JPH09201666A - Method for controlling temperature of molten metal - Google Patents

Method for controlling temperature of molten metal

Info

Publication number
JPH09201666A
JPH09201666A JP1231696A JP1231696A JPH09201666A JP H09201666 A JPH09201666 A JP H09201666A JP 1231696 A JP1231696 A JP 1231696A JP 1231696 A JP1231696 A JP 1231696A JP H09201666 A JPH09201666 A JP H09201666A
Authority
JP
Japan
Prior art keywords
tapping
temperature
ladle
time
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1231696A
Other languages
Japanese (ja)
Inventor
Masahiko Mizuta
匡彦 水田
Masao Furusawa
正夫 古澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1231696A priority Critical patent/JPH09201666A/en
Publication of JPH09201666A publication Critical patent/JPH09201666A/en
Pending legal-status Critical Current

Links

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

PROBLEM TO BE SOLVED: To contribute to the improvement of the quality of a cast block as the product by estimating the temp. drop in a high accuracy according to the molten metal tapping from a furnace and accurately matching the molten metal temp. at the time of pouring the molten metal into a mold to a suitable temp. SOLUTION: The temp. dropping degree arithmetic part 31 reads the operational conditions from an operational condition file 34 and these operational conditions are applied to a specified arithmetic formula and a specified dropping degree ΔT1 of molten steel temp. after tapping to casting time, is obtd. and given to a dropping degree correcting part 32. The dropping degree correcting part 32 uses the temp. measured value Tcc of the inner wall refractory of a ladle completing the casting and the operational conditions read out from the operational condition file 34, and the dropping degree of the molten steel temp. by heat conduction of the inner wall refractory at the time of tapping is calculated. Further, a time needed to the steel tapping is obtd. by using the operational conditions related to the steel tapping time read out from the operational condition file 34 and the dropping degree of the molten steel temp. by heat radiation during steel tapping is calculated. A ΔT1 is corrected with the calculated result and the dropping degree ΔT of the molten steel temp. is obtd. and given to an objective temp. setting part 33 for setting the objective temp. at the time of tapping the molten steel.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば、鋼板、鋼
管等の素材となる鋼塊の製造のための製鋼プロセスにお
いて、製鋼炉から取鍋に出鋼される溶鋼の温度を、鋳型
への注湯時に適正温度に保つべく実施される温度管理方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to, for example, in a steelmaking process for producing a steel ingot as a raw material for steel plates, steel pipes, etc. The present invention relates to a temperature control method that is carried out to maintain an appropriate temperature when pouring.

【0002】[0002]

【従来の技術】転炉,電気炉等の製鋼炉中に生成された
溶鋼(溶融金属)を、該製鋼炉の一部に開口する出鋼口
(出湯口)を経て取鍋に出鋼(出湯)し、所定の経路に
沿って搬送せしめた後、連続鋳造設備又は造塊設備の鋳
型に注湯して、該鋳型の形状に対応する鋼塊(鋳塊)を
得るべく行なわれる製鋼プロセスの操業においては、高
品質の製品鋼塊を安定して得るために、鋳型への注湯時
点における溶鋼の温度を適正に保つことが重要である。
2. Description of the Related Art Molten steel (molten metal) produced in a steelmaking furnace such as a converter or an electric furnace is tapped in a ladle through a tapping opening (a tap opening) which is opened in a part of the steelmaking furnace. Steelmaking process, which is carried out to obtain a steel ingot (ingot) corresponding to the shape of the mold by pouring the molten metal into a mold of a continuous casting facility or an ingot-making facility after transporting it along a predetermined path. In the above operation, in order to stably obtain a high quality product steel ingot, it is important to keep the temperature of the molten steel proper at the time of pouring the molten metal into the mold.

【0003】製鋼プロセス中の溶鋼は、製鋼炉中での吹
錬制御により温度を調整されて取鍋に出鋼され、該取鍋
による搬送の間の大気への放熱、及び搬送経路の中途の
二次精錬装置での各種の処理に伴う熱損失により徐々に
降温して鋳型への注湯位置に達し、溶鋼貯留用のタンデ
ィッシュを経て鋳型に注湯される。注湯を終えた取鍋
は、前記製鋼炉の炉前に戻されて予熱され、次なる出鋼
を受け入れるべく再使用される。
The molten steel in the steelmaking process is adjusted in temperature by blowing control in a steelmaking furnace to be tapped in a ladle, and is radiated to the atmosphere during transportation by the ladle, and in the middle of the transportation route. Due to heat loss associated with various treatments in the secondary refining device, the temperature is gradually lowered to reach the pouring position in the mold, where it is poured into the mold through the tundish for storing molten steel. The ladle that has finished pouring is returned to the front of the steelmaking furnace to be preheated and reused to receive the next tapping.

【0004】取鍋による搬送の間に生じる溶鋼温度の降
下量を求める演算式は、搬送の間の各処理過程での所要
時間を含む操業条件の関数として確立されており、製鋼
プロセスの操業に当たっては、当該操業において採用さ
れる操業条件を前記演算式に適用し、製鋼炉での出鋼の
後から鋳型への注湯までの間に生じる溶鋼温度の予測降
下量を求め、この結果を注湯時の適正温度に加えて製鋼
炉からの出鋼時における目標温度を決定して、得られた
目標温度を達成すべく吹錬制御を実施することにより、
製鋼プロセス全体の溶鋼温度を管理する方法が採用され
ている。
An arithmetic expression for determining the amount of molten steel temperature drop that occurs during transportation by a ladle has been established as a function of operating conditions, including the time required in each processing step during transportation, and in operating the steelmaking process. Applies the operating conditions adopted in the operation to the above calculation formula to obtain the predicted drop in molten steel temperature that occurs between the time of tapping in the steelmaking furnace and the pouring into the mold. By determining the target temperature at the time of tapping from the steelmaking furnace in addition to the appropriate temperature during hot water, and by performing blowing control to achieve the obtained target temperature,
A method of controlling the molten steel temperature of the entire steel making process is adopted.

【0005】[0005]

【発明が解決しようとする課題】ところが、前述の如く
決定された出鋼時の目標温度が正しく実現された場合に
おいても、最終段階となる鋳型への注湯時点における溶
鋼温度が適正温度と一致しないことが多く、この場合、
製品鋼塊の品質確保が難しくなる上、注湯時の溶鋼温度
が高すぎるときには、該溶鋼を鋳型への注湯前に貯留す
るタンディッシュに内張りされた耐火物の損傷が早ま
り、高頻度での交換を強いられて、生産性の低下を招来
し、また注湯時の溶鋼温度が低すぎるときには、製鋼炉
での吹錬制御において、温度低下のための冷却材の無為
な使用が行なわれたこととなり、製鋼コストの増大を招
来するという問題がある。
However, even when the target temperature at the time of tapping, which is determined as described above, is correctly realized, the molten steel temperature at the time of pouring into the mold, which is the final stage, matches the appropriate temperature. Often not, in this case
In addition to the difficulty in ensuring the quality of the product steel ingot, when the molten steel temperature at the time of pouring is too high, damage to the refractory material lined in the tundish that stores the molten steel before pouring into the mold is accelerated, resulting in high frequency. When it was forced to change, the productivity was lowered, and when the molten steel temperature at the time of pouring was too low, the coolant was used unnecessarily for the temperature control in the blowing control in the steelmaking furnace. Therefore, there is a problem that the steelmaking cost is increased.

【0006】以上の如き溶鋼温度の不一致は、製鋼炉か
ら取鍋への出鋼に伴う温度降下が考慮されていないこと
によるものである。製鋼炉からの出鋼を受け入れて鋳型
に搬送する取鍋は、先の注湯を終えた後、製鋼炉の炉前
に戻されるまでの空鍋期間中に大気との接触により冷却
された状態にあり、製鋼炉から出鋼された溶鋼は、取鍋
への流入時に、該取鍋に内張りされた内壁耐火物との接
触により抜熱されて降温する。前述の如く取鍋は、出鋼
の受け入れ前に予熱されるが、製鋼炉から出鋼される溶
鋼の温度は、予熱後の取鍋の内壁耐火物の温度よりも十
分に高く、出鋼時における温度降下を防ぎ得るものでは
ない。
The above inconsistency in molten steel temperature is due to the fact that the temperature drop due to tapping from the steelmaking furnace to the ladle is not taken into consideration. The ladle that receives the steel output from the steelmaking furnace and conveys it to the mold is in a state where it is cooled by contact with the atmosphere during the empty pan period until it is returned to the front of the steelmaking furnace after the pouring is completed. The molten steel tapped from the steelmaking furnace is heated by the contact with the inner wall refractory material lined in the ladle when it flows into the ladle, and the temperature is lowered. As mentioned above, the ladle is preheated before the tapping is received, but the temperature of the molten steel tapped from the steelmaking furnace is sufficiently higher than the temperature of the inner wall refractory of the ladle after preheating, It does not prevent the temperature drop at.

【0007】特開平1-246313号公報及び特開平3-161161
号公報には、出鋼時の温度降下を考慮に入れ、前述の如
く決定される出鋼時の目標温度に補正を加えることによ
り、前述した問題の解消を図った溶鋼温度の管理方法が
提案されている。
Japanese Patent Laid-Open Nos. 1-246313 and 3-161161
Japanese Patent Publication proposes a molten steel temperature management method that solves the above-mentioned problems by taking into account the temperature drop during tapping and correcting the target temperature at tapping determined as described above. Has been done.

【0008】特開平1-246313号に開示された方法は、溶
鋼搬送用の取鍋に複数の熱電対を埋め込み、出鋼の受け
入れ時における内壁耐火物の温度を測定し、この測定結
果から内壁耐火物による抜熱量を求め、出鋼時に生じる
溶鋼の温度降下量を推定し、この推定結果により前述の
如く決定される出鋼時の目標温度を補正する方法であ
る。
According to the method disclosed in Japanese Patent Laid-Open No. 1-246313, a plurality of thermocouples are embedded in a ladle for conveying molten steel, the temperature of the refractory on the inner wall at the time of receiving the tapped steel is measured, and the measured result is used to measure the inner wall. This is a method in which the amount of heat removed by the refractory is obtained, the amount of temperature drop of molten steel that occurs during tapping is estimated, and the target temperature for tapping determined as described above is corrected based on this estimation result.

【0009】ところが、この方法においては、製鋼炉と
鋳型との間を循環する複数の取鍋の夫々に熱電対を埋設
する必要があり、このための多大のイニシャルコストを
要する上、メインテナンス作業に手間を要し、実用的で
ないという問題がある。更には、出鋼温度の補正に出鋼
直前の測温結果を用いることから、当該チャージにおけ
る目標温度の設定に利用できず、他の取鍋を使用する次
チャージの目標温度の設定に利用することになり、得ら
れる目標温度に取鍋の個体差に起因する誤差が含まれ、
目標温度の設定精度が低いという問題があった。
However, in this method, it is necessary to embed a thermocouple in each of the plurality of ladles that circulate between the steelmaking furnace and the mold, which requires a great amount of initial cost for maintenance work. There is a problem that it is troublesome and impractical. Furthermore, since the temperature measurement result immediately before tapping is used to correct the tapping temperature, it cannot be used for setting the target temperature for the relevant charge, and is used for setting the target temperature for the next charge using another ladle. Therefore, the obtained target temperature includes the error due to the individual difference of the ladle,
There was a problem that the setting accuracy of the target temperature was low.

【0010】一方特開平3-161161号公報に開示された方
法は、取鍋の内壁耐火物の表面温度を、出鋼の受け入れ
に備えて前述の如く行われる取鍋の予熱の前に、放射温
度計等の取鍋温度計により測定し、この測定結果から取
鍋の蓄熱量を求め、その後の予熱、出鋼、搬送及び二次
精錬の各過程にて予想される給熱量及び放熱量を逐次加
減算して、注湯時点での溶鋼温度を適正値にするために
必要な出鋼時点での目標温度を決定する方法である。
On the other hand, in the method disclosed in Japanese Patent Laid-Open No. 3-161161, the surface temperature of the refractory on the inner wall of the ladle is radiated before the preheating of the ladle, which is carried out as described above in preparation for receiving the tapped steel. Measure with a ladle thermometer such as a thermometer, calculate the heat storage amount of the ladle from this measurement result, and calculate the heat supply amount and heat radiation amount expected in each process of preheating, tapping, transportation and secondary refining. This is a method of sequentially adding and subtracting to determine the target temperature at the time of tapping, which is necessary to bring the molten steel temperature at the time of pouring to an appropriate value.

【0011】この方法においては、取鍋の内壁耐火物の
測温を空鍋状態下にて行えばよく、予熱用の装置の前に
配した単一の取鍋温度計を共用しての測温が可能であ
り、実施が容易であるという利点があるが、予熱前の取
鍋の温度測定値のみに頼ってその後の各過程での溶鋼の
温度管理が行われるため、各過程での推定誤差の積み重
ねにより、最終的な推定結果の精度が低下するという問
題がある。更に、取鍋の内壁耐火物の熱的挙動は、溶鋼
との接触を伴う使用回数、補修の有無等、過去における
使用履歴に応じて異なるのに対し、前記方法では、搬送
経路上の複数の取鍋に対して一様な推定が行われてお
り、推定結果の精度が更に低下するという問題がある。
In this method, the temperature of the refractory on the inner wall of the ladle may be measured under the condition of an empty ladle, and a single ladle thermometer placed in front of the preheating device is commonly used. Although it has the advantage that it can be heated and is easy to carry out, the temperature of the molten steel is controlled in each subsequent process by relying only on the temperature measurement value of the ladle before preheating, so it is estimated in each process. There is a problem that the accuracy of the final estimation result decreases due to the accumulation of errors. Further, the thermal behavior of the refractory on the inner wall of the ladle differs depending on the past use history such as the number of uses involving contact with molten steel, the presence or absence of repair, etc. There is a problem that the accuracy of the estimation result further deteriorates because the ladle is uniformly estimated.

【0012】更に、製鋼炉からの出鋼時における溶鋼の
温度降下は、前述した取鍋との接触による抜熱に加え
て、出鋼開始から終了までの間の周辺への放熱によって
も生じるが、この温度降下は、従来の方法においては考
慮されておらず、この温度降下に起因する誤差が鋳型へ
の注湯時点における溶鋼温度に生じ、適正温度への一致
精度が低下する虞れがあった。
Further, the temperature drop of molten steel at the time of tapping from the steelmaking furnace is caused not only by the heat removal due to the contact with the ladle mentioned above but also by the heat radiation to the periphery from the start to the end of tapping. However, this temperature drop is not considered in the conventional method, and an error due to this temperature drop may occur in the molten steel temperature at the time of pouring the molten metal into the mold, which may reduce the accuracy of matching to the proper temperature. It was

【0013】なお以上の問題は、製鋼プロセスに限ら
ず、他の金属の製造のための同種のプロセスにおいても
全く同様に生じる。
The above problems occur not only in the steel making process but also in the same kind of process for manufacturing other metals.

【0014】本発明は斯かる事情に鑑みてなされたもの
であり、炉からの出湯に伴う溶融金属の温度降下を精度
良く推定し、鋳型への注湯時点における溶融金属の温度
を適正温度に正しく一致させて、製品鋳塊の品質向上に
寄与し得る溶融金属の温度管理方法を提供することを目
的とする。
The present invention has been made in view of such circumstances, and accurately estimates the temperature drop of the molten metal due to tapping from the furnace, and sets the temperature of the molten metal at the time of pouring the molten metal to an appropriate temperature. It is an object of the present invention to provide a method for temperature control of molten metal which can contribute to the quality improvement of a product ingot by making a correct match.

【0015】[0015]

【課題を解決するための手段】本発明に係る溶融金属の
温度管理方法は、炉中に生成された溶融金属を出湯口を
経て取鍋に出湯し、該取鍋による搬送を経て鋳型に注湯
して所望の鋳塊を得る一方、注湯後の取鍋を予熱して炉
前に戻し、新たな出湯を受け入れるようにしたプロセス
の操業中に、前記注湯時における溶融金属の温度を所定
温度に保つべく、前記出湯から前記注湯までの間に生じ
る溶融金属の温度降下量を所定の演算式により算出し、
この算出結果を前記所定温度に加えて、前記出湯時の目
標温度を決定する溶融金属の温度管理方法において、前
記取鍋の内壁耐火物の温度を前記注湯の完了後に測定
し、この測定結果と、前記内壁耐火物の使用履歴と、次
なる出湯までの間の予定時間とに基づいて、前記出湯時
に前記内壁耐火物の抜熱によって生じる溶融金属の温度
降下量を示す第1の補正値を算出し、前記取鍋に出湯さ
れる溶融金属の予定量と、前記出湯口の使用履歴とに基
づいて、前記出湯の間の放熱によって生じる温度降下量
を示す第2の補正値を算出して、前記演算式により算出
された温度降下量を前記第1,第2の補正値により補正
することを特徴とする。
A method for controlling the temperature of molten metal according to the present invention is one in which molten metal produced in a furnace is tapped into a ladle via a tap hole and is poured into a mold after being conveyed by the ladle. While pouring the molten metal to obtain the desired ingot, preheat the ladle after pouring and return it to the front of the furnace to accept the new molten metal during operation of the molten metal temperature during pouring. In order to maintain a predetermined temperature, the temperature drop amount of the molten metal that occurs between the tapping and the pouring is calculated by a predetermined calculation formula,
In addition to the predetermined temperature of this calculation result, in the temperature control method of the molten metal for determining the target temperature at the time of tapping, the temperature of the inner wall refractory of the ladle is measured after the pouring is completed, and this measurement result And a first correction value indicating a temperature drop amount of the molten metal caused by heat removal of the inner wall refractory at the time of tapping, based on a usage history of the inner wall refractory and a scheduled time until the next tapping. And a second correction value indicating the amount of temperature drop caused by heat dissipation during the tapping is calculated based on the planned amount of molten metal tapped in the ladle and the usage history of the tapping port. Then, the temperature drop amount calculated by the arithmetic expression is corrected by the first and second correction values.

【0016】本発明においては、炉からの出湯後、鋳型
への注湯までの間に生じる温度降下量を所定の演算式に
より算出し、この結果を、出湯時に取鍋の内壁耐火物の
抜熱に起因する温度降下量を示す第1の補正値と、出湯
の間の周辺への放熱に起因する温度降下量を示す第2の
補正値とにより補正して、補正後の温度降下量を注湯時
点において実現すべき適正温度に加えて出湯時の目標温
度を決定する。
In the present invention, the amount of temperature drop that occurs between the pouring of the hot water from the furnace and the pouring of the molten metal into the mold is calculated by a predetermined arithmetic expression, and the result is extracted when the refractory on the inner wall of the ladle is discharged. The corrected temperature drop amount is corrected by the first correction value indicating the temperature drop amount due to heat and the second correction value indicating the temperature drop amount due to heat radiation to the surroundings during hot water discharge. In addition to the proper temperature to be achieved at the time of pouring, the target temperature for tapping is determined.

【0017】第1の補正値は、鋳型への注湯の完了後に
測定された内壁耐火物の温度と、取鍋の内壁耐火物の使
用履歴(使用回数、補修の有無、補修の程度等)と、前
記注湯の完了後、次回の出湯の開始までの間の予定時
間、具体的には、注湯の完了から予熱の開始までの予定
時間、予熱に要する予定時間、及び予熱の完了から出湯
の開始までの待機に要する予定時間とに基づいて算出す
る。この補正値は、注湯の完了時点にて得られ、この後
に時間をおいて行われる次回の出湯に際しての温度管理
に利用することができる。
The first correction value is the temperature of the inner wall refractory material measured after the completion of pouring into the mold and the use history of the inner wall refractory material of the ladle (the number of times of use, the presence or absence of repair, the degree of repair, etc.). After the completion of the pouring, the scheduled time from the start of the next hot water, specifically, the scheduled time from the completion of pouring to the start of preheating, the time required for preheating, and the completion of preheating. It is calculated based on the scheduled time required to wait until the start of hot water. This correction value is obtained at the time of completion of pouring, and can be used for temperature control at the time of the next hot water discharge after a certain time.

【0018】第2の補正値は、各出湯時点における出湯
の予定量と出湯口の使用履歴とに基づいて出湯に要する
時間を推定し、この推定時間を用いて算出する。出湯口
の面積は、溶湯との接触により出湯の都度生じる溶損に
より、使用回数の増加に伴って増加する。出湯口の使用
履歴は、当該出湯時における出湯口の面積の推定に用
い、この面積により出湯量を除して出湯に要する時間を
求める。
The second correction value is calculated by estimating the time required for tapping on the basis of the planned amount of tapping at each tapping time and the use history of the tapping mouth, and using this estimated time. The area of the tap hole increases as the number of times of use increases due to the melting damage that occurs each time tapping occurs due to contact with the melt. The usage history of the hot water outlet is used to estimate the area of the hot water outlet at the time of tapping, and the amount of hot water discharged is divided by this area to obtain the time required for hot water outlet.

【0019】[0019]

【発明の実施の形態】以下本発明をその実施の形態を示
す図面に基づいて詳述する。図1は本発明に係る溶融金
属の温度管理方法(以下本発明方法という)が実施され
る製鋼プロセスの全体構成を示す模式図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings showing the embodiments. FIG. 1 is a schematic diagram showing the overall construction of a steelmaking process in which a method for controlling the temperature of molten metal according to the present invention (hereinafter referred to as the method of the present invention) is carried out.

【0020】図中1は、溶鋼を生成する製鋼炉としての
転炉であり、また2は、連続鋳造機であって、転炉1と
連続鋳造機2との間には、両者間を循環する搬送路3が
設けられ、該搬送路3上には、これに沿って移動自在に
複数の取鍋4,4…が配してある。
In the figure, 1 is a converter as a steelmaking furnace for producing molten steel, 2 is a continuous casting machine, and between the converter 1 and the continuous casting machine 2, there is a circulation between them. Is provided with a plurality of ladles 4, 4 ... Which are movable along the conveyance path 3.

【0021】転炉1においては、熔銑、屑鉄等の主原料
と、ミルスケール、砂鉄等の媒溶剤とが投入され、これ
らを、高圧酸素の吹き込みにより着火せしめた後、生石
灰、鉄鉱石、ホタル石等の副原料を投入しつつ前記高圧
酸素の吹き込み量を調節する吹錬の実施により、所望の
組成を有する溶鋼5が生成される。この吹錬に際し、前
記副原料の一部は冷却材としての作用をなし、転炉1内
に生成される溶鋼5の温度は、高圧酸素の吹き込み量と
冷却材の投入量とにより調節される。この調節は、転炉
1に付設された吹錬制御部10の動作により行なわれる。
In the converter 1, main raw materials such as hot metal and scrap iron and a solvent medium such as mill scale and iron sand are charged, and these are ignited by blowing high-pressure oxygen, and then quicklime, iron ore, The molten steel 5 having a desired composition is produced by performing blowing in which the amount of the high-pressure oxygen blown in is adjusted while introducing an auxiliary material such as fluorite. During this blowing, a part of the auxiliary material acts as a coolant, and the temperature of the molten steel 5 produced in the converter 1 is adjusted by the amount of high-pressure oxygen blown and the amount of coolant introduced. . This adjustment is performed by the operation of the blowing control unit 10 attached to the converter 1.

【0022】転炉1は、上面に原料及び副原料の投入口
を有する樽形の容器であり、その周壁の上半部に開口を
有して出鋼口1aを備えており、前述の如く生成された溶
鋼5は、図中に破線により示す如く水平軸周りに傾倒せ
しめられた転炉1から、前記出鋼口1aを経て、前記搬送
路3上の該当位置に停止した取鍋4の内部に出鋼され
て、該取鍋4の移動により連続鋳造機2に向けて搬送さ
れる。
The converter 1 is a barrel-shaped container having an input port for raw materials and auxiliary raw materials on the upper surface, and has an tapped hole 1a with an opening in the upper half of the peripheral wall thereof. The generated molten steel 5 is transferred from the converter 1 tilted around a horizontal axis as shown by a broken line in the figure to the ladle 4 stopped at a corresponding position on the transfer path 3 via the tap hole 1a. The steel is tapped inside and is conveyed toward the continuous casting machine 2 by the movement of the ladle 4.

【0023】転炉1から連続鋳造機2へ向かう取鍋4の
移動経路の中途には、二次精錬部6が構成されており、
取鍋4の移動に伴って搬送される溶鋼5は、二次精錬部
6の通過の間に、各種の添加物の投入、介在物除去のた
めのバブリング等の処理により成分調整され、連続鋳造
機2での要求に沿った鋼種となって連続鋳造機2の配設
位置に達する。
A secondary refining section 6 is formed in the middle of the moving path of the ladle 4 from the converter 1 to the continuous casting machine 2.
The molten steel 5 conveyed along with the movement of the ladle 4 has its components adjusted while being passed through the secondary refining section 6 by treatments such as addition of various additives and bubbling for removing inclusions, and continuous casting. The type of steel meets the requirements of the machine 2 and reaches the position where the continuous casting machine 2 is installed.

【0024】連続鋳造機2は、溶鋼容器としてのタンデ
ィッシュ20の底部に連設されたスライディングノズル21
を下方に延設し、上下に開口を有する筒形の鋳型22内に
適長侵入せしめた構成を有している。取鍋4内の溶鋼5
は、タンディッシュ20の内部に供給されて一旦貯留せし
められた後、スライディングノズル21の開度調節により
量を加減されつつ鋳型22に注湯されて、該鋳型22の水冷
内壁との接触により外側から冷却され、外側を凝固シェ
ルにより覆われた鋳片50となって鋳型22の下方に連続的
に引き抜かれ、この引抜きの間の冷却により内部に至る
まで凝固して、所定の長さに逐次切断されて製品鋼塊が
得られる。
The continuous casting machine 2 is equipped with a sliding nozzle 21 continuously provided at the bottom of a tundish 20 as a molten steel container.
Has a structure in which it is extended downward and is inserted into a cylindrical mold 22 having upper and lower openings for an appropriate length. Molten steel 5 in ladle 4
After being supplied to the inside of the tundish 20 and temporarily stored therein, the amount is adjusted by adjusting the opening degree of the sliding nozzle 21, and the molten metal is poured into the mold 22, and the outside is contacted with the water-cooled inner wall of the mold 22. The slab 50 is cooled from the outside and becomes a slab 50 whose outside is covered with a solidification shell, which is continuously drawn out below the mold 22, and solidified to the inside by cooling during this drawing, and successively to a predetermined length. The product steel ingot is obtained by cutting.

【0025】連続鋳造機2への注湯を終えた取鍋4は、
搬送路3に沿って更に移動し、その方向を反転して転炉
1に向かい、該転炉1の対応位置を通過した後に再度方
向を反転して、次なる出鋼を受け入れるべく転炉1の炉
前に戻される。連続鋳造機2から転炉1に向かう搬送路
3の中途には、連続鋳造機2の近くに測温ステーション
7が、また、転炉1の近くに予熱装置8が夫々構成され
ている。
The ladle 4 which has been poured into the continuous casting machine 2 is
It further moves along the conveying path 3, reverses its direction to the converter 1, passes through the corresponding position of the converter 1 and then reverses direction again to receive the next tapped steel. Returned to the front of the furnace. A temperature measuring station 7 is provided near the continuous casting machine 2 and a preheating device 8 is provided near the converter 1 in the middle of the transfer path 3 from the continuous casting machine 2 to the converter 1.

【0026】測温ステーション7は、放射温度計等の取
鍋温度計70を備えており、連続鋳造機2への注湯により
空鍋となった取鍋4は、転炉1への移動の間に測温ステ
ーション7にて停止せしめられ、この間に前記取鍋温度
計70は、取鍋4に内張りされた耐火物の表面温度を測定
し、この結果を前記プロセス制御部30に出力する。プロ
セス制御部30は、取鍋温度計70からの入力により、注湯
の完了後における取鍋4の内壁耐火物の温度Tccを認識
する。
The temperature measuring station 7 is provided with a ladle thermometer 70 such as a radiation thermometer, and the ladle 4 which has become an empty pot by pouring the continuous casting machine 2 is moved to the converter 1. In the meantime, it is stopped at the temperature measuring station 7. During this period, the ladle thermometer 70 measures the surface temperature of the refractory material lined in the ladle 4, and outputs the result to the process control unit 30. The process control unit 30 recognizes the temperature T cc of the refractory on the inner wall of the ladle 4 after the pouring is completed by the input from the ladle thermometer 70.

【0027】予熱装置8は、連続鋳造機2からの搬送の
間に大気への放熱により降温する取鍋4の内壁耐火物
を、転炉1からの出鋼の受け入れ前に予熱して、出鋼時
に内壁耐火物の抜熱により生じる溶鋼5の温度降下を抑
える作用をなすものである。この予熱は、図示の如く、
取鍋4の上部開口を蓋板80により覆い、該蓋板80から内
側に突設されたバーナからの火炎放射により、プロセス
制御部30からの動作指令に従って所定時間に亘って行わ
れる。
The preheating device 8 preheats the refractory on the inner wall of the ladle 4 which is cooled by heat radiation to the atmosphere during the transportation from the continuous casting machine 2 before receiving the tapped steel from the converter 1 and outputs it. It serves to suppress the temperature drop of the molten steel 5 caused by heat removal from the inner wall refractory during steel. This preheating, as shown,
The upper opening of the ladle 4 is covered with a cover plate 80, and the flame is emitted from a burner protruding inward from the cover plate 80 for a predetermined time in accordance with an operation command from the process control unit 30.

【0028】プロセス制御部30の出力は、転炉1の吹錬
制御部10にも与えられており、転炉1の内部に生成され
る溶鋼5の温度は、プロセス制御部30からの動作指令に
応じて調整されるようになしてある。
The output of the process control unit 30 is also given to the blowing control unit 10 of the converter 1, and the temperature of the molten steel 5 generated inside the converter 1 is an operation command from the process control unit 30. It is adjusted according to.

【0029】図2は、プロセス制御部30の内部構成を示
すブロック図である。プロセス制御部30は、温度降下量
演算部31、降下量補正部32、及び目標温度設定部33を備
え、また操業条件ファイル34を備えてなる。操業条件フ
ァイル34には、製鋼プロセスの各チャージ毎の操業条件
が、連続鋳造機2への注湯時点に溶鋼5に要求される適
正温度Ta を含めて記憶させてあり、これらは、温度降
下量演算部31、降下量補正部32及び目標温度設定部33に
与えられるようになしてある。
FIG. 2 is a block diagram showing the internal structure of the process control unit 30. The process control unit 30 includes a temperature drop amount calculation unit 31, a drop amount correction unit 32, a target temperature setting unit 33, and an operation condition file 34. The operating condition file 34 stores the operating conditions for each charge of the steelmaking process, including the proper temperature T a required for the molten steel 5 at the time of pouring the molten metal into the continuous casting machine 2. It is adapted to be given to the drop amount calculation unit 31, the drop amount correction unit 32, and the target temperature setting unit 33.

【0030】温度降下量演算部31には、転炉1からの出
鋼後、連続鋳造機2に注湯されるまでの間に生じる溶鋼
5の温度の予測降下量ΔT1 を求める演算式が記憶させ
てある。この演算式は、二次精錬部6での処理時間及び
処理内容、連続鋳造機2への注湯のための所要時間等、
転炉1から連続鋳造機2までの搬送の間の各過程での操
業条件Ai ,ai の関数として次式に示す如く与えられ
る。
The temperature drop amount calculation unit 31 has an operation formula for obtaining the predicted drop amount ΔT 1 of the temperature of the molten steel 5 which occurs after the steel is tapped from the converter 1 and is poured into the continuous casting machine 2. I remember it. This arithmetic expression is, for example, the processing time and processing content in the secondary refining section 6, the time required for pouring the molten metal into the continuous casting machine 2,
It is given as a function of operating conditions A i , a i in each process during the transfer from the converter 1 to the continuous casting machine 2 as shown in the following equation.

【0031】 ΔT1 =ΣAi ×t1 +Σai …(1)ΔT 1 = ΣA i × t 1 + Σa i (1)

【0032】Ai は、溶鋼温度に与える影響が前記搬送
のための所要時間t1 に関係する操業条件であり、ai
は、溶鋼温度に与える影響が前記所要時間t1 に無関係
な操業条件であって、これらは、前記操業条件ファイル
34に格納されている。温度降下量演算部31は、製鋼プロ
セスの各チャージの操業に先立ち、前記操業条件ファイ
ル34から当該チャージの操業条件を読み出し、これを前
記演算式に適用して予測降下量ΔT1 を演算し、この結
果を降下量補正部32に与える。
A i is an operating condition in which the influence on the molten steel temperature is related to the required time t 1 for the transportation, and a i
Are operating conditions that have no effect on the required time t 1 on the molten steel temperature. These are the operating condition files.
Stored in 34. The temperature drop amount calculation unit 31 reads the operating condition of the charge from the operating condition file 34 prior to the operation of each charge in the steelmaking process, and applies this to the calculation formula to calculate the predicted drop amount ΔT 1 , This result is given to the descent amount correction unit 32.

【0033】(1)式により得られる予測降下量ΔT1
は、転炉1からの出鋼後、連続鋳造機2への注湯が完了
するまでの間に生じる溶鋼5の温度降下量を示すもので
あるが、溶鋼5の温度降下は、転炉1から取鍋4への出
鋼の間にも生じる。降下量補正部32は、前記出鋼の間に
生じる溶鋼5の温度降下を示す補正量ΔT2 を求め、こ
の結果により前記予測降下量ΔT1 を補正して、製鋼プ
ロセスの全体において生じる溶鋼5の温度降下量ΔTを
算出し、この結果を目標温度設定部33に与える動作をな
す。
Predicted fall amount ΔT 1 obtained by the equation (1)
Indicates the amount of temperature drop of the molten steel 5 that occurs after the steel is tapped out of the converter 1 and before pouring into the continuous casting machine 2 is completed. It also occurs during tapping from the ladle to the ladle 4. The drop amount correction unit 32 obtains a correction amount ΔT 2 indicating the temperature drop of the molten steel 5 that occurs during the tapping, corrects the predicted drop amount ΔT 1 based on this result, and the molten steel 5 that occurs in the entire steelmaking process. The temperature drop amount ΔT is calculated and the result is given to the target temperature setting unit 33.

【0034】 ΔT=ΔT1 +ΔT2 …(2)ΔT = ΔT 1 + ΔT 2 (2)

【0035】目標温度設定部33は、降下量補正部32から
与えられる温度降下量ΔTを、連続鋳造機2への注湯時
点での溶鋼5の適正温度Ta に加算し、転炉1からの出
鋼時点における溶鋼5の目標温度Tを決定し、この結果
を吹錬制御部10に与える。
The target temperature setting unit 33 adds the temperature drop amount ΔT given from the drop amount correction unit 32 to the proper temperature T a of the molten steel 5 at the time of pouring the molten steel into the continuous casting machine 2 and then from the converter 1. The target temperature T of the molten steel 5 at the time of tapping is determined and the result is given to the blowing control unit 10.

【0036】 T=Ta +ΔT …(3)T = T a + ΔT (3)

【0037】本発明方法の特徴は、前記降下量補正部32
における補正量ΔT2 の算出手順にある。図3は、この
算出手順を示すフローチャートである。補正量ΔT2
演算は、温度降下量演算部31における予測降下量ΔT1
の演算式と同様、溶鋼温度に与える影響が転炉1からの
出鋼に要する時間t2 に関係する操業条件Bi と、溶鋼
温度に与える影響が前記時間t2 に無関係である操業条
件bi とを含む次式を用いて行われる。
The feature of the method of the present invention is that the fall amount correction unit 32 is used.
The calculation procedure of the correction amount ΔT 2 in FIG. FIG. 3 is a flowchart showing this calculation procedure. The correction amount ΔT 2 is calculated by the predicted drop amount ΔT 1 in the temperature drop amount calculation unit 31.
Similar to the above equation, the operating condition B i , in which the influence on the molten steel temperature is related to the time t 2 required for tapping from the converter 1, and the operating condition b, in which the influence on the molten steel temperature is independent of the time t 2. It is performed using the following equation including i and.

【0038】 ΔT2 =ΣBi ×t2 +Σbi …(4)ΔT 2 = ΣB i × t 2 + Σb i (4)

【0039】(4)式の第2項は、転炉1から出鋼され
る溶鋼5が取鍋4に内張りされた内壁耐火物により抜熱
されて生じる温度降下量を示すものであり、この温度降
下量は、次式により表される出鋼時点における取鍋4の
内壁耐火物の温度TL に基づいて推定演算される。
The second term of the equation (4) represents the amount of temperature drop caused by the molten steel 5 discharged from the converter 1 being taken out by the refractory on the inner wall lined in the ladle 4. The temperature drop amount is estimated and calculated based on the temperature TL of the inner wall refractory of the ladle 4 at the time of tapping, which is represented by the following equation.

【0040】 TL =f(Tcc,tk ,ty ,Lk ) …(5)T L = f (T cc , t k , t y , L k ) (5)

【0041】(5)式中のTccは、連続鋳造機2への注
湯により空鍋となった取鍋4の内壁耐火物の表面温度で
ある。この温度は、前記測温ステーション7に設置され
た取鍋温度計70により測定されてプロセス制御部30に与
えられており、降下量補正部32においては、取鍋温度計
70からの入力を用いて(5)式の演算が行われる。
T cc in the equation (5) is the surface temperature of the refractory on the inner wall of the ladle 4 which has become an empty pot by pouring the molten metal into the continuous casting machine 2. This temperature is measured by the ladle thermometer 70 installed in the temperature measuring station 7 and is given to the process control unit 30.
Using the input from 70, the calculation of equation (5) is performed.

【0042】(5)式中のtk は、取鍋4が空鍋状態に
ある時間、即ち、連続鋳造機2への注湯を終えた取鍋4
が搬送路3に沿って転炉1の炉前に戻され、該転炉1か
らの出鋼を受け入れるまでの間の所要時間であり、連続
鋳造機2から転炉1への移動の間に大気への放熱により
生じる取鍋4の内壁耐火物の降温の算出に用いられる。
またty は、この戻りの間に予熱装置8により行われる
内壁耐火物の予熱に要する所要時間であって、前記予熱
により生じる取鍋4の内壁耐火物の昇温の算出に用いら
れる。前記tk 及びty は、該当チャージにおける操業
条件として、操業条件ファイル34に格納されている。
[0042] (5) t k in the formula, the time the ladle 4 is in the empty pot state, that is, ladle 4 finishing the pouring of the continuous casting machine 2
Is the time required until the steel is returned to the front of the converter 1 along the conveying path 3 and the steel output from the converter 1 is received, and during the transfer from the continuous casting machine 2 to the converter 1. It is used to calculate the temperature drop of the refractory on the inner wall of the ladle 4 caused by heat dissipation to the atmosphere.
Further, t y is a time required for preheating the inner wall refractory material performed by the preheating device 8 during this return, and is used for calculating the temperature rise of the inner wall refractory material of the ladle 4 caused by the preheating. The t k and t y are stored in the operating condition file 34 as the operating conditions for the corresponding charge.

【0043】また、以上の如き降温及び昇温の算出に
は、取鍋4の内壁耐火物の熱損失が必要である。前記
(5)式中のLk は、前記熱損失に影響を与える状態量
であり、溶鋼5の受け入れ回数、補修の有無等、取鍋4
の内壁耐火物の使用履歴を含む。更に、予熱装置8によ
る予熱の前には、図1中に破線により示す如く、取鍋4
の上部開口を上蓋4aにより覆う等、放熱防止のための対
策を施すことがあり、前記上蓋4aの使用の有無もまた前
記Lk に含まれる。以上の状態量は、該当チャージにお
ける操業条件として、操業条件ファイル34に格納されて
いる。
In addition, heat loss of the refractory on the inner wall of the ladle 4 is necessary for calculating the temperature drop and the temperature rise as described above. L k in the equation (5) is a state quantity that affects the heat loss, and includes the number of times the molten steel 5 is received, whether or not the molten steel 5 is repaired, and the like.
Includes usage history of refractories on the inner wall of. Further, before preheating by the preheating device 8, as shown by the broken line in FIG.
Measures for preventing heat radiation may be taken by covering the upper opening of the above with the upper lid 4a, and whether or not the upper lid 4a is used is also included in the above L k . The above state quantities are stored in the operating condition file 34 as the operating conditions for the corresponding charge.

【0044】降下量補正部32は、取鍋温度計70により測
定される取鍋4の内壁耐火物の表面温度Tccが与えられ
たとき、図3に示すフローチャートに従う動作を開始
し、まず前記表面温度Tccの測定値を取り込み(ステッ
プ1)、次いで、該当する取鍋4が転炉1まで移動する
のに要する予定時間tk 、予熱装置8での予熱に要する
予定時間ty 、及び内壁耐火物の使用履歴に関連する状
態量Lk を操業条件ファイル34から読み込み(ステップ
2)、これらを(5)式に適用して出鋼時点における取
鍋4の内壁耐火物の温度TL を求める(ステップ3)。
The drop correcting unit 32, when the surface temperature T cc of the inner wall refractory of the ladle 4 measured by the ladle thermometer 70 is given to start the operation according to the flowchart shown in FIG. 3, first, the The measured value of the surface temperature T cc is taken in (step 1), and then the expected time t k required for the relevant ladle 4 to move to the converter 1, the expected time t y required for preheating in the preheating device 8, and The state quantity L k related to the usage history of the inner wall refractory is read from the operating condition file 34 (step 2), and these are applied to the equation (5), and the temperature TL of the inner wall refractory of the ladle 4 at the time of tapping. Is calculated (step 3).

【0045】TL の演算は、まず、内壁耐火物の使用履
歴を表すLk に基づいて内壁耐火物の熱損失を求め、得
られた熱損失の条件下にて、取鍋4の移動時間tk の間
に内壁耐火物に生じる降温量、予熱装置8での予熱時間
y の間に内壁耐火物に生じる昇温量を夫々求め、これ
らをTccに加減算して行われ、この演算結果から、転炉
1から出鋼される溶鋼5が取鍋4の内壁耐火物により抜
熱されて生じる温度降下量を表す第1の補正値が算出さ
れる(ステップ4)。
The calculation of T L is carried out by first determining the heat loss of the inner wall refractory based on L k , which represents the usage history of the inner wall refractory, and moving the ladle 4 under the condition of the obtained heat loss. This calculation is performed by calculating the temperature decrease amount generated in the inner wall refractory during t k and the temperature increase amount generated in the inner wall refractory during the preheating time t y in the preheating device 8 and adding or subtracting these to and from T cc. From the result, the first correction value representing the amount of temperature drop caused by the molten steel 5 tapped from the converter 1 being removed by the refractory on the inner wall of the ladle 4 is calculated (step 4).

【0046】前記Tccは、測温ステーション7におい
て、連続鋳造機2への注湯の後に得られる測温値であ
り、この測定は、空鍋状態にある取鍋4の内部に臨ませ
た放射温度計等の取鍋温度計70を、搬送路3上の取鍋
4,4…の夫々に対して共用して行わせることができ
る。また他の変数は、操業条件ファイル34内の格納値で
あり、出鋼時点における取鍋4の内壁耐火物の温度TL
の演算は、対象となる取鍋4により前チャージにおいて
搬送された溶鋼5が連続鋳造機2に出湯された直後、即
ち、当該チャージにおいて転炉1からの出鋼がなされる
時点から十分に前の時点において行われる。従って、転
炉1から出鋼される溶鋼5が取鍋4の内壁耐火物に抜熱
されて生じる温度降下量は、該当する取鍋4に対する推
定演算により高精度に求められることになる。
The above T cc is a temperature measurement value obtained after pouring the molten metal into the continuous casting machine 2 at the temperature measurement station 7, and this measurement is made to face the inside of the ladle 4 in the empty pot state. The ladle thermometer 70 such as a radiation thermometer can be commonly used for each of the ladles 4, 4, ... On the transport path 3. Another variable is a value stored in the operating condition file 34, and is the temperature TL of the refractory on the inner wall of the ladle 4 at the time of tapping.
The calculation of is immediately after the molten steel 5 conveyed in the precharge by the target ladle 4 is tapped into the continuous casting machine 2, that is, sufficiently before the tapping from the converter 1 in the charge. At the point of time. Therefore, the amount of temperature drop caused by the molten steel 5 tapped from the converter 1 being taken out by the refractory on the inner wall of the ladle 4 can be obtained with high accuracy by the estimation calculation for the corresponding ladle 4.

【0047】一方前記(4)式の第1項は、転炉1から
出鋼される溶鋼5が取鍋4内に移載されるまでの間に周
辺へ放熱して生じる温度降下量を示すものであり、Bi
は、溶鋼5の初期温度、周辺大気の温度等、前記放熱に
関連する状態量である。またt2 は、転炉1からの出鋼
に要する時間であり、本発明方法においては、この時間
2 を次式により推定演算する。
On the other hand, the first term of the equation (4) represents the amount of temperature drop caused by heat dissipation to the surroundings until the molten steel 5 tapped from the converter 1 is transferred into the ladle 4. And B i
Is a state quantity related to the heat dissipation such as the initial temperature of the molten steel 5 and the temperature of the surrounding atmosphere. Further, t 2 is the time required for tapping from the converter 1, and in the method of the present invention, this time t 2 is estimated and calculated by the following equation.

【0048】[0048]

【数1】 [Equation 1]

【0049】この式は、溶鋼5の出鋼のために転炉1に
開設された出鋼口1aの面積が、出鋼に伴う溶損の累積に
より使用回数Nの増加に伴って増加し、該出鋼口1aにお
ける単位時間当たりの出鋼量が増すことを前提として、
溶鋼5の物質収支を用いて定式化されたものである。式
中の各値は、操業条件ファイル34の格納値として与えら
れるから、各チャージにおける取鍋4への出鋼時間t2
は、実際の出鋼が開始される前に(6)式により高精度
に予測することができる。
This equation shows that the area of the tap hole 1a opened in the converter 1 for tapping molten steel 5 increases as the number of times N of use increases due to the accumulation of melting loss due to tapping, Assuming that the tapped amount per unit time at the tapped outlet 1a increases,
It is formulated using the material balance of molten steel 5. Since each value in the formula is given as a stored value in the operating condition file 34, the tapping time t 2 to the ladle 4 at each charge is given.
Can be predicted with high accuracy by the formula (6) before the actual tapping is started.

【0050】降下量補正部32は、当該チャージにおいて
出鋼される溶鋼5の重量Wst、該溶鋼の密度ρ、出鋼口
1aの初期直径D0 、及び当該チャージまでの出鋼口1aの
使用回数Nを操業条件ファイル34から読み込み(ステッ
プ5)、これらの各値を(6)式に適用して出鋼時間t
2 を算出し(ステップ6)、この結果から出鋼の間の放
熱に起因して溶鋼5に生じる温度降下量を表す第2の補
正値を求め(ステップ7)、これをステップ4にて算出
された第1の補正値に加算して、出鋼に伴う溶鋼5の温
度降下を示す補正量ΔT2 を算出する(ステップ8)。
The descent amount correction unit 32 determines the weight W st of the molten steel 5 to be tapped in the charge, the density ρ of the molten steel, and the tapping mouth.
The initial diameter D 0 of 1a and the number of times N of tapping tap 1a used until the charge are read from the operating condition file 34 (step 5), and these values are applied to the equation (6) to tapping time t.
2 is calculated (step 6), and from this result, a second correction value representing the amount of temperature drop that occurs in the molten steel 5 due to heat dissipation during tapping is obtained (step 7), and this is calculated in step 4. The correction amount ΔT 2 indicating the temperature drop of the molten steel 5 due to the tapping is calculated by adding it to the calculated first correction value (step 8).

【0051】以上の如く本発明方法においては、出鋼時
点における取鍋4の内壁耐火物の温度TL が(5)式に
より、また取鍋4への出鋼に要する時間t2 が(6)式
により、実際の出鋼が開始される前に高精度に夫々予測
されるから、前記出鋼の間に生じる溶鋼5の温度降下を
示す補正量ΔT2 は、(4)式に従って精度良く算出さ
れ、この結果により前記予測降下量ΔT1 を補正して得
られる温度降下量ΔTは、出鋼を実際に受け入れる取鍋
4の現状、及び出鋼を行う転炉1の現状を夫々反映した
精度の良い予測値となる。
As described above, in the method of the present invention, the temperature T L of the refractory on the inner wall of the ladle 4 at the time of tapping is determined by the formula (5), and the time t 2 required for tapping to the ladle 4 is (6 ), The correction amount ΔT 2 indicating the temperature drop of the molten steel 5 which occurs during the tapping is accurately predicted according to the equation (4). The temperature drop amount ΔT calculated and obtained by correcting the predicted drop amount ΔT 1 based on this result respectively reflects the current state of the ladle 4 that actually accepts tapping and the present state of the converter 1 that performs tapping. It is a highly accurate predicted value.

【0052】従って、連続鋳造機2への注湯時点での溶
鋼5の適正温度Ta にΔTを加算して目標温度設定部33
から出力される出鋼時点の目標温度Tは、出鋼に伴う溶
鋼5の温度降下を高精度に見込んだ目標値となり、この
目標温度Tに従う吹錬制御部10の動作により転炉1から
出鋼される溶鋼5の温度を制御することにより、注湯時
点における適正温度Ta が正しく実現されるようにな
る。
Therefore, ΔT is added to the proper temperature T a of the molten steel 5 at the time of pouring into the continuous casting machine 2 to obtain the target temperature setting unit 33.
The target temperature T output at the time of tapping is a target value that accurately predicts the temperature drop of the molten steel 5 due to tapping, and is output from the converter 1 by the operation of the blowing control unit 10 according to this target temperature T. by controlling the temperature of the molten steel 5 which is steel, so that the proper temperature T a in the pouring time is properly implemented.

【0053】以上の如き本発明方法を実際の製鋼プロセ
スにおいて実施した結果、連続鋳造機2への注湯時点に
おける溶鋼5の温度が適正温度Ta に対して±10℃の
誤差範囲に収まる確率(的中率)は、従来の方法によっ
た場合に75%前後に止まるのに対し、本発明方法によ
った場合には85%前後に達し、本発明方法の実施によ
り前記的中率が大幅に向上することが確かめられた。
As a result of carrying out the method of the present invention as described above in the actual steelmaking process, the probability that the temperature of the molten steel 5 at the time of pouring the molten metal into the continuous casting machine 2 falls within an error range of ± 10 ° C. with respect to the proper temperature T a . The (hit rate) is about 75% when the conventional method is used, while it is around 85% when the method of the present invention is used. It was confirmed that it would be greatly improved.

【0054】なお以上の実施の形態においては、製鋼プ
ロセスにおける適用例について述べたが、本発明方法
は、他の金属の製造のための同種のプロセスにおいても
適用可能であり、同様の効果が得られることは言うまで
もない。
In the above embodiments, application examples in the steel making process have been described, but the method of the present invention can be applied to the same kind of process for producing other metals, and similar effects can be obtained. It goes without saying that it will be done.

【0055】[0055]

【発明の効果】以上詳述した如く本発明方法において
は、鋳型への注湯後に実測される取鍋の内壁耐火物の表
面温度の測定値を用い、取鍋の内壁耐火物の使用履歴、
鋳型から炉までの取鍋の移動に要する予定時間、及びこ
の間に行われる予熱の予定時間に基づいて、炉からの出
湯時に取鍋の内壁耐火物の抜熱により生じる溶融金属の
温度降下量を、出湯時点よりも十分前の時点にて算出
し、また、出湯の間の放熱により生じる溶融金属の温度
降下量を、出湯の予定量と出湯口の使用履歴とに基づい
て精度良く算出し、これらの算出結果に基づいて鋳型へ
の搬送の間に生じる溶融金属の温度降下量を補正して出
湯時点における目標温度を定めるから、鋳型への注湯時
点における溶融金属の温度を適正温度に正しく一致させ
ることができ、製品鋳塊の品質向上が図れ、また生産性
の向上が達成される。また、必要とされる内壁耐火物の
表面温度は空鍋状態下にて測定でき、実施が容易である
等、本発明は優れた効果を奏する。
As described in detail above, in the method of the present invention, the measured value of the surface temperature of the inner wall refractory of the ladle, which is actually measured after pouring into the mold, is used to determine the use history of the inner wall refractory of the ladle,
Based on the estimated time required to move the ladle from the mold to the furnace and the estimated time of preheating performed during this time, determine the temperature drop of the molten metal caused by the removal of heat from the inner wall refractory of the ladle when tapping from the furnace. , Is calculated sufficiently before the time of tapping, and the temperature drop of the molten metal caused by heat dissipation during tapping is calculated accurately based on the planned tapping amount and the history of tap opening use, Based on these calculation results, the target temperature at the time of tapping is determined by correcting the temperature drop of the molten metal that occurs during the transfer to the mold. They can be matched with each other, the quality of the product ingot can be improved, and the productivity can be improved. Further, the required surface temperature of the refractory material on the inner wall can be measured in an empty pot state and is easy to carry out.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法が実施される製鋼プロセスの全体構
成を示す模式図である。
FIG. 1 is a schematic diagram showing the overall structure of a steelmaking process in which the method of the present invention is carried out.

【図2】本発明方法に従う動作を行うプロセス制御部の
内部構成を示すブロック図である。
FIG. 2 is a block diagram showing an internal configuration of a process control unit that performs an operation according to the method of the present invention.

【図3】出鋼の間に生じる溶鋼の温度降下を示す補正量
の算出手順を示すフローチャートである。
FIG. 3 is a flowchart showing a procedure for calculating a correction amount indicating a temperature drop of molten steel that occurs during tapping.

【符号の説明】[Explanation of symbols]

1 転炉 1a 出鋼口 2 連続鋳造機 3 搬送路 4 取鍋 5 溶鋼 6 二次精錬部 7 測温ステーション 8 予熱装置 10 吹錬制御部 30 プロセス制御部 31 温度降下量演算部 32 降下量補正部 33 目標温度設定部 34 操業条件ファイル 1 Converter 1a Steel tap 2 Continuous casting machine 3 Conveyor path 4 Ladle 5 Molten steel 6 Secondary refining section 7 Temperature measuring station 8 Preheating device 10 Blowing control section 30 Process control section 31 Temperature drop calculation section 32 Fall correction Part 33 Target temperature setting part 34 Operating condition file

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炉中に生成された溶融金属を出湯口を経
て取鍋に出湯し、該取鍋による搬送を経て鋳型に注湯し
て所望の鋳塊を得る一方、注湯後の取鍋を予熱して炉前
に戻し、新たな出湯を受け入れるようにしたプロセスの
操業中に、前記注湯時における溶融金属の温度を所定温
度に保つべく、前記出湯から前記注湯までの間に生じる
溶融金属の温度降下量を所定の演算式により算出し、こ
の算出結果を前記所定温度に加えて、前記出湯時の目標
温度を決定する溶融金属の温度管理方法において、前記
取鍋の内壁耐火物の温度を前記注湯の完了後に測定し、
この測定結果と、前記内壁耐火物の使用履歴と、次なる
出湯までの間の予定時間とに基づいて、前記出湯時に前
記内壁耐火物の抜熱によって生じる溶融金属の温度降下
量を示す第1の補正値を算出し、前記取鍋に出湯される
溶融金属の予定量と、前記出湯口の使用履歴とに基づい
て、前記出湯の間の放熱によって生じる温度降下量を示
す第2の補正値を算出して、前記演算式により算出され
た温度降下量を前記第1,第2の補正値により補正する
ことを特徴とする溶融金属の温度管理方法。
1. A molten metal produced in a furnace is tapped into a ladle via a tap hole, and the molten metal is poured into a mold after being conveyed by the ladle to obtain a desired ingot. In order to keep the temperature of the molten metal at the time of pouring at a predetermined temperature during the operation of the process in which the pan is preheated and returned to the front of the furnace to accept new tapping, In the method for managing the temperature of the molten metal, the amount of temperature drop of the molten metal that occurs is calculated by a predetermined arithmetic expression, and the result of this calculation is added to the predetermined temperature to determine the target temperature at the time of tapping. The temperature of the object is measured after completion of the pouring,
Based on this measurement result, the use history of the inner wall refractory material, and the scheduled time until the next tapping, a temperature drop amount of molten metal caused by heat removal of the inner wall refractory material during tapping A second correction value indicating the amount of temperature drop caused by heat dissipation during the tapping, based on the expected amount of molten metal tapped into the ladle and the usage history of the tapping port. Is calculated, and the temperature drop amount calculated by the arithmetic expression is corrected by the first and second correction values.
JP1231696A 1996-01-26 1996-01-26 Method for controlling temperature of molten metal Pending JPH09201666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1231696A JPH09201666A (en) 1996-01-26 1996-01-26 Method for controlling temperature of molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1231696A JPH09201666A (en) 1996-01-26 1996-01-26 Method for controlling temperature of molten metal

Publications (1)

Publication Number Publication Date
JPH09201666A true JPH09201666A (en) 1997-08-05

Family

ID=11801917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1231696A Pending JPH09201666A (en) 1996-01-26 1996-01-26 Method for controlling temperature of molten metal

Country Status (1)

Country Link
JP (1) JPH09201666A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001179425A (en) * 1999-12-27 2001-07-03 Kawasaki Steel Corp Method for heating ladle
CN103642972A (en) * 2013-12-16 2014-03-19 新余钢铁集团有限公司 Intelligent optimization control system for tapping temperature of converter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001179425A (en) * 1999-12-27 2001-07-03 Kawasaki Steel Corp Method for heating ladle
JP4613380B2 (en) * 1999-12-27 2011-01-19 Jfeスチール株式会社 Ladle heating method
CN103642972A (en) * 2013-12-16 2014-03-19 新余钢铁集团有限公司 Intelligent optimization control system for tapping temperature of converter
CN103642972B (en) * 2013-12-16 2015-06-10 新余钢铁集团有限公司 Intelligent optimization control system for tapping temperature of converter

Similar Documents

Publication Publication Date Title
JP5145790B2 (en) Blowing end point temperature target setting method for converter
JP4100179B2 (en) Molten steel temperature control method and apparatus
JP5482615B2 (en) Blowing control method in converter
JP4727431B2 (en) Method for operating steel manufacturing process and operating device used therefor
JPH11335721A (en) Method for controlling temperature of molten metal in secondary refining and apparatus therefor
JP6252532B2 (en) Apparatus and method for setting target molten steel temperature at the end of converter blowing
JP2947109B2 (en) Temperature control method for molten metal
JPH09201666A (en) Method for controlling temperature of molten metal
JP3562116B2 (en) Control method of molten steel temperature in tundish
JP2005320563A (en) Method for controlling temperature of molten steel
JP2751800B2 (en) Liquid Steel Temperature Control Method in Steel Making Process
JP2973890B2 (en) How to control molten steel temperature
JP3140799B2 (en) Control method of tapping temperature
JPH10330826A (en) Method for controlling molten metal temperature
JP2018003079A (en) Device for setting target molten steel temperature at converter blowing completion, method for setting target molten steel temperature at converter blowing completion, converter blowing method and converter operation method
JP2021156455A (en) Working control method for casting device
JPH08246016A (en) Method for controlling end point of blowing in converter
JP6375741B2 (en) Control method of molten steel temperature in steelmaking factory
JP7126078B2 (en) Operation method of ladle refining process
JPH0929401A (en) Method for controlling temperature of molten steel in tundish for continuous casting
JP2016211045A (en) Device and method for setting target molten steel temperature at the end of converter blowing, and converter operation method
JPH08120316A (en) Method for setting temperature at blowing stop in converter
JP7031350B2 (en) How to estimate the casting time in the steelmaking process
JPH0421713A (en) Method for correcting steel tapping temperature with reserving heat quantity in ladle
JP2001340943A (en) Method for controlling temperature of molten steel in tundish