefin: carbon Sumitomo Chemical Co., Ltd., Sumikasen-α FZ102-0 MFR: 0.8 g / 10 minutes: elongation at break: 770% ethylene-α-olefin copolymer (6): α-olefin: carbon number 4 Mitsui Petrochemical Co., Ltd., Tuffmer A-4090 MFR: 3.6 g / 10 minutes: elongation at break: 770% ethylene-α-olefin copolymer (7): α-olefin: carbon number 8 (1-octene) Dow Chemical Co., Engage CL8001 MFR: 0.5 g / 10 min: Elongation at break: 880% Polymerization using metallocene catalyst Ethylene-α-olefin copolymer (8): α-olefin: carbon number 8 (1-octene), manufactured by Dow Chemical Co., Engage CL8002 MFR: 1.0 g / 10 min: elongation at break: 800% polymerization using a metallocene catalyst s-PP (10): syndiotactic pentad fraction : 0.60 MFR: 1.20 g / 10 minutes i-PP (11): Mitsui Petrochemical, J600 MFR: 7.0 g / 10 minutes LDPE (12): Mitsubishi Chemical Manufactured by ZF-30, MFR: 1.1 g / 10 minutes, elongation at break: 740%

【0026】(インパルス破壊試験)改良型McKeo
wn電極系にて1×40μsecの負極インパルス標準
波を予想破壊電圧の70%値を初期値として、室温にて
5kV/3回印加のステップアップ昇圧方式で課電し
た。なお、1条件につき10試料のデータを採取し、ワ
イブル解析の後、破壊確率63.3%における破壊値を
もってその試料のインパルス耐圧値とした。 ○:300kV/mm以上 ×:300kV/mm未満
(Impulse Destruction Test) Improved McKeo
A negative impulse standard wave of 1 × 40 μsec was applied to the wn electrode system by a step-up boosting method of applying 5 kV / 3 times at room temperature with an initial value of 70% of the expected breakdown voltage. The data of 10 samples was collected for each condition, and after Weibull analysis, the breakdown value at a breakdown probability of 63.3% was taken as the impulse withstand voltage value of the sample. ○: 300 kV / mm or more ×: less than 300 kV / mm

【0027】(AC破壊試験)改良型McKeown電
極系にて予想破壊電圧の70%値を初期値として、室温
にて1kV/1分印加のステップアップ昇圧方式で課電
した。なお、1条件につき10試料のデータを採取し、
ワイブル解析の後、破壊確率63.3%における破壊値
をもってその試料のAC耐圧値とした。 ○:30kV/mm以上 ×:30kV/mm未満
(AC Breakdown Test) With an improved McKeown electrode system, an initial value was 70% of the expected breakdown voltage, and the voltage was applied by a step-up boosting method of applying 1 kV / 1 minute at room temperature. In addition, data of 10 samples are collected for each condition,
After the Weibull analysis, the breakdown value at a breakdown probability of 63.3% was taken as the AC withstand voltage value of the sample. ○: 30 kV / mm or more ×: less than 30 kV / mm

【0028】(脆化温度試験)脆化温度試験装置にて、
試験片を試験温度雰囲気に3±0.1分間置いた後、打
撃ハンマによって2±0.2m/sの速度で1回の衝撃
を加え、破壊の有無を調べた。5個の試験片が全て未破
壊であった温度を脆化温度とした。なお、試験片が完全
に2つあるいはそれ以上に分離した場合を破壊とみな
し、裂け目およびひびの生成は破壊とみなさなかった。 ◎:−20℃以下 ○:−20℃を超え、−10℃以下 ×:−10℃を超える
(Brittle temperature test) Using a brittle temperature tester,
After placing the test piece in a test temperature atmosphere for 3 ± 0.1 minutes, an impact was applied once at a speed of 2 ± 0.2 m / s by an impact hammer to examine the presence or absence of breakage. The temperature at which all five test pieces were not destroyed was taken as the embrittlement temperature. It should be noted that the case where the test piece was completely separated into two or more was considered to be a fracture, and the formation of a crack and a crack was not considered to be a fracture. ◎: -20 ° C or less ○: -20 ° C or more and -10 ° C or less ×: -10 ° C or more

【0029】結果を表3および4に示す。The results are shown in Tables 3 and 4.

【0030】[0030]

【表3】 [Table 3]

【0031】[0031]

【表4】 [Table 4]

【0032】実施例9 実施例5で用いた組成物を、30mmφ押出機により、
銅撚線導体(直径:2mm)上に厚さ1mmに連続押出
被覆してケーブルを作成した(押出温度条件:C1 :1
80℃、C2 :185℃、C3 :181℃、D:180
℃)。JISC 3005に準じて、インパルス破壊試
験、AC破壊試験および脆化温度試験を行った。結果
は、インパルス破壊試験:○、AC破壊試験:○、およ
び脆化温度試験:◎であった。
Example 9 The composition used in Example 5 was processed by a 30 mmφ extruder.
A cable was prepared by continuously extrusion-coating a copper stranded wire conductor (diameter: 2 mm) to a thickness of 1 mm (extrusion temperature condition: C 1 : 1).
80 ° C, C 2 : 185 ° C, C 3 : 181 ° C, D: 180
° C). According to JISC 3005, an impulse breakdown test, an AC breakdown test and an embrittlement temperature test were performed. The results were an impulse breakdown test: ◯, an AC breakdown test: ◯, and an embrittlement temperature test: ◎.

【0033】実施例10 実施例5で用いた組成物を、90mmφ押出機により、
ケーブル接続部上に押出モールドし、ケーブル接続用補
強絶縁体を作成した(押出温度条件:C1 :180℃、
2 :185℃、C3 :181℃、D:180℃)。J
IS C 3005に準じて、インパルス破壊試験、A
C破壊試験および脆化温度試験を行った。結果は、イン
パルス破壊試験:○、AC破壊試験:○、および脆化温
度試験:◎であった。
Example 10 The composition used in Example 5 was processed by a 90 mmφ extruder.
Extrusion molding was performed on the cable connection portion to create a reinforced insulating material for cable connection (extrusion temperature condition: C 1 : 180 ° C,
C 2: 185 ℃, C 3 : 181 ℃, D: 180 ℃). J
Impulse destructive test, A according to IS C 3005
A C fracture test and an embrittlement temperature test were performed. The results were an impulse breakdown test: ◯, an AC breakdown test: ◯, and an embrittlement temperature test: ◎.

【0034】[0034]

【発明の効果】s−PPおよびエチレン−α−オレフィ
ンを含む本発明の電気絶縁部材は、優れた電気特性をも
ち、さらに脆化温度も低く低温脆性に優れている。従っ
て、これを電力ケーブルの絶縁層として、あるいは電力
ケーブル接続部の絶縁部分に使用すると優れた電気特性
および低温脆性をもつ電力ケーブルおよびケーブル接続
部となる。
The electrical insulating member of the present invention containing s-PP and ethylene-α-olefin has excellent electrical characteristics, and also has a low brittle temperature and excellent low temperature brittleness. Therefore, when this is used as an insulating layer of a power cable or in an insulating portion of a power cable connecting portion, the power cable and the cable connecting portion have excellent electric characteristics and low temperature brittleness.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 寛 兵庫県尼崎市東向島西之町8番地 三菱電 線工業株式会社内 (72)発明者 前田 重徳 大阪府高石市高砂1丁目6番地 三井東圧 化学株式会社内 (72)発明者 内川 進隆 東京都千代田区霞が関三丁目2番5号 三 井東圧化学株式会社内 (72)発明者 吉野 勝美 大阪府岸和田市尾生町166−3 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Kato 8 Nishinomachi, Higashimukaijima, Amagasaki City, Hyogo Prefecture Mitsubishi Electric Wire & Cable Co., Ltd. (72) Inventor Shigenori Maeda 1-6 Takasago, Takaishi-shi, Osaka Mitsui Toatsu Chemicals Co., Ltd. (72) Inventor Susumu Uchikawa 3-5 Kasumigaseki, Chiyoda-ku, Tokyo Mitsui Toatsu Chemicals Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 シンジオタクチックペンタッド分率が
0.7以上のシンジオタクチックポリプロピレン50〜
95重量%とエチレン−α−オレフィン共重合体5〜5
0重量%とを含む樹脂組成物からなる電気絶縁部材。
1. A syndiotactic polypropylene having a syndiotactic pentad fraction of 0.7 or more.
95% by weight and ethylene-α-olefin copolymer 5 to 5
An electrical insulating member comprising a resin composition containing 0% by weight.
【請求項2】 エチレン−α−オレフィン共重合体のα
−オレフィンの炭素数が4〜12である請求項1記載の
電気絶縁部材。
2. An α of an ethylene-α-olefin copolymer
-The electrically insulating member according to claim 1, wherein the olefin has 4 to 12 carbon atoms.
【請求項3】 α−オレフィンの炭素数が4、6または
8である請求項2記載の電気絶縁部材。
3. The electrical insulating member according to claim 2, wherein the α-olefin has 4, 6 or 8 carbon atoms.
【請求項4】 エチレン−α−オレフィン共重合体が遷
移金属触媒により重合された共重合体である請求項1記
載の電気絶縁部材。
4. The electrical insulating member according to claim 1, wherein the ethylene-α-olefin copolymer is a copolymer polymerized by a transition metal catalyst.
【請求項5】 遷移金属触媒がメタロセン化合物である
請求項4記載の電気絶縁部材。
5. The electrical insulating member according to claim 4, wherein the transition metal catalyst is a metallocene compound.
【請求項6】 シンジオタクチックペンタッド分率が
0.7以上のシンジオタクチックポリプロピレン50〜
95重量%とエチレン−α−オレフィン共重合体5〜5
0重量%とを含む樹脂組成物からなる電気絶縁層を有す
る電力ケーブル。
6. A syndiotactic polypropylene having a syndiotactic pentad fraction of 0.7 or more.
95% by weight and ethylene-α-olefin copolymer 5 to 5
A power cable having an electrical insulation layer made of a resin composition containing 0% by weight.
【請求項7】 シンジオタクチックペンタッド分率が
0.7以上のシンジオタクチックポリプロピレン50〜
95重量%とエチレン−α−オレフィン共重合体5〜5
0重量%とを含む樹脂組成物からなる電力ケーブル用接
続部材。
7. A syndiotactic polypropylene having a syndiotactic pentad fraction of 0.7 or more.
95% by weight and ethylene-α-olefin copolymer 5 to 5
A connecting member for a power cable made of a resin composition containing 0% by weight.
JP1223796A 1996-01-26 1996-01-26 Electrical insulating member, power cable, and connecting member for power cable Pending JPH09204818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1223796A JPH09204818A (en) 1996-01-26 1996-01-26 Electrical insulating member, power cable, and connecting member for power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1223796A JPH09204818A (en) 1996-01-26 1996-01-26 Electrical insulating member, power cable, and connecting member for power cable

Publications (1)

Publication Number Publication Date
JPH09204818A true JPH09204818A (en) 1997-08-05

Family

ID=11799771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1223796A Pending JPH09204818A (en) 1996-01-26 1996-01-26 Electrical insulating member, power cable, and connecting member for power cable

Country Status (1)

Country Link
JP (1) JPH09204818A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241225A (en) * 2005-03-01 2006-09-14 Mitsui Chemicals Inc Olefin-based polymer composition, molded product given by using the same, and electric wire
JP2006348136A (en) * 2005-06-15 2006-12-28 Auto Network Gijutsu Kenkyusho:Kk Flame-retardant resin composition, insulated wire using the same, and wire harness containing the insulated wire
WO2021090578A1 (en) * 2019-11-08 2021-05-14 住友電気工業株式会社 Resin composition, molded body of resin composition, and power cable
EP4056646A4 (en) * 2019-11-08 2022-12-28 Sumitomo Electric Industries, Ltd. Resin composition, resin composition molded body and power cable

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241225A (en) * 2005-03-01 2006-09-14 Mitsui Chemicals Inc Olefin-based polymer composition, molded product given by using the same, and electric wire
JP2006348136A (en) * 2005-06-15 2006-12-28 Auto Network Gijutsu Kenkyusho:Kk Flame-retardant resin composition, insulated wire using the same, and wire harness containing the insulated wire
WO2021090578A1 (en) * 2019-11-08 2021-05-14 住友電気工業株式会社 Resin composition, molded body of resin composition, and power cable
EP4056646A4 (en) * 2019-11-08 2022-12-28 Sumitomo Electric Industries, Ltd. Resin composition, resin composition molded body and power cable

Similar Documents

Publication Publication Date Title
EP2160739B1 (en) Energy cable
US8378216B2 (en) Energy cable
JP3745777B2 (en) Tree-resistant cable
JP6092481B2 (en) Thermoplastic blend composition for cable insulation
US5952396A (en) Low modulus elastomer
US20020142175A1 (en) Resin composition, method of making it and electrical wire covered with it
JP2004528430A (en) Semiconductive shield composition
JP3935320B2 (en) RESIN COMPOSITION, PROCESS FOR PRODUCING THE SAME, AND ELECTRIC CABLE
CN1856844B (en) Insulating shielding composition, electric cable comprising the composition and its preparation method
NO832147L (en) Semiconductor THERMOPLASTIC MATERIAL RESISTANT TO HEAT DISTORTION
EP1283527B1 (en) Electrically insulating resin composition and electric wire or cable both coated therewith
JP2002105255A (en) Flame-retardant resin composition and molded article using the same
KR20200004061A (en) Power cable
KR20200091930A (en) Polymer blend compositions for wire and cable applications with advantageous electrical properties
CA3001160A1 (en) Semiconductive shield composition
JPH09204818A (en) Electrical insulating member, power cable, and connecting member for power cable
JP2002114878A (en) Flame-retardant resin composition and molded part using the same
US6866932B2 (en) Olefin-based resin composition, method of making it and electrical wire covered with it
KR102339371B1 (en) Semiconductive composition and power cable having a semiconductive layer formed from the same
JP2013134890A (en) Multilayer insulated wire and method for manufacturing the same
JPH11313434A (en) Rubber composition for power cable joint and connecting sleeve
JP4533506B2 (en) Peelable semiconductive resin composition for externally semiconductive layer of chemically crosslinked polyethylene insulated power cable
JP3469315B2 (en) Electrical insulation material
KR101949643B1 (en) Semiconductive composition and power cable having a semiconductive layer formed from the same
JP3963228B2 (en) Insulated wire