JPH09199263A - Heating material - Google Patents

Heating material

Info

Publication number
JPH09199263A
JPH09199263A JP988396A JP988396A JPH09199263A JP H09199263 A JPH09199263 A JP H09199263A JP 988396 A JP988396 A JP 988396A JP 988396 A JP988396 A JP 988396A JP H09199263 A JPH09199263 A JP H09199263A
Authority
JP
Japan
Prior art keywords
heat
generating material
fiber
fibers
heating resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP988396A
Other languages
Japanese (ja)
Inventor
Masashi Minamimoto
政司 南本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maeda Kosen Co Ltd
Original Assignee
Maeda Kosen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maeda Kosen Co Ltd filed Critical Maeda Kosen Co Ltd
Priority to JP988396A priority Critical patent/JPH09199263A/en
Publication of JPH09199263A publication Critical patent/JPH09199263A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a heating material which eliminates changing of a heating resistor resistance value and breaking even by repeated compression in a pavement road and has heating efficiency equivalent to a surface type heating material even despite a linear heating resistor. SOLUTION: A heating resistor 1 serves as a core material, in its periphery, a fiber 2 of small break elongation and large break strength is arranged, simultaneous resin coating with the heating resistor 1 is performed, so as to enhance adhesiveness between the heating resistor 1 and the fiber 2 arranged in the periphery, by the fiber obtaining the break elongation of that or less of the heating resistor 1, it is designed so as to generate breaking of the arranged fiber 2 before breaking the heating resistor 1. Metal oxide powder 6 is mixed in a coating resin, metal foil 5 is fixed to a heating material bottom part.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、発熱材料に関するもの
であり、さらに詳しくは融雪用ロードヒーティング等に
好ましい強度を持つ発熱材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat generating material, and more particularly to a heat generating material having a strength suitable for snow melting road heating and the like.

【0002】[0002]

【従来の技術】従来、積雪寒冷地帯においては、電気式
ロードヒーティング、地下水、温水循環ヒートパイプ方
式が採用されている。そのうち電気式ロードヒーティン
グ材料には、ニクロム線発熱材料、カーボン発熱材料、
ステンレス不連続繊維とアラミド不連続繊維を撚り合わ
せた発熱材料が用いられてきたが何れの発熱材料も、道
路路盤、アスファルト基層表層の陥没と流動による変形
により、ニクロム線発熱材料とカーボン発熱材料は破断
しやすく又、ステンレス不連続繊維とアラミド不連続繊
維を撚り合わせた発熱材料は抵抗値変化が大きいという
欠点を有していた。
2. Description of the Related Art Conventionally, electric road heating, groundwater, and hot water circulation heat pipe systems have been adopted in snowy and cold regions. Among them, electric load heating materials include nichrome wire heating material, carbon heating material,
Heat-generating materials made by twisting stainless discontinuous fibers and aramid discontinuous fibers have been used, but both heat-generating materials have a nichrome wire heat-generating material and carbon heat-generating material due to the deformation of road roadbed and asphalt base layer surface layers due to depression and flow. The heat-generating material obtained by twisting the discontinuous stainless steel fibers and the discontinuous aramid fibers has a drawback that the resistance value changes greatly.

【0003】ロードヒーティング用ニクロム線耐圧型
は、三層の樹脂被覆構造を有しており、しかも二層目に
は歯車断面形状による空気層を設ける事により圧縮荷重
分散と心材保護を行っている。しかしながら、道路路
盤、アスファルト基層、表層の陥没と流動による変形に
より断線しやすいといった欠点がある。
The nichrome wire pressure resistant type for load heating has a three-layer resin coating structure, and furthermore, by providing an air layer having a gear cross-sectional shape on the second layer, compression load distribution and core material protection are performed. There is. However, there is a drawback that the roadbed, the asphalt base layer, and the surface layer are likely to be broken due to deformation due to depression and flow.

【0004】ロードヒーティング用カーボンコンパウン
ド発熱材料は、体積固有抵抗値が大きく抵抗値を下げる
ために線径を大きくする必要がある。特に曲げ応力に対
する耐久性が劣り断線しやすい欠点を有している。
The carbon compound heat-generating material for load heating has a large volume specific resistance value, so that the wire diameter must be increased in order to lower the resistance value. In particular, it has a drawback that it is inferior in durability against bending stress and easily breaks.

【0005】ステンレス不連続繊維とアラミド不連続繊
維を撚り合わせた発熱材料は、断線は起こりにくいが糸
繊度を大きくすると繰り返し圧縮歪みにより電気抵抗値
が変動するといった欠点を有している。
The heat-generating material obtained by twisting the stainless discontinuous fiber and the aramid discontinuous fiber has a drawback that the wire resistance is unlikely to occur but the electric resistance value fluctuates due to repeated compressive strain when the yarn fineness is increased.

【0006】何れの発熱材料もアスファルトが十分充填
しにくい丸断面形状であり繰り返し圧縮荷重によって、
発熱材料の変形率が大きくなるといった欠点を有してい
た。延長方向は、発熱材料とその被覆材が存在するのみ
で発熱抵抗体と被覆材に強度を依存している。しかしな
がら、発熱抵抗体と絶縁被覆樹脂強度だけでは道路内繰
り返し荷重に耐えられず発熱抵抗体破断と抵抗値変化が
生ずるといった欠点を有していた。
Each of the heat-generating materials has a round cross-sectional shape which makes it difficult for asphalt to be sufficiently filled.
It has a drawback that the deformation rate of the heat generating material becomes large. The extension direction depends only on the heat generating material and the covering material, and the strength depends on the heat generating resistor and the covering material. However, the strength of the heating resistor and the strength of the insulating coating resin alone cannot withstand the repeated load on the road, resulting in the rupture of the heating resistor and the change in resistance value.

【0007】舗装道路内埋設物には、強度を必要とする
とともに伸度を小さくする必要がある。しかしながら従
来の発熱材料は、丸断面形状であることと延長方向の強
度を発熱体と被覆樹脂に依存しているために引張強度は
小さく引張伸度は大きい。またアスファルト舗装施工時
アスファルト骨材が十分線材底部に充填されず隙間を発
生させ道路強度を保持できないためアスファルト流動と
陥没に発熱抵抗体強度を保持できないと言う欠点があ
る。
The buried object in the pavement must have strength and low elongation. However, the conventional exothermic material has a round cross-sectional shape and the strength in the extending direction depends on the heating element and the coating resin, and therefore the tensile strength is small and the tensile elongation is large. In addition, since the asphalt aggregate is not sufficiently filled in the bottom of the wire during the asphalt pavement construction to create a gap and the road strength cannot be maintained, the strength of the heat generating resistor cannot be maintained due to the asphalt flow and depression.

【0008】アスファルト舗装は、通常アスファルトフ
ィニッシャーによる機械施工を行うが発熱材料を埋設す
る場合は、アスファルトフィニッシャー上載による圧縮
荷重により、発熱材料にせん断応力、ねじりモーメン
ト、曲げモーメントが加わる。このため発熱材料破断が
生じないように人力による施工しか行わないのが現状で
ある。
[0008] Asphalt pavement is usually machined by an asphalt finisher, but when a heat generating material is buried, a shearing stress, a torsional moment, and a bending moment are applied to the heat generating material due to the compressive load applied on the asphalt finisher. For this reason, at present, only construction is performed manually so that the heat-generating material does not break.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、上記
の如き欠点を改善し繰り返し圧縮によっても発熱抵抗体
抵抗値が変化せず発熱抵抗体が折傷しない発熱材料を提
供することにある。また、線状発熱抵抗体にもかかわら
ず面状発熱材料と同等発熱効率を有する発熱材料を提供
することにある。更にアスファルトフィニッシャー上載
による機械施工可能な発熱材料を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a heat-generating material in which the above-mentioned drawbacks are ameliorated and the resistance of the heat-generating resistor does not change even after repeated compression and the heat-generating resistor does not break. . Another object of the present invention is to provide a heat-generating material having the same heat-generating efficiency as that of the sheet-shaped heat-generating material despite the linear heat-generating resistor. Another object of the present invention is to provide a heat-generating material that can be machined by mounting on an asphalt finisher.

【0010】[0010]

【課題を解決するための手段】上記の如き考案の目的を
達成するために、発熱抵抗体を芯材としその周囲に発熱
抵抗体より破断伸度が小さく、破断強度が大きい繊維を
配列し、発熱抵抗体と同時樹脂被覆することで発熱抵抗
体と周囲に配列した繊維との密着性を高め、発熱抵抗体
の破断伸度以下の破断伸度を得る配列繊維により、発熱
抵抗体が破断する前に配列繊維の破断が生じるよう設計
した。発熱材料断面形状は、平板状四角断面とした。平
板状四角断面は道路内圧縮荷重による道路変形発生防止
に効果があるとともにアスファルト基層との密着性も良
好となる。
In order to achieve the object of the invention as described above, a heating resistor is used as a core material, and fibers having a lower breaking elongation and a higher breaking strength than the heating resistor are arranged around the core member. By coating the heating resistor with the resin at the same time to improve the adhesion between the heating resistor and the fibers arranged in the surroundings, the heating resistor is ruptured by the arrayed fiber that obtains a breaking elongation less than the breaking elongation of the heating resistor. It was designed so that the breakage of the array fiber occurred before. The cross-sectional shape of the exothermic material was a flat plate-shaped square cross section. The flat rectangular cross section is effective in preventing road deformation due to compressive load on the road and also provides good adhesion to the asphalt base layer.

【0011】配列する繊維は、破断伸度が0.5%以上
20%以下、好ましくは0.5%以上5.0%以下、破
断強度が6g/de以上100g/de以下の繊維を使
用する。これは、発熱抵抗体との相対比較で破断伸度が
小さければ発熱抵抗体に加わる圧縮荷重を配列繊維が吸
収するためである。使用可能な配列繊維として、アラミ
ド繊維、アリレート繊維、高強力ポリエチレン繊維、ポ
リエステル繊維、ナイロン繊維、ガラス繊維、炭素繊維
がある。
As the fibers to be arranged, fibers having a breaking elongation of 0.5% or more and 20% or less, preferably 0.5% or more and 5.0% or less and a breaking strength of 6 g / de or more and 100 g / de or less are used. . This is because the array fiber absorbs the compressive load applied to the heating resistor if the elongation at break is small in comparison with the heating resistor. Arranged fibers that can be used include aramid fibers, arylate fibers, high-strength polyethylene fibers, polyester fibers, nylon fibers, glass fibers, and carbon fibers.

【0012】上記の、発熱抵抗体との相対比較での配列
繊維の破断伸度が小さいとは、例えば発熱抵抗体として
ニクロム線を使用した場合、ステンレス繊維の破断伸度
が20%以上であるため20%以下の破断伸度の配列繊
維を使用する。ポリエステル繊維の破断伸度が8%であ
るため使用可能となる。また、発熱抵抗体としてステン
レス繊維又はステンレスワイヤーを使用した場合、ステ
ンレス繊維の破断伸度が1.7%から2.8%、ステン
レスワイヤーの破断伸度が3.6%であるため、その破
断伸度以下の配列繊維を使用する。破断伸度1.5%の
アラミド繊維又は、破断伸度0.5%から2.0%の炭
素繊維が使用可能となる。
The fact that the breaking elongation of the arrayed fibers in the above-mentioned relative comparison with the heating resistor is small means that the breaking elongation of the stainless fiber is 20% or more when a nichrome wire is used as the heating resistor. Therefore, an array fiber having a breaking elongation of 20% or less is used. Since the breaking elongation of the polyester fiber is 8%, it can be used. When stainless fiber or stainless wire is used as the heating resistor, the breaking elongation of the stainless fiber is 1.7% to 2.8% and the breaking elongation of the stainless wire is 3.6%. Aligned fibers with a degree of elongation or less are used. An aramid fiber having a breaking elongation of 1.5% or a carbon fiber having a breaking elongation of 0.5% to 2.0% can be used.

【0013】以下、本発明を添付図面を参照しながら説
明する。図1、図2、図3は本発明の発熱材料の実施例
を示す斜視図である。
The present invention will be described below with reference to the accompanying drawings. 1, 2, and 3 are perspective views showing an embodiment of the heat generating material of the present invention.

【0014】絶縁被覆は、独立した糸ストランド1束以
上100束以下を同時樹脂被覆することで行う。発熱材
料幅は、2.0mmから200mm迄、発熱材料厚みは
糸ストランド厚みを含め2.0mmから20mm迄自由
に設定できる。更に押出し機ダイスとニップル形状の変
更により各ストランドへの絶縁樹脂被覆を分離独立状態
(図2)での押し出しもできる。
The insulating coating is performed by simultaneously resin-coating 1 to 100 bundles of independent thread strands. The heating material width can be set freely from 2.0 mm to 200 mm, and the heating material thickness can be freely set from 2.0 mm to 20 mm including the yarn strand thickness. Further, the insulating resin coating on each strand can be extruded in a separated and independent state (FIG. 2) by changing the extruder die and nipple shape.

【0015】絶縁樹脂被覆は、発熱抵抗体外部への電流
漏洩防止のものであり非導電性プラスチック材料、ゴム
材料等任意に使用する。
The insulating resin coating is for preventing current leakage to the outside of the heating resistor, and may be any material such as non-conductive plastic material and rubber material.

【0016】強度が必要な場合は、各糸ストランドの配
列繊維の繊度を大きくすればよい。
When strength is required, the fineness of the array fibers of each yarn strand may be increased.

【0017】本発明の発熱材料は、糸ストランド束の糸
繊度を大きくすることで発熱材料強度を高く設計でき、
配列繊維全体で圧縮荷重を吸収するため絶縁被覆樹脂厚
みを薄くすることができる。このため発熱材料全体の厚
みを更に薄くする事ができ、発熱材料敷設による道路強
度低下を極力防止することができる。被覆厚みを薄くす
ることで被覆樹脂に奪われる熱量を少なくでき発熱効率
の向上が可能である。
The heat generating material of the present invention can be designed to have high heat generating material strength by increasing the yarn fineness of the yarn strand bundle,
Since the compressive load is absorbed by the arrayed fibers as a whole, the thickness of the insulating coating resin can be reduced. Therefore, it is possible to further reduce the thickness of the heat generating material as a whole, and it is possible to prevent a decrease in road strength due to the laying of the heat generating material as much as possible. By reducing the coating thickness, the amount of heat taken by the coating resin can be reduced and the heat generation efficiency can be improved.

【0018】発熱抵抗体としては、ニクロム線、ステン
レス繊維又はステンレスワイヤーからなる線状抵抗体の
使用が好ましい。
As the heating resistor, it is preferable to use a linear resistor made of nichrome wire, stainless fiber or stainless wire.

【0019】[0019]

【発明の実施の形態】本発明の発熱材料を、例えば融雪
用ロードヒーティング材料として使用する場合、配列し
た繊維は破断伸度が小さく、破断強度は大きいためアス
ファルト基層、表層の陥没と流動にも発熱抵抗体の断線
が生じにくく、平板状四角断面形状発熱材料を使用した
場合にはアスファルト基層面との密着性に優れ、アスフ
ァルト空隙を発生させないように、アスファルトフィニ
ッシャーによる機械施工ができ道路強度を保持できる。
更に実施例5の発熱材料を使用した場合には、道路表面
に均等に熱が伝わる。
BEST MODE FOR CARRYING OUT THE INVENTION When the heat generating material of the present invention is used, for example, as a road heating material for snow melting, the arranged fibers have a small breaking elongation and a large breaking strength, so that the asphalt base layer and the surface layer do not sink or flow. Even if the heating resistor is not easily broken, it has excellent adhesion to the asphalt base layer surface when using a plate-shaped square cross-section heating material, and asphalt finishers can be machine-installed to prevent the formation of asphalt voids. Can hold.
Furthermore, when the heat generating material of Example 5 is used, heat is evenly transferred to the road surface.

【0020】[0020]

【実施例】以下、実施例をあげて本発明の具体的説明を
行う。
The present invention will now be described in detail with reference to examples.

【0021】[0021]

【実施例1】糸ストランド全てにステンレス繊維(単糸
デニール 8.35de)100本を発熱抵抗体1と
し、ポリパラフェニレンテレフタルアミド連続長繊維
(デュポン東レケブラー社製 ケブラー149単糸デニ
ール 1.42de)8000本を配列繊維2とした。
発熱抵抗体1と配列繊維2を束ねて引き揃えながら高密
度ポリエチレン樹脂による絶縁樹脂被覆3を行い糸スト
ランド本数21束、厚み2.5mm、幅55mmの発熱
材料4(図1)を得た。
[Example 1] 100 stainless fibers (single yarn denier 8.35 de) were used as the heating resistor 1 for all yarn strands, and polyparaphenylene terephthalamide continuous filaments (Kevlar 149 single yarn denier 1.42 de manufactured by DuPont Toray Kevlar KK) were used. ) 8000 fibers were used as array fiber 2.
An insulating resin coating 3 made of high-density polyethylene resin was applied while bundling and aligning the heating resistors 1 and the array fibers 2 to obtain a heating material 4 (FIG. 1) having 21 bundles of yarn strands, a thickness of 2.5 mm, and a width of 55 mm.

【0022】[0022]

【実施例2】ダイスとニップルの変更により糸ストラン
ド3束を発熱材料としその中心位置糸ストランドはステ
ンレス繊維(単糸デニール 8.35de)900本を
発熱抵抗体1とし、ポリパラフェニレンテレフタルアミ
ド連続長繊維(デュポン東レケブラー社製 ケブラー1
49単糸デニール 1.42de)8000本を配列繊
維2とした。中心位置ストランドには発熱抵抗体1と配
列繊維2を束ねて引き揃え、残りのストランドはポリパ
ラフェニレンテレフタルアミド連続長繊維(デュポン東
レケブラー製ケブラー149単糸デニール 1.42d
e)8000本引き揃えながら高密度ポリエチレン樹脂
による絶縁被覆3を行い、糸ストランド本数3束、厚み
2.5mm、幅8mmの発熱材料4(図2)を得た。
[Embodiment 2] Three bundles of yarn strands are used as a heat-generating material by changing dies and nipples, and 900 strands of stainless fiber (single yarn denier 8.35 de) are used as the heat-generating resistor 1 for the yarn strands, and polyparaphenylene terephthalamide continuous Long fiber (Devon Toray Kevlar Kevlar 1
8000 single-fiber denier 1.42 de) 8000 fibers were used as the array fiber 2. The heat generating resistor 1 and the array fiber 2 are bundled and aligned on the central position strand, and the remaining strand is polyparaphenylene terephthalamide continuous long fiber (Devon Toray Kevlar Kevlar 149 single yarn denier 1.42d.
e) Insulating coating 3 made of high-density polyethylene resin was performed while 8000 pieces were aligned to obtain heat-generating material 4 (FIG. 2) having 3 bundles of yarn strands, thickness 2.5 mm and width 8 mm.

【0023】[0023]

【実施例3】糸ストランド全てにニクロム線(素線径
0.5mm 断面積0.196mm2)1本を発熱抵抗
体とし、ポリエチレンテレフタレ−ト連続長繊維(帝人
社製6de)2000本を配列繊維2とした。発熱抵抗
体1と配列繊維2を束ね引き揃えながら高密度ポリエチ
レン樹脂による絶縁被覆3を行い糸ストランド本数21
束、厚み2.5mm、幅55mmの発熱材料4(図1)
を得た。
[Embodiment 3] One piece of nichrome wire (wire diameter 0.5 mm, cross-sectional area 0.196 mm 2 ) is used as a heating resistor for all the yarn strands, and 2000 polyethylene terephthalate continuous filaments (6de manufactured by Teijin Ltd.) are used. Aligned fiber 2 was used. While bundling and aligning the heating resistor 1 and the array fiber 2, the insulation coating 3 made of high-density polyethylene resin is applied and the number of yarn strands is 21.
Heat generating material 4 (Fig. 1) with a bundle, thickness 2.5 mm and width 55 mm
I got

【0024】[0024]

【実施例4】ダイスとニップルの変更により糸ストラン
ド3束を発熱材料としその中心位置糸ストランドはニク
ロム線(素線径0.5mm 断面積0.196mm2
3本を発熱抵抗体1とし、ポリエチレンテレフタレ−ト
長繊維(帝人社製6de)2000本を配列繊維2とし
た。中心位置ストランドには発熱抵抗体1と配列繊維2
を束ねて引き揃え、残りのストランドはポリエチレンテ
レフタレ−ト連続長繊維(帝人社製 6de)2000
本を引き揃えながら高密度ポリエチレン樹脂による絶縁
被覆3を行い、糸ストランド本数3束、厚み2.5m
m、幅8mmの発熱材料4(図2)を得た。
[Embodiment 4] Three bundles of yarn strands are used as a heat-generating material by changing dies and nipples, and the center position of the yarn strand is a nichrome wire (strand diameter 0.5 mm, cross-sectional area 0.196 mm 2 ).
Three were used as the heating resistor 1, and 2000 polyethylene terephthalate long fibers (6de manufactured by Teijin Ltd.) were used as the array fiber 2. A heating resistor 1 and array fibers 2 are provided in the central strand.
Bundled and aligned, and the remaining strand is polyethylene terephthalate continuous filament (6de manufactured by Teijin Ltd.) 2000
Insulating coating 3 with high-density polyethylene resin is performed while aligning the books, and the number of yarn strands is 3 and the thickness is 2.5 m.
A heat generating material 4 (FIG. 2) having a width of m and a width of 8 mm was obtained.

【0025】[0025]

【実施例5】糸ストランド全てにステンレス繊維(単糸
デニール 8.35de)100本を発熱抵抗体1と
し、ポリパラフェニレンテレフタルアミド連続長繊維
(デュポン東レケブラー社製 ケブラー149単糸デニ
ール 1.42de)8000本を配列繊維2とした。
発熱抵抗体1と配列繊維2を束ねて引き揃えながら遠赤
外線効果を有する金属酸化物粉体を高密度ポリエチレン
樹脂に混入させ金属酸化物粉体混入絶縁被覆6を行い糸
ストランド本数21束、厚み2.5mm、幅55mmの
発熱材料4を得た。更に金属箔5を発熱材料底部に貼り
付けた発熱材料4(図3)とした。
Example 5 100 stainless steel fibers (single yarn denier 8.35 de) were used as the heating resistor 1 in all the yarn strands, and polyparaphenylene terephthalamide continuous long fibers (Kevlar 149 single yarn denier 1.42 de manufactured by DuPont Toray Kevlar KK) were used. ) 8000 fibers were used as array fiber 2.
While the heating resistor 1 and the array fiber 2 are bundled and aligned, a metal oxide powder having a far infrared ray effect is mixed into a high density polyethylene resin to perform a metal oxide powder mixed insulation coating 6 and the number of yarn strands is 21 bundles, thickness A heat generating material 4 having a width of 2.5 mm and a width of 55 mm was obtained. Furthermore, the heat generating material 4 (FIG. 3) was obtained by attaching the metal foil 5 to the bottom of the heat generating material.

【0026】[0026]

【比較例1】ロードヒーティング用ニクロム線耐圧型
は、素線径0.5mm、素線本数7本、素線総断面積
1.40mm2のニクロム線発熱体に一層目エチレンプ
ロピレンゴム、二層目耐熱性ポリ塩化ビニル樹脂被覆、
三層目耐熱性ポリ塩化ビニル樹脂被覆した外径8.7m
mの丸断面発熱材料である。
[Comparative Example 1] road heating for Nichrome wire withstand voltage type, wire diameter 0.5 mm, the number of the wires 7 present, the first layer of ethylene-propylene rubber nichrome wire heating element wire the total cross-sectional area 1.40 mm 2, two Layer heat-resistant polyvinyl chloride resin coating,
Third layer heat resistant polyvinyl chloride resin coated outer diameter 8.7m
It is a heat generating material having a circular cross section of m.

【0027】[0027]

【比較例2】ロードヒーティング用カーボンコンパウン
ド発熱抵抗体は、芯材としてポリエチレン樹脂があり、
その周囲にカーボンコンパウンド発熱抵抗体を被覆し更
にその周囲にポリエチレン樹脂を被覆した丸断面発熱材
料である。
[Comparative Example 2] A carbon compound heating resistor for load heating has a polyethylene resin as a core material,
It is a heat generating material having a round cross section, the periphery of which is covered with a carbon compound heat generating resistor, and the periphery of which is coated with polyethylene resin.

【0028】[0028]

【比較例3】ロードヒーティング用ステンレス繊維とア
ラミド繊維混紡形状発熱材料の発熱体部分は、ステンレ
ス不連続繊維とアラミド不連続繊維を撚り合わせたもの
である。発熱抵抗体糸繊度は60000de、発熱抵抗
体外径は2.6mmとなっている。その発熱抵抗体に耐
熱塩化ビニール樹脂を二層被覆し三層目をポリエチレン
テレフタレート長繊維により製紐被覆した被覆外径9.
0mmの丸断面発熱材料である。
[Comparative Example 3] The heating element portion of the heat-generating material mixed with the stainless fiber for load heating and the aramid fiber is formed by twisting the discontinuous stainless fiber and the discontinuous aramid fiber. The heating resistor thread fineness is 60000 de and the heating resistor outer diameter is 2.6 mm. The heat-generating resistor is coated with two layers of heat-resistant vinyl chloride resin, and the third layer is coated with polyethylene terephthalate long fiber cords.
It is a 0 mm round section heat generating material.

【0029】各発熱材料を福井県坂井郡春江町沖布目3
8番3号の前田工繊株式会社内道路側溝用鉄骨製グレー
チング上に並べ固定した。その上を車両が通過すること
で発熱材料に圧縮荷重、せん断応力、曲げ応力が加わり
経時的な損傷度合を抵抗値測定により比較した。発熱材
料長は12mとした。結果を表1に示す。
[0029] Each heat generating material is 3 in the area off Harue-cho, Sakai-gun, Fukui prefecture
Maeda Kosen Co., Ltd. No. 8-3 was lined up and fixed on a steel frame grating for inner side road gutters. When a vehicle passed over it, compressive load, shear stress, and bending stress were applied to the heat-generating material, and the degree of damage over time was compared by measuring the resistance value. The heat generating material length was 12 m. The results are shown in Table 1.

【0030】各発熱材料を、m当たり20Wの供給電力
(図4)に直列接続した後モルタル内に埋設した。モル
タル寸法は、厚さ10cm、縦横50cmのブロック形
状とした。次にこのhat発熱材料埋設ブロックを−5℃
の低温恒温ボックス内に置き、通電4時間後の温度が安
定した後のブロック表面温度2カ所及び内部温度1カ所
を測定した。結果を表2に示す。発熱材料埋設深さはブ
ロック表面から50mmの位置とし測定位置1は発熱材
料直上表面部分、測定位置2は発熱材料と発熱材料の中
間直上表面部分、測定位置3は発熱材料直上10mm部
分とした。
Each exothermic material was embedded in mortar after being connected in series with a power supply of 20 W per m (FIG. 4). The mortar has a block shape with a thickness of 10 cm and a length and width of 50 cm. Next, this hat exothermic material embedded block is placed at -5 ° C.
In the low temperature constant temperature box, the temperature of the block was stabilized after 4 hours and the block surface temperature was measured at two locations and the internal temperature was measured at one location. Table 2 shows the results. The heating material embedding depth was set at a position of 50 mm from the surface of the block, measurement position 1 was a surface portion immediately above the heating material, measurement position 2 was a surface portion between the heating material and the heating material, and measurement position 3 was a portion 10 mm directly above the heating material.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】本発明の発熱材料を使用した場合、圧縮荷
重を破断伸度が小さく、破断強度が大きい配列繊維が吸
収する。このため発熱抵抗体の断線と抵抗値変化が生じ
にくく、耐久性に優れている。
When the heat-generating material of the present invention is used, the compressive load is absorbed by the array fibers having a small breaking elongation and a large breaking strength. For this reason, disconnection of the heating resistor and resistance value change hardly occur, and the durability is excellent.

【0034】本発明の発熱材料を使用した場合、従来の
発熱材料と比較しモルタルブロックの表面温度を上昇さ
せることが可能で、融雪が容易であるという特徴を有し
ている。
When the heat-generating material of the present invention is used, the surface temperature of the mortar block can be increased as compared with the conventional heat-generating material, and snow melting is easy.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1および実施例3の発熱材料の斜視図FIG. 1 is a perspective view of exothermic materials of Examples 1 and 3. FIG.

【図2】実施例2および実施例4の発熱材料の斜視図FIG. 2 is a perspective view of heat-generating materials of Examples 2 and 4.

【図3】実施例5の発熱材料の斜視図FIG. 3 is a perspective view of a heat generating material according to a fifth embodiment.

【図4】本発明の発熱材料を埋設した融雪用モルタルブ
ロックの斜視図
FIG. 4 is a perspective view of a mortar block for snow melting in which the heat generating material of the present invention is embedded.

【符号の説明】[Explanation of symbols]

1 発熱抵抗体 2 配列繊維 3 絶縁被覆樹脂 4 発熱材料 5 金属箔 6 金属酸化物粉体混入絶縁被覆樹脂 DESCRIPTION OF SYMBOLS 1 Heating resistor 2 Arrangement fiber 3 Insulation coating resin 4 Heating material 5 Metal foil 6 Metal oxide powder mixed insulation coating resin

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】発熱抵抗体としてステンレス繊維、ステン
レスワイヤー、ニクロム線を使用し、その周囲に破断伸
度が0.5%以上20%以下、破断強度が6g/de以
上100g/de以下の繊維を配列し、更にその周囲に
絶縁被覆樹脂層を形成する事を特徴とする発熱材料。
1. A fiber having a breaking elongation of 0.5% or more and 20% or less and a breaking strength of 6 g / de or more and 100 g / de or less, using stainless fiber, stainless wire, or nichrome wire as a heating resistor. A heat-generating material characterized by arranging the above and further forming an insulating coating resin layer on the periphery thereof.
【請求項2】絶縁樹脂被覆形状を平板状四角断面とした
請求項1記載の発熱材料。
2. The heat generating material according to claim 1, wherein the insulating resin coating shape is a flat plate-like rectangular cross section.
【請求項3】発熱抵抗体の周囲に配列する繊維にはアラ
ミド繊維、アリレート繊維、高強力ポリエチレン繊維、
ポリエステル繊維、ナイロン繊維、ガラス繊維、炭素繊
維を用いた請求項1または2記載の発熱材料。
3. The fibers arranged around the heating resistor are aramid fibers, arylate fibers, high-strength polyethylene fibers,
The heat generating material according to claim 1 or 2, wherein polyester fiber, nylon fiber, glass fiber, or carbon fiber is used.
【請求項4】平板状四角断面形状発熱材料は、発熱抵抗
体の周囲に配列した繊維により強度を保持しながら、厚
みを2.0mm以上20mm以下、幅は2.0mm以上
200mm以下とした請求項1、2または3記載の発熱
材料。
4. The flat plate-shaped rectangular cross-section heat-generating material has a thickness of 2.0 mm or more and 20 mm or less and a width of 2.0 mm or more and 200 mm or less while maintaining strength by fibers arranged around the heat-generating resistor. Item 1, 2 or 3 of the heat generating material.
【請求項5】発熱抵抗体の周囲に繊維を配列した糸スト
ランドを1束以上100束以下同時絶縁被覆した請求項
1、2、3または4記載の発熱材料。
5. The heat-generating material according to claim 1, 2, 3 or 4, wherein at least one bundle and not more than 100 bundles of yarn strands in which fibers are arranged around the heat-generating resistor are simultaneously insulation-coated.
【請求項6】遠赤外線効果を有する酸化金属粉体を絶縁
被覆樹脂に練り混み、発熱材料の片面に金属箔又は金属
蒸着フィルムを貼り合わせることで上部への発熱量を向
上させた請求項1、2、3、4または5記載の発熱材
料。
6. The amount of heat generated in the upper part is improved by kneading a metal oxide powder having a far infrared effect into an insulating coating resin and adhering a metal foil or a metal vapor deposition film on one surface of the heat generating material. The heat generating material according to 2, 3, 4 or 5.
【請求項7】酸化金属物粉体には、酸化チタン、酸化ケ
イ素、酸化鉄、酸化アルミニュウム、酸化カルシュウ
ム、酸化カリウム、酸化ニッケルを用いた請求項1、
2、3、4、5または6記載の発熱材料。
7. The metal oxide powder used is titanium oxide, silicon oxide, iron oxide, aluminum oxide, calcium oxide, potassium oxide or nickel oxide.
The heat generating material according to 2, 3, 4, 5 or 6.
JP988396A 1996-01-24 1996-01-24 Heating material Pending JPH09199263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP988396A JPH09199263A (en) 1996-01-24 1996-01-24 Heating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP988396A JPH09199263A (en) 1996-01-24 1996-01-24 Heating material

Publications (1)

Publication Number Publication Date
JPH09199263A true JPH09199263A (en) 1997-07-31

Family

ID=11732558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP988396A Pending JPH09199263A (en) 1996-01-24 1996-01-24 Heating material

Country Status (1)

Country Link
JP (1) JPH09199263A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7312350B1 (en) * 2022-12-26 2023-07-21 株式会社Ibis Heating element structure and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7312350B1 (en) * 2022-12-26 2023-07-21 株式会社Ibis Heating element structure and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US6307180B1 (en) Heated toilet seat and methods for making same
US5824996A (en) Electroconductive textile heating element and method of manufacture
CN101331794B (en) Flat heating element
CN1224982C (en) Stranded cable and method of making
RU2501109C2 (en) Insulated composite electric cable and method of its manufacturing and use
KR101390655B1 (en) Surface of the carbon fiber heating element and using this chair
CN103155319A (en) Non-woven, self-wrapping thermal sleeve and method of construction thereof
JP4202071B2 (en) Seat heater and method for manufacturing seat heater
US20230124670A1 (en) Coolable single line and charging cable
US7994080B2 (en) Electrically conductive non-woven fabric
JP2001525104A (en) Heating element and its manufacturing method
JP6783550B2 (en) High bending heater wire and planar heating element
EP1429080A1 (en) LOW TEMPERATURE BURN PREVENTING ELECTRIC FLOOR HEATING SYSTEM, ELECTRIC FLOOR HEATING PANEL, FLOOR HEATING FLOOR MATERIAL, AND ELECTRIC FLOOR HEATING DEVICE
US6367509B1 (en) Thermal harness using encased carbon-based fiber and end attachment brackets
US6067394A (en) Structures of optical fiber cables self-reinforced against compression
JP7360942B2 (en) Cord heater, sheet heater, and method for manufacturing sheet heaters
JPH09199263A (en) Heating material
JP2001123667A (en) Electric heating mat for curing concrete and curing method
US20050040158A1 (en) Heating conductor comprising a sheath
JP2010015691A (en) Cord-like heater
KR20190024713A (en) Heating Wire Cable And Heating Sheet Having The Same
JP3314867B2 (en) Heating laminate and electric heating board for floor heating
JP3032188B1 (en) Heat generation mat, road surface construction method using the same, and road surface structure
JPH11265781A (en) Heating element
JP4242802B2 (en) Optical fiber cord