JPH0919749A - Method for controlling cut-off of cast slab in continuous casting - Google Patents

Method for controlling cut-off of cast slab in continuous casting

Info

Publication number
JPH0919749A
JPH0919749A JP17090095A JP17090095A JPH0919749A JP H0919749 A JPH0919749 A JP H0919749A JP 17090095 A JP17090095 A JP 17090095A JP 17090095 A JP17090095 A JP 17090095A JP H0919749 A JPH0919749 A JP H0919749A
Authority
JP
Japan
Prior art keywords
cutting
slab
cut
speed
cast slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP17090095A
Other languages
Japanese (ja)
Inventor
Hideaki Gotoda
英昭 後藤田
Hiromi Inoue
博美 井上
Junichi Takanashi
順一 高梨
Yoichiro Orino
洋一郎 折野
Katsuhiko Hata
勝彦 秦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP17090095A priority Critical patent/JPH0919749A/en
Publication of JPH0919749A publication Critical patent/JPH0919749A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cast slab cut-off method which executes the most quick cut-off speed while holding the cut-off surface to flat without failure of the cut-off by selecting the cut-off speed having the best successful possibility completed within the limited time based on the actual result of cast slab temp. and cooling in a continuous caster, etc., and setting the cut-off speed. SOLUTION: Molten steel is poured into a mold 1 from a ladle through a tundish. The cast slab 2 come out from the mold 1 is carried to a cast slab cut-off zone under condition of perfectly solidifying with spray for cooling in a cast slab cooling zone. In the cast slab cut-off zone, a cast slab surface temp. measuring instrument 4 and a cut-off machine 5 are arranged to execute the cut-off in the optimum condition at a cut-off position 6 within the travelling range of the cut-off machine 5. In this case, the relation between the cast slab surface temp. and the cut-off speed is introduced in each cast slab thickness. The suitable cut-off speed in each temp. is set by ranking in each successful possibility, and the cut-off speed having the most successful possibility, in which the cut-off completes within the limit time till completing the cut-off regulated from the length, width and casting speed of the cast slab, is selected based on the actual cast slab temp.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、溶融金属の連続鋳
造における鋳片切断において、切り残しやガスの吹き上
げによる切断失敗をなくし、切断面を平滑に保ちかつ最
も切断速度を速くするための自動切断制御のためのもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention eliminates cutting failure due to uncut residue and gas blow-up in cutting slabs in continuous casting of molten metal, keeps the cut surface smooth and maximizes the cutting speed. It is for disconnection control.

【0002】[0002]

【従来の技術】連続鋳造において、安定操業と品質を保
証する上で切断機における鋳片切断速度の選択は大変重
要な要素である。鋳片の切り残しや切断の際に使用する
ガス(通常アセチレンガスが使用される。)の吹き上げ
等による切断の失敗をなくし、しかも平滑な鋳片切断面
を確保・維持しながら最も速い鋳片切断速度を得ること
が鋳片切断における最大の主眼である。この鋳片切断速
度は、鋳片厚み、鋳片温度および鋳片の切断部位などの
要因により異なっている。例えば、鋳片温度が低く、鋳
片厚みが厚い場合には、切断機による最適な切断速度は
遅くなる。一方、鋳片温度が高く、鋳片厚みが薄い場合
には、切断機による最適な切断速度は速くなる。従来よ
り、これ等の様々に異なる鋳片切断条件を一括して制御
するような鋳片切断制御の自動化が開発されている。例
えば、特開平2−155552号公報では、鋳片切断機
とを同調させ、鋳片切断長さの自動計算を組み合わせた
方法や、特開昭60−177944号公報に示されるよ
うに鋳片切断長さを自動計算すべく鋳片切断時に発生す
る切断屑から得られる情報に基づいて補正する方法が開
示されている。
2. Description of the Related Art In continuous casting, the selection of the slab cutting speed in a cutting machine is a very important factor in ensuring stable operation and quality. The fastest slab that eliminates unsuccessful cutting due to blow-up of the gas (usually acetylene gas is used) used when cutting the slab and cutting, and while ensuring / maintaining a smooth slab cutting surface Obtaining the cutting speed is the main focus in cutting a slab. The slab cutting speed varies depending on factors such as the slab thickness, the slab temperature, and the slab cutting site. For example, when the slab temperature is low and the slab thickness is large, the optimum cutting speed by the cutting machine becomes slow. On the other hand, when the slab temperature is high and the slab thickness is thin, the optimum cutting speed by the cutting machine is high. Conventionally, automation of slab cutting control has been developed that collectively controls various slab cutting conditions that are different from each other. For example, in Japanese Unexamined Patent Publication No. 2-155552, a method in which a slab cutting machine is synchronized and automatic calculation of a slab cutting length is combined, or in slab cutting as disclosed in Japanese Unexamined Patent Publication No. 60-177944. A method of correcting the length based on information obtained from cutting scraps generated during cutting of a cast in order to automatically calculate the length is disclosed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、切断速
度を自動で選択する技術は未だ確立されておらず、切断
機操作に専任の作業者がついている。また、最適速度の
選択を作業者の判断に委ねているため切断面の品質のば
らつきも発生しやすい。本発明は、鋳片の切断を最も効
率化するために、操業条件に応じた最適切断速度で切断
し、従来は作業者に委ねられていた切断速度設定を自動
制御化することで、操業を安定化し、また、省力化の実
現を目的とするものである。
However, a technique for automatically selecting the cutting speed has not been established yet, and a dedicated operator is attached to the operation of the cutting machine. Further, since the selection of the optimum speed is left to the operator's judgment, the quality of the cut surface is likely to vary. The present invention, in order to most efficiently cut the slab, cut at the optimum cutting speed according to the operating conditions, by automatically controlling the cutting speed setting conventionally entrusted to the operator, the operation The purpose is stabilization and labor saving.

【0004】[0004]

【課題を解決するための手段】本発明は、鋳片表面温度
や連鋳機内の冷却強度や連鋳機内の通過時間と切り残し
による切断失敗が生じることなくまた切断面も平滑であ
る切断速度との関係を鋳片厚みごとに導き出し、各条件
における適正速度を成功確度別にランクづけして設定
し、切断する鋳片の長さ・幅・鋳造速度により規定され
る切断完了までの制限時間以内に切断が完了する最も成
功確度が高い切断速度を、連続して測定される鋳片温度
実績や連鋳機内の冷却実績などをもとに選択して切断速
度設定を行う鋳片切断方法である。また、鋳片表面温度
と鋳片内部温度分布が他の部位と大きく異なり同じ鋳片
表面温度でも鋳片中心部の温度が低く最適切断速度が他
の部位より遅い鋳込開始直後、異鋼種分離鉄板前後、鋳
込終了直前、操業異常発生部などの鋳片については、部
位に応じて切断速度を遅く補正する鋳片切断方法を要旨
とするものである。
DISCLOSURE OF THE INVENTION The present invention is directed to a cutting speed at which a slab surface temperature, a cooling strength in a continuous casting machine, a passage time in the continuous casting machine and a cutting failure due to uncut material do not occur and a cutting surface is smooth. The relationship with the slab thickness is derived, the appropriate speed under each condition is set by ranking according to the success accuracy, and within the time limit for cutting, which is defined by the length, width and casting speed of the slab to be cut. This is a slab cutting method that sets the cutting speed by selecting the cutting speed with the highest success probability of completing the cutting based on the continuously measured slab temperature results and cooling results in the continuous casting machine. . Also, the slab surface temperature and slab internal temperature distribution differ greatly from other parts, but even at the same slab surface temperature, the temperature of the slab center is low and the optimum cutting speed is slower than other parts. The gist of the present invention is to use a slab cutting method in which the cutting speed is corrected to be slow depending on the part of the slab, such as before and after the iron plate, immediately before the end of casting, and in the operation abnormality occurrence part.

【0005】本発明を図面を以て説明する。図1は連続
鋳造設備を切断域を中心に示したものである。溶鋼は取
鍋からタンデイシュ(図示せず)をとおりモールド1に
注入される。モールドを出た鋳片2は鋳片冷却ゾーンで
冷却用スプレーによって完全に凝固した状態で鋳片切断
域に搬送される。鋳片切断域には、鋳片表面温度測定器
4および走行可能な切断機5が設けられており、この切
断機の走行範囲内で切断位置6で最適条件での切断を行
う。図2は鋳造された鋳片の切断部における切断フロー
を示したものである。図3は、鋳片切断制御において図
1にある切断機直前で鋳片の表面温度を測定し、その値
を基に切断速度を演算する方式を示したものであり、ま
た、図4は鋳片切断制御において予め作成されたテーブ
ルを基に切断速度を制御するテーブル方式を示したもの
である。図3に示す演算方式では、鋳片の表面温度と非
定常部に関する操業情報を基に切断機の走行範囲内で切
断を完了できる切断速度のうち最も成功確度が高いもの
を算出して切断速度を設定するものである。また、図4
に示すテーブル方式では、鋳片厚み、鋳片冷却強度と切
断機までの到達時間を基に該当する条件のテーブルから
切断機の走行範囲内で切断を完了できる最大の切断速度
を選択することによって達成される。
The present invention will be described with reference to the drawings. FIG. 1 shows the continuous casting equipment mainly in the cutting area. Molten steel is poured into the mold 1 from a ladle through a tundish (not shown). The slab 2 that has left the mold is conveyed to the slab cutting area in the slab cooling zone in the completely solidified state by the cooling spray. In the slab cutting area, a slab surface temperature measuring device 4 and a traveling cutting machine 5 are provided, and cutting is performed under optimum conditions at a cutting position 6 within the traveling range of the cutting machine. FIG. 2 shows a cutting flow in the cutting portion of the cast slab. FIG. 3 shows a method of measuring the surface temperature of the slab immediately before the cutting machine shown in FIG. 1 in the slab cutting control, and calculating the cutting speed based on that value, and FIG. It shows a table method for controlling the cutting speed based on a table created in advance in the one-side cutting control. In the calculation method shown in FIG. 3, the cutting speed that has the highest success probability among the cutting speeds at which the cutting can be completed within the traveling range of the cutting machine is calculated based on the surface temperature of the slab and the operation information about the unsteady part. Is to be set. FIG.
In the table system shown in, by selecting the maximum cutting speed that can complete the cutting within the traveling range of the cutting machine from the table of the applicable conditions based on the slab thickness, the slab cooling strength and the arrival time to the cutting machine. To be achieved.

【0006】鋳片表面温度と可能な切断速度は図5に1
例を示すように表面温度が高くなるにつれて速くなる。
これらの関係を定量的に調査し、切断制御に反映するこ
とで鋳片切断速度の自動制御が可能となる。また、図5
に示すよう、鋳片厚みにより可能切断速度は異なり、図
6に示すように、切断機到達までの時間、鋳片冷却パタ
ーンによっても切断可能速度が異なる。さらに、表1
(非定常部位での切断位置での鋳片表面温度と最適切断
速度の関係)に示すように、鋳造開始直後のボトムクロ
ップや鋳造終了部のトップクロップまた異鋼種分離鉄板
装入部直後は通常部に比べ表面温度が低くなる。
The slab surface temperature and possible cutting speed are shown in FIG.
As the example shows, the higher the surface temperature, the faster it becomes.
By quantitatively investigating these relationships and reflecting them in cutting control, it becomes possible to automatically control the slab cutting speed. Also, FIG.
As shown in FIG. 6, the possible cutting speed is different depending on the thickness of the cast piece, and as shown in FIG. 6, the cuttable speed is also different depending on the time to reach the cutting machine and the cooling pattern of the cast piece. Furthermore, Table 1
As shown in (Relationship between the slab surface temperature at the cutting position at the unsteady part and the optimum cutting speed), the bottom crop immediately after the start of casting, the top crop at the end of the casting, and the normal steel sheet immediately after the different steel type separation iron plate charging part Surface temperature is lower than that of the part.

【0007】[0007]

【表1】 [Table 1]

【0008】これらを、総合的に処理し、切断可能な最
大速度を算出することで、操業トラブルを防止し、自動
制御を可能にする。
By comprehensively processing these and calculating the maximum speed at which cutting is possible, operating troubles are prevented and automatic control is enabled.

【0009】[0009]

【実施例】240mm厚鋳片で連鋳機内の冷却が注水比
1.0l/kgの条件での、鋳造開始から終了までの一連
の切断制御の本発明の実施例を説明する。まず、鋳造開
始直後の屑鋳片(ボトムクロップ)は、表1に示すよう
に、表面温度が低いため通常より遅い速度を選択し、切
断機がストローク内で切断が完了するかを確認する。2
40mm厚鋳片で注水比1.0l/kgでは、325mm/mi
nがまず選択され、例えば、幅2000mm、切断ストロ
ークが7mの鋳片を鋳造速度1.8m/min で切断する
場合には、切断までの時間を簡易的な場合には、(20
00mm÷(325mm/min ×2本)=)約3.1分、切
断機のストロークによる制限時間は、(7m÷1.8m
/min =)約3.8分となり、切断可能と判断しそのま
ま325mm/min 選択する。もし、幅が同じ場合に鋳造
速度2.5m/min で切断する場合には、切断までの時
間が、(2000mm÷(325mm/min ×2本)=)約
3.1分、切断ストローク内にいる時間は、(7m÷
2.5m/min =)約2.8分となり、切断不可能と判
断し、確度の低い350mm/min選択し、先程と同様に
切断可能か判定を行う。選択した切断速度は、切断機を
制御している電気シーケンサーへ設定され、鋳片の端面
検出、クランプ、低速での切り込み動作を経た後に目標
速度まで増速され切断される。
EXAMPLE An example of the present invention of a series of cutting control from the start to the end of casting under the condition that a 240 mm thick slab is cooled in the continuous casting machine at a water injection ratio of 1.0 l / kg will be described. First, as shown in Table 1, the scrap slab (bottom crop) immediately after the start of casting has a lower surface temperature, so a speed slower than usual is selected, and it is confirmed whether the cutting machine completes cutting within the stroke. 2
40mm thick slab, 325mm / mi at water injection ratio 1.0l / kg
When n is first selected and, for example, a slab with a width of 2000 mm and a cutting stroke of 7 m is to be cut at a casting speed of 1.8 m / min, if the time until cutting is simple, (20
00mm ÷ (325mm / min × 2) =) About 3.1 minutes, the time limit due to the stroke of the cutting machine is (7m ÷ 1.8m
/ Min =) Approximately 3.8 minutes, and it is judged that cutting is possible, and 325 mm / min is selected as it is. If the width is the same and cutting is performed at a casting speed of 2.5 m / min, the time until cutting is (2000 mm ÷ (325 mm / min × 2) =) about 3.1 minutes within the cutting stroke. Time is (7m ÷
2.5m / min =) Approximately 2.8 minutes, it is judged that cutting is not possible, 350mm / min with low accuracy is selected, and it is judged whether cutting is possible as before. The selected cutting speed is set in the electric sequencer controlling the cutting machine, and after the end face detection of the slab, the clamping, and the cutting operation at a low speed, the speed is increased to the target speed and the cutting is performed.

【0010】ボトムクロップ切断が完了し、次鋳片の切
断においては、通常の表面温度になっているため、表2
(切断速度テーブルの操業例)に示す切断速度を選択す
る。
Since the bottom crop cutting is completed and the normal surface temperature is maintained in the cutting of the next cast slab, Table 2
Select the cutting speed shown in (Operation example of cutting speed table).

【0011】[0011]

【表2】 [Table 2]

【0012】注水比1.0l/kgの強冷却での適正切断
速度である375mm/min を自動で選択する。この場合
も、ボトムクロップと同様に切断可能判定を行い切断速
度を設定する。選択した切断速度は、ボトムクロップと
同様に電気シーケンサーにより制御される。連々鋳を続
けていく中で、異鋼種鉄板装入部前後の鋳片は、表面温
度が約780℃となり、最適切断速度である350mm/
min が選択され電気シーケンサーへ設定される。
An appropriate cutting speed of 375 mm / min in strong cooling with a water injection ratio of 1.0 l / kg is automatically selected. In this case as well, similarly to the bottom cropping, the cutting possibility is determined and the cutting speed is set. The selected cutting speed is controlled by the electric sequencer as well as the bottom crop. During continuous casting, the surface temperature of the slabs before and after the different steel type iron plate charging part was approximately 780 ° C, and the optimum cutting speed was 350 mm /
min is selected and set in the electric sequencer.

【0013】また、操業トラブルの発生により、鋳込速
度が減速されモールドからカッターまでの到達時間が6
0分となった場合は、表面温度が約800℃となり、最
適切断速度である350mm/min が選択され電気シーケ
ンサーへ設定される。最後に、最終鋳造部位の屑(トッ
プクロップ)近傍では、表面温度は約750℃となり、
最適切断速度である325mm/min が選択され電気シー
ケンサーへ設定され切断が行われる。
Further, due to the occurrence of operational trouble, the casting speed is reduced and the time from the mold to the cutter reaches 6
When it reaches 0 minutes, the surface temperature becomes about 800 ° C., and the optimum cutting speed of 350 mm / min is selected and set in the electric sequencer. Finally, near the scrap (top crop) at the final casting site, the surface temperature is about 750 ° C,
The optimum cutting speed of 325 mm / min is selected and set in the electric sequencer for cutting.

【0014】以上示してきた制御方式は、表2を基本と
したテーブル方式の制御である。これと同様に、鋳片表
面温度と切断速度の関数から切断速度を算出する方法を
以下に述べる。例えば、鋳片厚240mmでガス切断機の
酸素圧力が9.5kg/cm2 の場合に、表面温度(T)
と、切り残しやガスの吹き上げが生じることなく、切断
面も平滑である確度100%の最適切断速度(V)の間
には、式(1)の関係が得られた。
The control method shown above is a table-type control based on Table 2. Similarly, a method of calculating the cutting speed from the function of the slab surface temperature and the cutting speed will be described below. For example, if the slab thickness is 240 mm and the oxygen pressure of the gas cutter is 9.5 kg / cm 2 , the surface temperature (T)
Then, the relationship of the formula (1) was obtained between the optimum cutting speed (V) with 100% accuracy in which the cut surface is smooth without causing uncut residue or gas blow-up.

【0015】 V〔mm/min 〕=0.5×T〔℃〕−50 (1) 鋳造開始直後の屑鋳片(ボトムクロップ)は、表1に示
すように、表面温度が750℃であるため、最適切断速
度(V)は、325mm/min となるため、電気シーケン
サーに325mm/min をまず選択し、テーブル方式で説
明したように、切断可能判定を実施したのち自動で設定
し、切断を行う。
V [mm / min] = 0.5 × T [° C.] − 50 (1) The scrap slab (bottom crop) immediately after the start of casting has a surface temperature of 750 ° C. as shown in Table 1. Therefore, the optimum cutting speed (V) is 325 mm / min, so select 325 mm / min for the electric sequencer first, and as described in the table method, perform the cutting possibility determination and then set the cutting automatically. To do.

【0016】ボトムクロップ切断が完了し、次鋳片の切
断においては、通常の表面温度840℃になるため、3
70mm/min を自動で設定し切断を行う。連々鋳を続け
ていく中で、異鋼種鉄板挿入部前後の鋳片は、表面温度
が約780℃となるため、340mm/min を自動で設定
し切断を行う。このように、切断機直前の鋳片表面温度
を測定し、その実測値をもとに、切断速度を計算し、自
動で電気シーケンサーに設定することで自動切断制御が
可能となる。
When the bottom crop cutting is completed and the next cast piece is cut, the normal surface temperature becomes 840 ° C.
70mm / min is automatically set and cutting is performed. During continuous casting, the surface temperature of the slabs before and after the different steel type iron plate insertion portion becomes approximately 780 ° C, so 340 mm / min is automatically set and cutting is performed. In this way, the slab surface temperature immediately before the cutting machine is measured, the cutting speed is calculated based on the measured value, and the electric sequencer is automatically set to enable automatic cutting control.

【0017】[0017]

【発明の効果】本発明により、切り残しやガスの吹き上
げが発生することなく、切断面も平滑である最適な切断
速度を自動で設定可能とし、操業トラブルが防止できる
と共に切断作業を自動化し、作業内容を監視作業のみと
することで連続鋳造作業の省力化が可能となった。
According to the present invention, it is possible to automatically set the optimum cutting speed at which the cutting surface is smooth without leaving uncut residue or gas blow-up, and it is possible to prevent operational troubles and automate the cutting work. By only monitoring the work content, it has become possible to save labor in continuous casting work.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施する連続鋳造設備の切断機の概要
を示す図である。
FIG. 1 is a diagram showing an outline of a cutting machine of a continuous casting facility for carrying out the present invention.

【図2】本発明による切断速度判定フローの例である。FIG. 2 is an example of a cutting speed determination flow according to the present invention.

【図3】切断速度を鋳片表面温度の関数として制御する
場合の判定ロジックを示す図である。
FIG. 3 is a diagram showing a determination logic when controlling the cutting speed as a function of a slab surface temperature.

【図4】テーブル方式での切断速度判定フローの例であ
る。
FIG. 4 is an example of a cutting speed determination flow in a table method.

【図5】切断速度と鋳片表面温度の関係を示す図であ
る。
FIG. 5 is a diagram showing a relationship between a cutting speed and a surface temperature of a slab.

【図6】鋳造時間と切断機位置での鋳片表面温度の関係
を示す図である。
FIG. 6 is a diagram showing a relationship between a casting time and a slab surface temperature at a cutting machine position.

【符号の説明】[Explanation of symbols]

1…モールド 2…鋳片 3…鋳片冷却ゾーン 4…鋳片表面温度測定器 5…切断機 6…切断位置 DESCRIPTION OF SYMBOLS 1 ... Mold 2 ... Cast piece 3 ... Cast piece cooling zone 4 ... Cast piece surface temperature measuring instrument 5 ... Cutting machine 6 ... Cutting position

フロントページの続き (72)発明者 折野 洋一郎 千葉県君津市君津1番地 新日本製鐵株式 会社君津製鐵所内 (72)発明者 秦 勝彦 千葉県君津市君津1番地 新日本製鐵株式 会社君津製鐵所内Front page continuation (72) Inventor Yoichiro Orino 1 Kimitsu, Kimitsu-shi, Chiba Inside Nippon Steel Corporation Kimitsu Steel Co., Ltd. (72) Inventor Katsuhiko Hata 1 Kimitsu, Chiba Pref. Inside the steelworks

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 連続鋳造における鋳片の切断方法におい
て、鋳片表面温度と切断速度との関係を鋳片厚みごとに
導き出し、各温度における適正切断速度を成功確度別に
ランクづけして設定し、切断する鋳片の長さ・幅・鋳造
速度により規定される切断完了までの制限時間以内に切
断が完了する最も成功確度が高い切断速度を、連続して
測定される鋳片温度実績をもとに選択して切断速度設定
を行うことを特徴とする鋳片切断方法。
1. A method of cutting a slab in continuous casting, wherein a relationship between a slab surface temperature and a cutting speed is derived for each slab thickness, and an appropriate cutting speed at each temperature is ranked and set according to success accuracy, The cutting speed with the highest degree of success in completing cutting within the time limit for cutting, which is defined by the length, width, and casting speed of the slab to be cut, is based on the slab temperature results that are continuously measured. A method for cutting a slab, characterized in that the cutting speed is set by selecting to.
【請求項2】 連続鋳造における鋳片の切断方法におい
て、連鋳機内の冷却強度や連鋳機内の通過時間と切断速
度との関係を鋳片厚みごとに導き出し、各温度における
適正切断速度を成功確度別にランクづけして設定し、切
断する鋳片の長さ・幅・鋳造速度により規定される切断
完了までの制限時間以内に切断が完了する最も成功確度
が高い切断速度を、連鋳機での実績冷却水量や実績鋳造
速度から積算される対象鋳片の切断機までの到達時間を
もとに選択して切断速度設定を行うことを特徴とする鋳
片切断方法。
2. In a method of cutting a slab in continuous casting, the relationship between the cooling strength in the continuous casting machine and the passage time in the continuous casting machine and the cutting speed is derived for each slab thickness, and the appropriate cutting speed at each temperature is successfully achieved. The continuous casting machine sets the cutting speed with the highest degree of success accuracy, which is set by ranking according to the accuracy and completes cutting within the time limit until the completion of cutting specified by the length, width and casting speed of the slab to be cut. The method for cutting a cast product, characterized in that the cutting speed is set by selecting based on the arrival time of the target cast product to the cutting machine, which is accumulated from the actual cooling water amount and the actual casting speed.
【請求項3】 鋳片表面温度と鋳片内部温度分布が他の
部位と大きく異なり同じ鋳片表面温度でも鋳片中心部の
温度が低く最適切断速度が他の部位より遅い鋳込開始直
後、異鋼種分離鉄板前後、鋳込終了直前、操業異常発生
部などの鋳片については、部位に応じて切断速度を遅く
補正することを特徴とする請求項1または2記載の鋳片
切断方法。
3. The slab surface temperature and the slab internal temperature distribution are significantly different from those of other parts, and even if the slab surface temperature is the same, the temperature of the slab center is low and the optimum cutting speed is slower than other parts. 3. The method for cutting a cast product according to claim 1 or 2, wherein the cast speed before and after the dissimilar steel plate for separating different steel types, immediately before the end of pouring, and the operation abnormality occurrence part are corrected to be slower according to the site.
【請求項4】 請求項1,2または3の制御方法を複数
項目組み合わせたことを特徴とする鋳片切断制御方法。
4. A slab cutting control method comprising a combination of a plurality of control methods according to claim 1, 2, or 3.
JP17090095A 1995-07-06 1995-07-06 Method for controlling cut-off of cast slab in continuous casting Withdrawn JPH0919749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17090095A JPH0919749A (en) 1995-07-06 1995-07-06 Method for controlling cut-off of cast slab in continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17090095A JPH0919749A (en) 1995-07-06 1995-07-06 Method for controlling cut-off of cast slab in continuous casting

Publications (1)

Publication Number Publication Date
JPH0919749A true JPH0919749A (en) 1997-01-21

Family

ID=15913417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17090095A Withdrawn JPH0919749A (en) 1995-07-06 1995-07-06 Method for controlling cut-off of cast slab in continuous casting

Country Status (1)

Country Link
JP (1) JPH0919749A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003080356A (en) * 2001-09-07 2003-03-18 Kawasaki Steel Corp Method for gas-cutting continuously cast material
KR101303048B1 (en) * 2011-07-22 2013-09-04 주식회사 포스코 Apparatus for setting cutting speed and method for operating the same
CN105710323A (en) * 2016-02-16 2016-06-29 山东钢铁股份有限公司 Cut-to-length measuring method and system for slabs

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003080356A (en) * 2001-09-07 2003-03-18 Kawasaki Steel Corp Method for gas-cutting continuously cast material
KR101303048B1 (en) * 2011-07-22 2013-09-04 주식회사 포스코 Apparatus for setting cutting speed and method for operating the same
CN105710323A (en) * 2016-02-16 2016-06-29 山东钢铁股份有限公司 Cut-to-length measuring method and system for slabs

Similar Documents

Publication Publication Date Title
JPH0919749A (en) Method for controlling cut-off of cast slab in continuous casting
JP2003080357A (en) Method for detecting surface flaw in continuous casting
CN113600770B (en) System and method for reducing waste amount of steel billets during continuous casting and replacing of water outlet
JP2903927B2 (en) Continuous casting method
JPH10249504A (en) Cutting method of continuously cast slab
JPH09174215A (en) Method for controlling molten metal surface level in mold for continuous casting
JP2894131B2 (en) Large slab production method
JP2006021218A (en) Method for determining amount of scarfing for ingot
JPH0732105A (en) Method for cutting cast slab in continuous casting
JP3251431B2 (en) How to determine the treatment before and after the seam of the slab
JPH01245965A (en) Method for scarfing burr of cast fillet
JPH02182360A (en) Method for cutting continuous cast slab
JPH0433756A (en) Method for continuously casting different steel kinds
KR101685836B1 (en) Apparatus for cutting crop of plate and control method thereof
SU704713A1 (en) Method of determining the depth of liquid phase in an ingot
JP6642020B2 (en) Method and apparatus for controlling casting speed of continuous casting equipment
JPS613643A (en) Method for controlling continuous casting and cutting device
JPS63220958A (en) Apparatus for controlling cast slab weight in continuous casting
JP3546304B2 (en) Estimation method of perfect freezing point of strand during continuous casting
JP3471528B2 (en) Slab cutting method
JPH0924447A (en) Method for controlling drawing speed of cast slab in continuous casting
CN116372129A (en) Method for dividing blank by connecting blank by simultaneous pouring of different steel types of slab
JPH0661357U (en) Slab support device for continuous casting mold
JPH08155614A (en) Method for cutting off crop of cast slab in continuous casting
JPS62220258A (en) Method and apparatus for cutting control of casting bloom in continuous casting

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021001