JPH09199779A - Frequency stabilized light source - Google Patents

Frequency stabilized light source

Info

Publication number
JPH09199779A
JPH09199779A JP556796A JP556796A JPH09199779A JP H09199779 A JPH09199779 A JP H09199779A JP 556796 A JP556796 A JP 556796A JP 556796 A JP556796 A JP 556796A JP H09199779 A JPH09199779 A JP H09199779A
Authority
JP
Japan
Prior art keywords
frequency
wavelength
region
bragg
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP556796A
Other languages
Japanese (ja)
Other versions
JP3237499B2 (en
Inventor
Hiroyuki Ishii
啓之 石井
Hiroshi Yasaka
洋 八坂
Yuzo Yoshikuni
裕三 吉国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP00556796A priority Critical patent/JP3237499B2/en
Publication of JPH09199779A publication Critical patent/JPH09199779A/en
Application granted granted Critical
Publication of JP3237499B2 publication Critical patent/JP3237499B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain output beams whose frequency is stabilized in the long term by adjusting injection current to a phase adjusting area so as to accord the wavelength of the output beams of the laser with the Bragg wavelength of a diffraction lattice reflector and simultaneously adjusting the injection current to the diffraction lattice reflector so as to fix the Bragg wavelength. SOLUTION: The output beams from a semiconductor laser 1 are projected by optical fiber. The beams, however, are partially branched in the middle by a fiber coupler 9, and are inputted to a phase synchronizing detector 13 through a photodetector 11 which performs photoelectric transfer. A part of the beam output is detected by phase synchronization by a fine modulation signal, the deviation between the Bragg frequency and a vertical mode frequency is detected, and since a signal based on such deviation is fed back to a PC area 3 as an error signal, the vertical mode frequency is stabilized at the Bragg frequency. Therefore, output beams of a stabilized frequency are obtained in the long term by separately stabilizing the Bragg wavelength and the vertical mode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体レーザの出
力光の波長を一定値に固定すると共にこの半導体レーザ
の波長が安定したレーザ光を得る周波数安定化光源に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a frequency-stabilized light source for fixing the wavelength of output light of a semiconductor laser to a constant value and obtaining laser light with a stable wavelength of this semiconductor laser.

【0002】[0002]

【従来の技術】現在、将来の通信情報量の増大に対し
て、光周波数(波長)多重通信システムの研究が盛んで
ある。この場合、送信用光源としては半導体レーザが主
であり、周波数多重のためには光のコヒーレンシィが良
くしかもスペクトルが狭いいわゆる単一モード発振特性
の半導体レーザが必要となる。そして更には、光周波数
が一定値に固定されると共に長期にわたり安定している
必要がある。
2. Description of the Related Art At present, research on an optical frequency (wavelength) multiplex communication system has been actively conducted in order to increase the amount of communication information. In this case, a semiconductor laser is mainly used as a light source for transmission, and a semiconductor laser having a so-called single-mode oscillation characteristic having good light coherency and a narrow spectrum is required for frequency multiplexing. Furthermore, it is necessary that the optical frequency be fixed at a constant value and stable over a long period of time.

【0003】従来における分布帰還型(DFB)半導体
レーザは、優れた単一モード発振特性を示すことから、
現在の長距離系光通信システム用光源の主流であり、ま
た将来の光周波数(波長)多重通信システム用光源とし
て期待されているが、発振周波数の絶対値が所望の一定
値となるレーザを作製することは極めて困難であり、狙
った周波数(波長)からの作製誤差は通常数百GHz
(数nmの波長)程度となる。また、この周波数調整も
可能ではあるが、その調整範囲は極めて狭い。他方、3
電極分布反射型(DBR)半導体レーザでは、その分布
反射(DBR)領域や位相調整(PC)領域に電流を注
入することにより、発振周波数を1THz(波長で10
nm)程度変化させることが可能であり、このため作製
上の厳密さはDFBレーザより要求されず、製造許容度
が緩和される。このため、DBR半導体レーザは、DF
B半導体レーザより製作容易で所望波長の一定化もしや
すいことから、多重用光源として有望視されている。
The conventional distributed feedback (DFB) semiconductor laser exhibits excellent single-mode oscillation characteristics.
It is a mainstream light source for current long-distance optical communication systems, and is expected as a light source for future optical frequency (wavelength) multiplex communication systems, but a laser with an absolute value of oscillation frequency that is a desired constant value is manufactured. It is extremely difficult to do so, and the manufacturing error from the target frequency (wavelength) is usually several hundred GHz.
(Wavelength of several nm). Further, although this frequency adjustment is possible, the adjustment range is extremely narrow. On the other hand, 3
In the electrode distributed reflection (DBR) semiconductor laser, the oscillation frequency is 1 THz (10 at wavelength) by injecting current into the distributed reflection (DBR) region and the phase adjustment (PC) region.
It is possible to change the size of the DFB laser by about 0.1 nm, and therefore, strictness in manufacturing is not required as compared with the DFB laser, and the manufacturing tolerance is relaxed. Therefore, the DBR semiconductor laser is
Since it is easier to manufacture than the B semiconductor laser and the desired wavelength can be easily fixed, it is regarded as a promising light source for multiplexing.

【0004】半導体レーザの発振周波数は温度により大
きく変動するので、そのための温度制御も必要である
が、温度制御が適切に行なわれていても、長期的な使用
にあっては活性領域の劣化等の素子特性変化ひいてはレ
ーザ特性の変化により発振周波数も変動するために、さ
らに何らかの周波数(波長)安定化のための制御回路が
必要となる。
Since the oscillation frequency of the semiconductor laser greatly varies depending on the temperature, it is necessary to control the temperature for that purpose. However, even if the temperature control is properly performed, the active region is deteriorated in the long-term use. Since the oscillation frequency also fluctuates due to the change in the element characteristics and the change in the laser characteristics, a control circuit for stabilizing some frequency (wavelength) is required.

【0005】図5は、従来のDBR半導体レーザを用い
た周波数安定化光源の一例を示している。DBR半導体
レーザ1には、分布反射(DBR)領域2、位相調整
(PC)領域3、及び利得領域4を有し、このそれぞれ
の領域には電極が備えられ、DBR及びPC領域の電極
は異なる抵抗器5,6を介してバイアス電流源7に接続
されるとともに利得領域4の電極は別のバイアス電流源
8に接続される。DBR半導体レーザ1からの光出力の
一部はファイバカップラ9にて干渉型フィルタ10に入
力され、ついで光検出器11にて電気信号に変換され
て、DBR領域2とPC領域3とに加えられる周波数変
調信号が得られる変調信号源12の位相と同期検波器1
3にて比較され、干渉型フィルタ10の共振周波数と光
周波数とのずれ量を求める。そして、このずれ量をもと
にレーザ発振周波数をフィードバック制御しており、抵
抗器5,6の抵抗値の比率に基づきDBR領域2とPC
領域3とに電流を注入し、この電流の変化にて発振周波
数の制御を行なっている。このようにして、フィードバ
ック制御にて発振周波数がフィルタの共振周波数に一応
安定化されることになる。
FIG. 5 shows an example of a frequency stabilized light source using a conventional DBR semiconductor laser. The DBR semiconductor laser 1 has a distributed reflection (DBR) region 2, a phase adjustment (PC) region 3, and a gain region 4, each of which is provided with an electrode, and electrodes of the DBR and PC regions are different. It is connected to a bias current source 7 via resistors 5 and 6, and the electrode of the gain region 4 is connected to another bias current source 8. Part of the light output from the DBR semiconductor laser 1 is input to the interference filter 10 by the fiber coupler 9, then converted into an electric signal by the photodetector 11, and added to the DBR region 2 and the PC region 3. Phase of modulated signal source 12 and synchronous detector 1 from which a frequency modulated signal can be obtained
3 is compared, and the shift amount between the resonance frequency of the interference filter 10 and the optical frequency is obtained. Then, the laser oscillation frequency is feedback-controlled based on this shift amount, and the DBR region 2 and the PC are based on the ratio of the resistance values of the resistors 5 and 6.
A current is injected into the region 3 and the oscillation frequency is controlled by changing the current. In this way, the oscillation frequency is once stabilized by the feedback control to the resonance frequency of the filter.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、図5に
示すDBR半導体レーザにおいては、ある程度の周波数
安定化は図れるものの、長期的な安定性を欠くという問
題がある。すなわち、DBR半導体レーザでは、レーザ
共振器により定まる多数の共振縦モードの中から分布反
射領域にて形成される回折格子の空間周波数に基づくブ
ラッグ周波数(波長)近傍の単一の縦モードのみ選択さ
れ、単一モードにて発振する。この場合、DBR半導体
レーザではブラッグ周波数と発振縦モード周波数とが必
ずしも一致するとは限らない。例えば、分布反射(DB
R)領域のみに電流注入を行なった場合、ブラッグ周波
数(波長)を変化することができるが、縦モード周波数
(波長)がその変化に追随しないので、発振周波数はモ
ードの跳びをともないながら変化する。図5に示す構成
では、2個の抵抗器5,6を適切な値としてDBR領域
とPC領域との電流値を同時に変化させ、PC領域に係
る縦モード周波数とDBR領域に係るブラッグ周波数と
を合わせようにすれば、連続的に発振周波数を変化させ
ることができる。
However, the DBR semiconductor laser shown in FIG. 5 has a problem that it lacks long-term stability, although frequency stabilization can be achieved to some extent. That is, in the DBR semiconductor laser, only a single longitudinal mode in the vicinity of the Bragg frequency (wavelength) based on the spatial frequency of the diffraction grating formed in the distributed reflection region is selected from a large number of resonance longitudinal modes determined by the laser resonator. , Oscillates in single mode. In this case, in the DBR semiconductor laser, the Bragg frequency and the oscillation longitudinal mode frequency do not always match. For example, distributed reflection (DB
When current injection is performed only in the R region, the Bragg frequency (wavelength) can be changed, but the longitudinal mode frequency (wavelength) does not follow the change, so the oscillation frequency changes with mode jump. . In the configuration shown in FIG. 5, the current values in the DBR region and the PC region are simultaneously changed by using the two resistors 5 and 6 as appropriate values, and the longitudinal mode frequency related to the PC region and the Bragg frequency related to the DBR region are set. If they are matched, the oscillation frequency can be continuously changed.

【0007】しかしながら、図5に示す構成であっても
ブラッグ周波数の変化の仕方と縦モード周波数の変化の
仕方とでは差があり、このためこれら両周波数を完全に
一致させることは困難である。また、仮にこれら両周波
数を一致させたとしても、レーザの長期使用によって活
性領域部分の劣化等長期的な素子変動が生じた場合、例
えば光学的屈折が変動すれば縦モード周波数の変化を生
じ、さらに発振縦モードが隣のモードに跳んでしまうと
いう危険性があり、この状況下では周波数をフィルタ1
0に同調させることは不可能である。こうしてみると長
期にわたってブラッグ周波数と縦モード周波数とを一致
させることと相俟ってブラッグ周波数を一定値に固定す
ることは、従来では困難であった。
However, even in the configuration shown in FIG. 5, there is a difference in the manner of changing the Bragg frequency and the manner of changing the longitudinal mode frequency, and therefore it is difficult to completely match these two frequencies. Further, even if these two frequencies are made to coincide with each other, if long-term element variation such as deterioration of the active region portion occurs due to long-term use of the laser, for example, if optical refraction varies, a change in longitudinal mode frequency occurs, Furthermore, there is a risk that the oscillation longitudinal mode jumps to the adjacent mode.
It is impossible to tune to zero. Thus, it has been difficult in the past to fix the Bragg frequency to a constant value in combination with matching the Bragg frequency with the longitudinal mode frequency over a long period of time.

【0008】本発明は、従来技術に鑑み、長期にわたり
素子特性の変動があっても発振周波数が常に安定した分
布反射(DBR)型半導体レーザを用いた周波数安定化
光源の提供を目的とする。
In view of the prior art, it is an object of the present invention to provide a frequency-stabilized light source using a distributed reflection (DBR) type semiconductor laser whose oscillation frequency is always stable even if the element characteristics fluctuate over a long period of time.

【0009】[0009]

【課題を解決するための手段】上述の目的を達成する本
発明は次の特定事項を有する。 (1)回折格子反射領域と位相調整領域と利得領域とを
備えた分布反射型半導体レーザを有し、このレーザの出
力光の波長が上記回折格子反射領域のブラッグ波長に一
致するよう上記位相調整領域の屈折率を調整する機能
と、上記ブラッグ波長を一の波長に固定する機能とを有
する。 (2)第1の電極を備えた回折格子反射領域と第2の電
極を備えた位相調整領域とを有する分布反射型半導体レ
ーザを有し、上記第1の電極に直流電流と強度変調され
た電流とを注入して上記レーザの出力光を位相同期検波
して得られる信号が最小となるよう上記第2の電極へ注
入する電流を設定する機能と、上記レーザの出力光の波
長が周波数基準器の基準波長に一致するように上記第1
の電極に注入する上記直流電流を設定する機能とを有す
る。 (3)上記(2)において、分布反射型半導体レーザの
利得領域に第3の電極を有し、上記レーザの光出力強度
が一定になるよう上記第3の電極へ注入する電流を設定
する機能を有する。
The present invention for achieving the above object has the following specific features. (1) A distributed Bragg reflector semiconductor laser having a diffraction grating reflection region, a phase adjustment region, and a gain region is provided, and the phase adjustment is performed so that the wavelength of the output light of this laser matches the Bragg wavelength of the diffraction grating reflection region. It has a function of adjusting the refractive index of the region and a function of fixing the Bragg wavelength to one wavelength. (2) A distributed Bragg reflector semiconductor laser having a diffraction grating reflection region having a first electrode and a phase adjusting region having a second electrode is provided, and a direct current and intensity modulation are applied to the first electrode. And a function of setting the current to be injected into the second electrode so that the signal obtained by phase-coherently detecting the output light of the laser by injecting a current and the wavelength of the output light of the laser are the frequency reference. The above-mentioned first to match the reference wavelength of the instrument
And the function of setting the direct current to be injected into the electrode. (3) In the above (2), the distributed reflection type semiconductor laser has a third electrode in the gain region, and a function of setting a current injected into the third electrode so that the optical output intensity of the laser is constant. Have.

【0010】DBR領域にまず微小変調信号を加え、出
力光を位相同期検波することにより、ブラッグ周波数と
縦モード周波数のずれ量を検出し、このずれ量に基づき
PC領域の注入電流を制御することによりブラッグ周波
数と縦モード周波数とを一致させている。すなわち、図
2に示すようにDBR領域の注入電流に対して光強度の
変化(b)と、DBR電流に変調を施し光出力を位相同
期検波した後の誤差信号(c)と、波長の変化(a)と
の特性を有し、図2(b)にて光強度が極大となる点が
縦モードとブラッグ波長とが一致した状態を示してい
る。これはブラッグ波長においてDBR反射器の反射率
が最大となるためである。そして、この光強度が極大と
なる点が誤差信号がゼロになる点と対応している。この
結果、誤差信号Bを適切に増幅し、PC領域にフィード
バックすることにより、縦モード周波数とブラッグ周波
数とを一致させることができる。
First, a minute modulation signal is applied to the DBR region and the output light is phase-coherently detected to detect the amount of deviation between the Bragg frequency and the longitudinal mode frequency, and the injection current in the PC region is controlled based on this amount of deviation. The Bragg frequency and the longitudinal mode frequency are matched by. That is, as shown in FIG. 2, a change in light intensity with respect to the injection current in the DBR region (b), an error signal (c) after phase-coherent detection of the optical output by modulating the DBR current, and a change in wavelength. It has the characteristics of (a), and the point at which the light intensity becomes maximum in FIG. 2 (b) shows the state where the longitudinal mode and the Bragg wavelength match. This is because the reflectance of the DBR reflector becomes maximum at the Bragg wavelength. The point where the light intensity is maximum corresponds to the point where the error signal becomes zero. As a result, the longitudinal signal frequency can be matched with the Bragg frequency by appropriately amplifying the error signal B and feeding it back to the PC region.

【0011】[0011]

【発明の実施の形態】ここで、図1、図3、図4を参照
して本発明の実施の形態を説明する。図1において図5
と同一部分には同符号を付す。3電極分布反射型(DB
R)半導体レーザ1の回折格子反射(DBR)領域2、
位相調整(PC)領域3、及び活性領域4にはそれぞれ
バイアス電流源14,15,8がつながり、電流を注入
し得るようになっている。また、DBR領域4には変調
信号源12から微小変調信号が加えられるようになって
いる。半導体レーザ1の出力光は光ファイバにて導出さ
れるが、途中ファイバカプラ9にて一部分岐され、光電
変換を行なう光検出器11を介して位相同期検波器13
に入力される。この同期検波器13では光出力の一部が
微小変調信号にて位相同期検波されてブラッグ周波数と
縦モード周波数とのずれ量が検出される。このずれ量に
基づく信号は誤差信号としてPC領域3にフィードバッ
クされる。このためブラッグ周波数に縦モード周波数が
安定化される。
DETAILED DESCRIPTION OF THE INVENTION An embodiment of the present invention will now be described with reference to FIGS. In FIG.
The same parts as those in FIG. 3-electrode distributed reflection type (DB
R) Diffraction grating reflection (DBR) region 2 of the semiconductor laser 1,
Bias current sources 14, 15 and 8 are connected to the phase adjustment (PC) region 3 and the active region 4, respectively, so that current can be injected. Further, a minute modulation signal is applied to the DBR region 4 from the modulation signal source 12. The output light of the semiconductor laser 1 is led out by an optical fiber, but partly branched by a fiber coupler 9 on the way, and a phase-locked detector 13 is passed through a photodetector 11 which performs photoelectric conversion.
Is input to In this synchronous detector 13, a part of the optical output is phase synchronously detected by the minute modulation signal, and the amount of deviation between the Bragg frequency and the longitudinal mode frequency is detected. A signal based on this shift amount is fed back to the PC area 3 as an error signal. Therefore, the longitudinal mode frequency is stabilized at the Bragg frequency.

【0012】また、ファイバカプラ9にて一部が取出さ
れた光出力は、更にファイバカプラ16にてその一部が
取出され、光周波数の基準とする交差弁別型のフィルタ
17(例えばボリュームホログラフ)に入力され、そし
て特定波長のみが出力される。このフィルタ17の次段
には2つの光検出器18,19が配置されて光電変換さ
れ、更に光検出器18,19の各出力は差動増幅器20
の2入力となっており、この各入力は差分がとられ出力
されることになる。フィルタ17では、基準周波数が弁
別されるフィルタであり、光検出器18,19では図3
(a)(b)に示すような双峰の透過周波数に当る電気
信号が得られる。このため、差動増幅器20の出力とし
ては図3(c)の如くになり等しい電気信号入力にてゼ
ロになることになる。したがって、差動増幅器20の出
力をDBR領域2の注入電流としてフィードバックすれ
ば、発振周波数は光基準フィルタ周波数に安定化される
ことになる。
The optical output partially extracted by the fiber coupler 9 is further partially extracted by the fiber coupler 16, and a cross discrimination type filter 17 (for example, a volume holographic) that uses the optical frequency as a reference. , And only specific wavelengths are output. Two photodetectors 18 and 19 are arranged at the next stage of the filter 17 for photoelectric conversion, and the respective outputs of the photodetectors 18 and 19 are differential amplifier 20.
2 inputs, and each of these inputs is output after the difference is taken. The filter 17 is a filter for discriminating the reference frequency, and the photodetectors 18 and 19 are shown in FIG.
An electric signal having a bimodal transmission frequency as shown in (a) and (b) is obtained. Therefore, the output of the differential amplifier 20 is as shown in FIG. 3 (c), and becomes zero with the same electric signal input. Therefore, if the output of the differential amplifier 20 is fed back as the injection current of the DBR region 2, the oscillation frequency will be stabilized at the optical reference filter frequency.

【0013】更に、図1では光の出力強度を一定にする
ため、光検出器11の出力の一部を差動増幅器21に入
力して基準電圧との差分をとり、この信号を活性領域4
の注入電流Cとしてフィードバックしている。
Further, in FIG. 1, in order to make the output intensity of light constant, a part of the output of the photodetector 11 is input to the differential amplifier 21 to take the difference from the reference voltage, and this signal is sent to the active region 4
Is fed back as the injection current C of.

【0014】図4は、長期使用により素子特性が変化す
ることの代りとして、レーザの温度を変化させたときの
発振波長の変化の様子を実験により確かめた結果を示
す。図4中、△印はブラッグ波長と縦モードの安定化を
別々に行なわず、基準光フィルタ波長との誤差信号を位
相調整領域にフィードバックした図5による場合を示
し、○印は本実施例による場合を示している。この図4
から明らかな如く、従来方法では温度が3℃程度変化す
ると縦モード波長が隣のモードに跳ぶことにより発振波
長は安定化範囲からすぐ逸脱してしまうのに対し、本実
施例によるものでは広範囲にわたって安定化されてい
る。このことは常にブラッグ波長と縦モード波長とが一
致するように制御されているためである。したがって、
本発明の安定化により長期的な素子特性変化に対しても
耐性があることを物語るものである。
FIG. 4 shows the result of an experiment to confirm how the oscillation wavelength changes when the temperature of the laser is changed, instead of the fact that the element characteristics change due to long-term use. In FIG. 4, the symbol Δ indicates the case according to FIG. 5 in which the error signal with respect to the reference optical filter wavelength is fed back to the phase adjustment region without separately stabilizing the Bragg wavelength and the longitudinal mode, and the symbol ◯ according to the present embodiment. The case is shown. This figure 4
As apparent from the above, in the conventional method, when the temperature changes by about 3 ° C., the longitudinal mode wavelength jumps to the adjacent mode and the oscillation wavelength deviates from the stabilization range immediately. It is stabilized. This is because the Bragg wavelength and the longitudinal mode wavelength are always controlled to match. Therefore,
The stabilization of the present invention indicates that the device is resistant to long-term changes in device characteristics.

【0015】図1においては、光基準周波数フィルタと
して交差弁別型のフィルタ17を用いているが、ファブ
リペローエタロン等の干渉型フィルタやガス吸収セルを
用いた場合にも適用できる。なお、DBRレーザの温度
制御については、ペルチェ素子等を用いて一定となるよ
うに制御が行なわれている。
In FIG. 1, the cross discrimination type filter 17 is used as the optical reference frequency filter, but it is also applicable to the case where an interference type filter such as a Fabry-Perot etalon or a gas absorption cell is used. The temperature control of the DBR laser is controlled to be constant using a Peltier element or the like.

【0016】[0016]

【発明の効果】以上説明したように本発明によれば、ブ
ラッグ波長と縦モードの安定化を別々に行なうことによ
り、長期にわたって周波数(波長)の安定化した出力光
を得ることができる。
As described above, according to the present invention, by stabilizing the Bragg wavelength and the longitudinal mode separately, it is possible to obtain output light whose frequency (wavelength) is stabilized for a long period of time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態を表す構成図。FIG. 1 is a configuration diagram illustrating an embodiment of the present invention.

【図2】DBR電流に対する発振波長、光強度、位相同
期検波後の誤差信号の各特性線図。
FIG. 2 is a characteristic diagram of an oscillation wavelength, a light intensity, and an error signal after phase-coherent detection with respect to a DBR current.

【図3】入力光の波長に対する光検出器の出力や差動増
幅器の出力特性を示す線図。
FIG. 3 is a diagram showing the output characteristics of a photodetector and the output of a differential amplifier with respect to the wavelength of input light.

【図4】従来と本発明との結果比較図。FIG. 4 is a result comparison diagram of a conventional method and the present invention.

【図5】従来例の構成図。FIG. 5 is a configuration diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1 1.55μm3電極分布反射型(DBR)レーザ 2 分布反射(DBR)領域 3 位相調整(PC)領域 4 活性領域 5,6 抵抗器 7,14 DBR領域へのバイアス電流源 7,15 PC領域へのバイアス電流源 8 活性領域へのバイアス電流源 9,16 ファイバ・カプラ 10 光周波数基準フィルタ(ファブリペローエタロ
ン) 11,18,19 光検出器 12 変調信号源 13 同期検波器 17 光周波数基準フィルタ(ボリュームホログラフ) 20,21 差動増幅器
1 1.55 μm 3 Electrode Distributed Reflection (DBR) Laser 2 Distributed Reflection (DBR) Region 3 Phase Adjustment (PC) Region 4 Active Region 5,6 Resistor 7,14 Bias Current Source to DBR Region 7,15 To PC Region Bias current source 8 Bias current source to active region 9,16 Fiber coupler 10 Optical frequency reference filter (Fabry-Perot etalon) 11, 18, 19 Photodetector 12 Modulation signal source 13 Synchronous detector 17 Optical frequency reference filter ( Volume holography) 20,21 Differential amplifier

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 回折格子反射領域と位相調整領域と利得
領域とを備えた分布反射型半導体レーザを有し、 このレーザの出力光の波長が上記回折格子反射領域のブ
ラッグ波長に一致するよう上記位相調整領域の屈折率を
調整する機能と、上記ブラッグ波長を一の波長に固定す
る機能とを有する、周波数安定化光源。
1. A distributed Bragg reflector semiconductor laser having a diffraction grating reflection region, a phase adjustment region, and a gain region, wherein the wavelength of the output light of the laser matches the Bragg wavelength of the diffraction grating reflection region. A frequency-stabilized light source having a function of adjusting the refractive index of the phase adjustment region and a function of fixing the Bragg wavelength to one wavelength.
【請求項2】 第1の電極を備えた回折格子反射領域と
第2の電極を備えた位相調整領域とを有する分布反射型
半導体レーザを有し、 上記第1の電極に直流電流と強度変調された電流とを注
入して上記レーザの出力光を位相同期検波して得られる
信号が最小となるよう上記第2の電極へ注入する電流を
設定する機能と、上記レーザの出力光の波長が周波数基
準器の基準波長に一致するように上記第1の電極に注入
する上記直流電流を設定する機能とを有する、周波数安
定化光源。
2. A distributed reflection type semiconductor laser having a diffraction grating reflection region having a first electrode and a phase adjustment region having a second electrode, wherein a direct current and intensity modulation are applied to the first electrode. The function of setting the current to be injected into the second electrode so that the signal obtained by phase-coherently detecting the output light of the laser by injecting the generated current and the wavelength of the output light of the laser are A frequency-stabilized light source having a function of setting the DC current to be injected into the first electrode so as to match the reference wavelength of the frequency reference device.
【請求項3】 分布反射型半導体レーザの利得領域に第
3の電極を有し、上記レーザの光出力強度が一定になる
よう上記第3の電極へ注入する電流を設定する機能を有
する請求項2記載の周波数安定化光源。
3. A distributed reflection type semiconductor laser having a third electrode in a gain region, and having a function of setting a current to be injected into the third electrode so that the optical output intensity of the laser becomes constant. 2. The frequency-stabilized light source described in 2.
JP00556796A 1996-01-17 1996-01-17 Frequency stabilized light source Expired - Fee Related JP3237499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00556796A JP3237499B2 (en) 1996-01-17 1996-01-17 Frequency stabilized light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00556796A JP3237499B2 (en) 1996-01-17 1996-01-17 Frequency stabilized light source

Publications (2)

Publication Number Publication Date
JPH09199779A true JPH09199779A (en) 1997-07-31
JP3237499B2 JP3237499B2 (en) 2001-12-10

Family

ID=11614798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00556796A Expired - Fee Related JP3237499B2 (en) 1996-01-17 1996-01-17 Frequency stabilized light source

Country Status (1)

Country Link
JP (1) JP3237499B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015508227A (en) * 2012-01-30 2015-03-16 オラクル・インターナショナル・コーポレイション Dynamic lattice comb light source
JP2016024120A (en) * 2014-07-23 2016-02-08 日本電信電話株式会社 Extreme value detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015508227A (en) * 2012-01-30 2015-03-16 オラクル・インターナショナル・コーポレイション Dynamic lattice comb light source
JP2016024120A (en) * 2014-07-23 2016-02-08 日本電信電話株式会社 Extreme value detector

Also Published As

Publication number Publication date
JP3237499B2 (en) 2001-12-10

Similar Documents

Publication Publication Date Title
US7230963B2 (en) Monolithic wavelength stabilized asymmetric laser
US7257142B2 (en) Semi-integrated designs for external cavity tunable lasers
Sarlet et al. Control of widely tunable SSG-DBR lasers for dense wavelength division multiplexing
US7161725B2 (en) Frequency locker
US20050018724A1 (en) Optical frequency synthesizer
US20020015433A1 (en) Tunable frequency stabilized fiber grating laser
US8619824B2 (en) Low white frequency noise tunable semiconductor laser source
US6359915B1 (en) Wavelength-stabilized Bragg laser
US5220578A (en) Long term mode stabilization for distributed bragg reflector laser
Sarlet et al. Wavelength and mode stabilization of widely tunable SG-DBR and SSG-DBR lasers
EP1258061B1 (en) In fiber frequency locker
US7130322B2 (en) Wavelength tunable laser and method of controlling the same
WO1984000857A1 (en) Spectrally stabilized laser
US20090086774A1 (en) Control device, laser device, wavelength converting method, and program
JP2000332348A (en) Mode-locked semiconductor laser
JP2708467B2 (en) Tunable semiconductor laser
JP5001239B2 (en) Semiconductor tunable laser
JP3433044B2 (en) Frequency stabilized light source
JPH09199779A (en) Frequency stabilized light source
JP2005045048A (en) Semiconductor tunable laser and tunable laser module
US10243327B2 (en) Optical source
US6327064B1 (en) Frequency stabilized and crosstalk-free signal sources for optical communication systems
US7016382B2 (en) Method and apparatus for stabilizing laser wavelength
JP4079263B2 (en) Frequency stabilized light source
JP3072123B2 (en) Optically integrated tunable semiconductor laser device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010911

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071005

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081005

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091005

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees