JPH09196881A - Computing method for interface voltage of resistance welding and its interface resistance, and monitoring method for welding quality - Google Patents

Computing method for interface voltage of resistance welding and its interface resistance, and monitoring method for welding quality

Info

Publication number
JPH09196881A
JPH09196881A JP891196A JP891196A JPH09196881A JP H09196881 A JPH09196881 A JP H09196881A JP 891196 A JP891196 A JP 891196A JP 891196 A JP891196 A JP 891196A JP H09196881 A JPH09196881 A JP H09196881A
Authority
JP
Japan
Prior art keywords
resistance
electrode
welding
interface
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP891196A
Other languages
Japanese (ja)
Other versions
JP3186562B2 (en
Inventor
Makoto Riyuudou
誠 龍堂
Koji Fujii
孝治 藤井
Yasuhiro Goto
康宏 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP00891196A priority Critical patent/JP3186562B2/en
Publication of JPH09196881A publication Critical patent/JPH09196881A/en
Application granted granted Critical
Publication of JP3186562B2 publication Critical patent/JP3186562B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the accuracy of monitoring the welding quality by computing a voltage or resistance occurring on the interface of an electrode and a welded material from voltage between the electrodes to sandwich the welded material or the resistance between the electrodes computed from the voltage between the electrodes and welding current. SOLUTION: In the case where the resistance of an electrode it self is denoted by electrode resistance Rec; resistance inside a welded material by plate resistance Rreal; resistance occuring on the interface of the electrode and the welded material by resistance between a plate and the electrode Rde; and resistance occurring on the mutual interfaces of the welded materials by resistance between the plate and the plate Rdc; a measured resistance Rmeas measured from the electrode or an electrode holder is expressed as follows; Rmeas=2Re1+2Rreal+2Rde+Rdc. The resistance Rei can be measured by supplying the current in a state where the welded material is not sandwiched. The resistance Rde can not finally ignore influence on account of the wear of the surface of the electrode with the increase of the number of times of welding. The resistance Rde is computed to precisely judge the quality of welding.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は特にスポット溶接に
用いる抵抗溶接の界面電圧または界面抵抗の算定方法お
よび溶接品質の監視方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention particularly relates to a method for calculating an interface voltage or an interface resistance of resistance welding used for spot welding and a method for monitoring welding quality.

【0002】[0002]

【従来の技術】抵抗溶接、特にスポット溶接は鋼板を使
用する種々の製品に用いられているが、近年その溶接不
良が増大する傾向にある。すなわち、従来は一般に軟鋼
板が被溶接材であったことから通電不良も少なく、溶接
条件を一定に管理すれば溶接品質も比較的安定に保つこ
とができた。しかし、軟鋼板に代わって亜鉛メッキ鋼板
や高張力鋼板が多量に使用されはじめ、溶接不良の発生
が増大している。このような背景から単に溶接条件を監
視するのみのものではなく、溶接品質を精度良く管理可
能な装置の出現が待たれていた。
2. Description of the Related Art Resistance welding, particularly spot welding, has been used for various products using steel sheets, but in recent years, the welding failure tends to increase. That is, in the past, since a mild steel plate was generally a material to be welded, there was little energization failure, and the welding quality could be kept relatively stable if welding conditions were controlled to be constant. However, galvanized steel sheets and high-strength steel sheets have begun to be used in large quantities in place of mild steel sheets, and the occurrence of poor welding has increased. From such a background, the appearance of an apparatus capable of accurately controlling welding quality, rather than simply monitoring welding conditions, has been awaited.

【0003】この課題に対し、溶接終了後にその溶接結
果の良否を判別する目的でこれまで種々の溶接品質の監
視装置が開発されてきた。たとえば、これまで開発され
たものに、(1)溶接電流と溶接電圧からチップ間抵抗
を求め、その変化パターンから溶接結果の良否を判定す
るもので、その一例として特開昭56−158286号
公報に開示されたもの、(2)チップ間電圧と、あらか
じめ設定した基準電圧の時間的変化とを比較し、その差
が許容値内か否かにより良否を判定するもので、その一
例として特公昭59−14312号公報に開示されたも
の、さらに、チップ間電圧より溶接部の発熱に有効に寄
与する有効成分を抽出し、有効成分の時間積分値から溶
接結果の良否を判定するもので、その例として特公昭5
9−40550号公報、特開昭59−61580号公報
に開示されたもの、(3)発熱温度を検出し、その温度
変化パターンから溶接結果の良否を判定するもので、そ
の一例として特開平1−216246号公報に開示され
たもの、(4)被溶接材間に超音波を透過させ、その透
過量から溶接結果の良否を判定するもので、その一例と
して特開昭52−94841号公報に開示されたもの、
(5)電極チップの溶接中の変位を用いたもので、その
一例として特公昭60−40955号公報に開示された
もの、(6)溶接電流を検出し、その上下限値を監視し
溶接結果を一定にしようとするもの、等がある。(7)
熱伝導モデルを用い、ナゲット径をコンピュータを用い
て算出するもので、その一例として佐野:スポット溶接
での通電路と温度分布の数値解析法に関する研究、大阪
大学大学院溶接専攻修士論文(昭和54)、西宇:抵抗
スポット溶接用数値計算援用形品質モニタリングの高速
化に関する研究、大阪大学大学院溶接専攻修士論文(平
成3)に開示されたもの、等がある。また、溶接機を直
接制御するものとしては、(8)熱伝導モデルから母材
温度分布を算出しその温度分布からナゲット径を推算す
ると共に溶接中の電極移動量を用いて温度分布を修正す
るもので、特公平7−16791号公報がある。
To address this problem, various welding quality monitoring devices have been developed so far for the purpose of determining the quality of the welding result after the completion of welding. For example, in the one developed up to now, (1) the inter-chip resistance is determined from the welding current and the welding voltage, and the quality of the welding result is judged from the change pattern thereof. One example thereof is JP-A-56-158286. (2) The inter-chip voltage is compared with the time change of the preset reference voltage, and the quality is judged by whether the difference is within the allowable value or not. No. 59-14312, further, an effective component that effectively contributes to heat generation in the welded portion is extracted from the inter-chip voltage, and the quality of the welding result is determined from the time integral value of the effective component. As an example,
No. 9-40550 and Japanese Patent Application Laid-Open No. 59-61580, (3) The heat generation temperature is detected, and the quality of the welding result is determined from the temperature change pattern. No. 216246, and (4) ultrasonic waves are transmitted between the materials to be welded, and the quality of the welding result is determined from the amount of the transmission. One example is disclosed in Japanese Unexamined Patent Publication No. 52-94841. What was disclosed,
(5) One using displacement of the electrode tip during welding, which is disclosed as an example thereof in JP-B-60-40955, (6) Welding current is detected, and the upper and lower limit values thereof are monitored to obtain a welding result. There are things that try to keep constant. (7)
A computer is used to calculate the nugget diameter using a heat conduction model. As an example, Sano: Study on numerical analysis method of current passage and temperature distribution in spot welding, Master's thesis of Osaka University Graduate School of Welding (Showa 54) , Xiu: A study on speeding up of quality monitoring for numerical calculation aided resistance spot welding, and one disclosed in the master's thesis of welding department of Osaka University (Heisei 3). In order to directly control the welding machine, (8) calculate the base metal temperature distribution from the heat conduction model, estimate the nugget diameter from the temperature distribution, and correct the temperature distribution using the electrode movement amount during welding. There is Japanese Patent Publication No. 7-16791.

【0004】[0004]

【発明が解決しようとする課題】上記(1)から(6)
までの従来の方式においては、それぞれの溶接材料ごと
に溶接現場で予備実験を行い、溶接品質と判別基準の関
係を予め求めておくという作業が不可欠となるが、さら
に、溶接回数の増加に伴う電極チップの磨耗、変形に伴
う電極チップと被溶接材の接触界面での界面抵抗の変化
を考慮する必要があった。しかしながら、溶接現場での
予備実験では界面抵抗の変化まで推定することは困難
で、従来は溶接部の良否をおおまかに判別し得るにすぎ
ず、その適用範囲も限られたものであった。したがっ
て、抵抗溶接機に従来の溶接品質の監視装置を併用し、
溶接品質を確保しようとしても汎用性に乏しく、不確か
なものであり、溶接現場においては溶接不良を避けるた
め過大な溶接条件による溶接が行われているのが実状
で、その結果、大多数の溶接打点で必要以上の溶接電流
が使用され、過大な電力損失の発生、電極の損耗、ちり
の発生などの弊害が発生している。(7)は前記の問題
点を解消できる可能性をもっており熱伝導方程式を解く
のに時間を要するのが最大の欠点となっていた。このた
め、高速でナゲット径を演算する手法が考案され、溶接
終了後ではあるが溶接現場において全溶接打点をモニタ
ーする装置が実用化されている。(8)は(7)の演算
誤差を修正する方式であるが、電極の移動量を用いてい
るため移動量の検出装置が必要となりコスト高となる、
さらに溶接位置が被溶接材の端部である場合には適用で
きないことがあった。
[Problems to be Solved by the Invention] (1) to (6)
In the conventional method up to, it is indispensable to perform a preliminary experiment at the welding site for each welding material and obtain the relationship between the welding quality and the discrimination standard in advance. It was necessary to consider the change in interface resistance at the contact interface between the electrode tip and the material to be welded due to wear and deformation of the electrode tip. However, it is difficult to estimate even the change in the interfacial resistance in a preliminary experiment at the welding site, and conventionally it was only possible to roughly determine the quality of the welded portion, and the applicable range was limited. Therefore, using a conventional welding quality monitoring device together with the resistance welding machine,
Even if trying to secure the welding quality, it is not versatile and uncertain, and it is the fact that welding is performed under excessive welding conditions at the welding site in order to avoid welding defects. Excessive welding current is used at the welding point, resulting in excessive power loss, electrode wear, and dust. (7) has a possibility of solving the above-mentioned problems, and the biggest drawback is that it takes time to solve the heat conduction equation. For this reason, a method of calculating the nugget diameter at a high speed has been devised, and a device for monitoring all welding points at a welding site after the end of welding has been put to practical use. (8) is a method of correcting the calculation error of (7), but since the movement amount of the electrode is used, a movement amount detection device is required, resulting in high cost.
Further, it may not be applicable when the welding position is the end of the material to be welded.

【0005】第1発明は(7)の方式をさらに進めたも
ので上記課題を解決するものであり、演算誤差の主要因
である溶接中の界面で発生する電圧、または抵抗を汎用
性を持って算定する方法を提供し、第2発明は第1発明
の方法を用いて従来の溶接品質の監視方法では適用困難
な電極チップの磨耗、変形までも考慮した溶接品質の監
視方法を提供することを目的としている。
The first invention is a further development of the method (7) to solve the above problems, and has general versatility in the voltage or resistance generated at the interface during welding, which is the main factor of the calculation error. A second aspect of the present invention provides a welding quality monitoring method using the method of the first aspect of the present invention in consideration of wear and deformation of electrode tips, which are difficult to apply by the conventional welding quality monitoring method. It is an object.

【0006】[0006]

【課題を解決するための手段】本発明は前記目的を達成
するため、第1発明の抵抗溶接の界面電圧または界面抵
抗の算定方法においては被溶接材を挟む電極間の電圧、
または電極間の電圧と溶接電流から算出した電極間の抵
抗と、少なくとも前記被溶接材の固有抵抗発熱により定
まる電圧または抵抗を用いて、電極と被溶接材の界面に
発生する電圧または抵抗を算定することを特徴とするも
のである。また第2発明の溶接品質の監視方法において
は被溶接材を挟む電極間の電圧、または電極間の電圧と
溶接電流から算出した電極間の抵抗と、少なくとも前記
被溶接材の固有抵抗発熱により定まる電圧または抵抗を
用いて電極と被溶接材の前記界面電圧または界面抵抗を
算定するとともに、算定された電圧または抵抗を用いて
溶接品質を判定することを特徴とするものである。
In order to achieve the above object, the present invention provides a method for calculating an interfacial voltage or an interfacial resistance in resistance welding according to the first aspect of the invention, in which a voltage between electrodes sandwiching a material to be welded,
Alternatively, the voltage or resistance generated at the interface between the electrode and the welded material is calculated using the resistance between the electrodes calculated from the voltage between the electrodes and the welding current and at least the voltage or resistance determined by the specific resistance heat generation of the welded material. It is characterized by doing. In the welding quality monitoring method of the second invention, it is determined by the voltage between the electrodes sandwiching the material to be welded, or the resistance between the electrodes calculated from the voltage between the electrodes and the welding current, and at least the specific resistance heat generation of the material to be welded. It is characterized in that the interface voltage or interface resistance between the electrode and the material to be welded is calculated using voltage or resistance, and the welding quality is determined using the calculated voltage or resistance.

【0007】[0007]

【発明の実施の形態】上記構成により、第1発明の抵抗
溶接の界面電圧または界面抵抗の算定方法は、電極チッ
プが溶接中磨耗、変形した場合の電極チップと被溶接材
表面との界面における電圧または抵抗の変化が算定でき
るもので、溶接品質の監視を行う上で大きな影響を与え
る界面の電圧または抵抗を溶接品質の監視方法に組み込
むことができる。第2発明の溶接品質の監視方法は熱伝
導モデルを用いた溶接品質の監視方法に上記第1発明の
抵抗溶接の界面電圧または界面抵抗の算定方法を組み込
んだもので、より精度の良い溶接品質の監視が可能にな
る作用を有する。
BEST MODE FOR CARRYING OUT THE INVENTION With the above construction, the method of calculating the interfacial voltage or the interfacial resistance of resistance welding according to the first aspect of the present invention is such that the interface between the electrode tip and the surface of the material to be welded when the electrode tip is worn or deformed during welding. The change in voltage or resistance can be calculated, and the voltage or resistance at the interface, which has a great influence on the monitoring of welding quality, can be incorporated into the method for monitoring welding quality. A welding quality monitoring method according to a second aspect of the present invention is a welding quality monitoring method that uses a heat conduction model and incorporates the method for calculating the interface voltage or the interface resistance of the resistance welding according to the first aspect of the present invention. Has the effect of enabling the monitoring of.

【0008】以下、発明の実施の形態について図面を参
照しながら説明する。まず、第1発明の界面電圧または
界面抵抗の算定方法について図1、図2、図3、図4、
図5を用いて説明する。図1は電極、被溶接材とそれら
の界面間に生じる抵抗を示すものである。電極自身の抵
抗を電極抵抗Rel、被溶接材内部の抵抗を板抵抗Rr
eal、電極と被溶接材の界面に発生する抵抗を板対電
極間抵抗Rde、被溶接材どうしの界面に発生する抵抗
を板対板間抵抗Rdcとすれば、電極または電極ホルダ
から測定される測定抵抗Rmeasは、前記の各抵抗の
和で表され(I)式に示すとおりである。
Embodiments of the present invention will be described below with reference to the drawings. First, the calculation method of the interface voltage or the interface resistance of the first invention will be described with reference to FIGS. 1, 2, 3, and 4.
This will be described with reference to FIG. FIG. 1 shows the resistance generated between the electrode and the material to be welded and their interface. The resistance of the electrode itself is the electrode resistance Rel, and the resistance inside the material to be welded is the plate resistance Rr.
If eal, the resistance generated at the interface between the electrode and the material to be welded is the plate-to-electrode resistance Rde, and the resistance generated at the interface between the materials to be welded is the plate-to-plate resistance Rdc, it is measured from the electrode or electrode holder. The measured resistance Rmeas is represented by the sum of the above-mentioned resistances and is as shown in the formula (I).

【0009】Rmeas=2Rel+2Rreal+2
Rde+Rdc……(I)となる。(I)式は2枚板の
溶接で上下同電極の場合を示したが、多枚数あるいは上
下電極の異なる場合でも測定抵抗Rmeasは各部分の
抵抗の総和で表すことができる。ここで、溶接部の発
熱、すなわち溶融部形成に関わる抵抗分は板抵抗Rre
alであり、電極抵抗Relと板対電極間抵抗Rdeと
板対板間抵抗Rdcは溶接部の発熱には直接寄与するも
のではない。溶接品質の監視に電極間の抵抗を用いた場
合、溶接部の発熱を表さない抵抗分の大きさと、その影
響を及ぼす時間によっては溶接品質の判定に誤差を生じ
てしまう。
Rmeas = 2Rel + 2Rreal + 2
Rde + Rdc ... (I). The formula (I) shows the case where the upper and lower electrodes are welded by welding two plates, but the measured resistance Rmeas can be represented by the sum of the resistances of the respective portions even when a large number or different upper and lower electrodes are used. Here, the heat generation of the welded portion, that is, the resistance component related to the formation of the molten portion is the plate resistance Rre
al, and the electrode resistance Rel, the plate-to-electrode resistance Rde, and the plate-to-plate resistance Rdc do not directly contribute to the heat generation of the welded portion. When the resistance between the electrodes is used to monitor the welding quality, an error may occur in the determination of the welding quality depending on the size of the resistance component that does not represent heat generation in the welded portion and the time when it affects.

【0010】板対電極間抵抗Rdeと板対板間抵抗Rd
cは電極表面あるいは板表面での凹凸形状に関わる表面
抵抗である。図2は表面の凹凸を説明する模式図であ
る。図に示すように表面の凹凸はラフネスと呼ばれる微
細な高周波成分と、ウェーブネスと呼ばれる低周波成分
で代表できる。このうち高周波成分は電極加圧による圧
壊と、さらに通電に伴う温度上昇による降伏応力の低下
によって、高周波成分は通電極初期に消失する。すなわ
ち、高周波成分による表面抵抗は通電開始直後に消失し
てしまい、測定抵抗Rmeasに占める時間的割合が極
小さいものとなるため無視できる。電極間抵抗を用いて
溶接品質の監視を行う際においても、溶接品質の判定誤
差の原因とはならない。一方、低周波成分は界面におけ
る通電路の絞り込みによって集中抵抗を発生させ、その
抵抗分は測定抵抗Rmeasに占める割合も大きく、影
響を及ぼす時間も長い。以上説明した表面の凹凸形状を
板対板間界面および板対電極間界面に当てはめると、板
対板間界面は一回毎の溶接でフレッシュな界面になるた
め表面の凹凸形状は高周波成分となる。すなわち、板対
板間抵抗Rdcはナゲットの形成に対しては影響がほと
んどない。板対電極界面については溶接回数の増加に伴
う電極表面の磨耗によって、その表面の凹凸形状は低周
波成分が含まれるようになり、さらに電極の磨耗が進行
すると良好な密着状態は得られなくなる。特に亜鉛めっ
き鋼板溶接時には電極表面に合金層を形成するため、電
極磨耗の進行は大きなものとなる。すなわち、板表面と
電極界面の接触状態による板対電極間抵抗Rdeの影響
を無視できなくなり、電極間抵抗を用いて溶接品質の監
視を行う場合には品質の判定に誤差を生じる恐れがあ
る。したがってより高精度に溶接品質の判定を行うため
には、板表面と電極表面の界面の状態に応じて板対電極
間抵抗Rdeを算定し、測定抵抗Rmeasより除かな
ければならない。
Plate-to-electrode resistance Rde and plate-to-plate resistance Rd
c is the surface resistance related to the uneven shape on the electrode surface or the plate surface. FIG. 2 is a schematic diagram for explaining unevenness on the surface. As shown in the figure, the surface irregularities can be represented by a fine high-frequency component called roughness and a low-frequency component called waveness. Among these, the high frequency component disappears in the initial stage of the passing electrode due to the collapse due to the electrode pressurization and the decrease in the yield stress due to the temperature rise due to the energization. That is, the surface resistance due to the high frequency component disappears immediately after the start of energization, and the time ratio of the measured resistance Rmeas becomes extremely small, so that it can be ignored. Even when the welding quality is monitored using the inter-electrode resistance, it does not cause an error in determining the welding quality. On the other hand, the low-frequency component causes concentrated resistance due to the narrowing of the current-carrying path at the interface, and the resistance component accounts for a large proportion of the measured resistance Rmeas and has a long influence time. Applying the surface irregularities described above to the plate-to-plate interface and the plate-to-electrode interface, the plate-to-plate interface becomes a fresh interface with each welding, so the surface irregularity becomes a high-frequency component. . That is, the plate-to-plate resistance Rdc has almost no effect on the formation of the nugget. At the plate-electrode interface, the electrode surface wears as the number of weldings increases, so that the uneven shape of the surface contains low-frequency components, and if the electrode wears further, a good contact state cannot be obtained. In particular, when a galvanized steel plate is welded, an alloy layer is formed on the surface of the electrode, so that the progress of electrode wear becomes large. That is, the influence of the plate-to-electrode resistance Rde due to the contact state between the plate surface and the electrode interface cannot be ignored, and when the welding quality is monitored using the electrode-to-electrode resistance, an error may occur in quality determination. Therefore, in order to determine the welding quality with higher accuracy, it is necessary to calculate the plate-to-electrode resistance Rde according to the state of the interface between the plate surface and the electrode surface and remove it from the measured resistance Rmeas.

【0011】電極抵抗Relについては被溶接材を挟ま
ない状態で通電することにより、測定することができ
る。すなわち、電極抵抗Relは既知として取扱うこと
ができる。
The electrode resistance Rel can be measured by energizing the material to be welded without sandwiching it. That is, the electrode resistance Rel can be treated as a known value.

【0012】図3は測定線を用いた溶接中のチップ間抵
抗変化の測定結果の一例を示す。図中の上段には新品電
極を用いた測定結果を下段には約1000回溶接後の消
耗した電極を用いた測定結果を示し、それぞれ電極ホル
ダからの測定抵抗Rmeasと板対電極界面部分から測
定した抵抗Rrを表示している。特に抵抗Rrは板対電
極界面部分より測定することによって、板対電極間抵抗
Rdeが除かれた板抵抗Rrealを示すものである。
新品電極を用いた場合、板表面と電極表面の接触状態が
良好であるため、電極ホルダからの測定抵抗Rreal
と板対電極界面部分から測定した抵抗Rrはほぼ同じで
ある。すなわち、測定抵抗Rmeasは溶接部の発熱状
態を示すものであり、前記測定抵抗Rmeasを用いて
溶接品質の監視を行うことができる。消耗電極を用いた
場合、測定抵抗Rmeasに対して板対電極界面より測
定した抵抗Rrはかなり小さなものとなる。これは消耗
した電極表面と板表面の接触状態が良好なものではない
ため、前述した板対電極間抵抗Rdeの影響が大きくな
ったことによるものである。すなわち、電極消耗時の測
定抵抗Rmeasには溶接部の発熱状態を表さない抵抗
分の影響が大きく、前記測定抵抗Rmeasを溶接品質
の監視に用いると品質の判定誤差を生じる危険性があ
り、より高精度に溶接品質の監視を行うためには板対電
極界面より測定した抵抗Rrを用いなければならない。
本実施例に示したように測定線を用いて抵抗Rrを実測
することも可能であるが、実際の製造現場における溶接
ラインで板対電極界面に測定線を取り付けることは困難
である。
FIG. 3 shows an example of measurement results of resistance change between chips during welding using a measuring line. The upper part of the figure shows the measurement result using a new electrode, and the lower part shows the measurement result using a worn electrode after 1000 times of welding. Measured from the measurement resistance Rmeas from the electrode holder and the plate-electrode interface part, respectively. The resistance Rr is displayed. In particular, the resistance Rr indicates the plate resistance Rreal obtained by removing the plate-to-electrode resistance Rde by measuring from the plate-electrode interface portion.
When a new electrode is used, the contact between the plate surface and the electrode surface is good, so the measured resistance Rreal from the electrode holder
And the resistance Rr measured from the plate-to-electrode interface portion are almost the same. That is, the measured resistance Rmeas indicates the heat generation state of the welded portion, and the welding quality can be monitored using the measured resistance Rmeas. When the consumable electrode is used, the resistance Rr measured from the plate-electrode interface is considerably smaller than the measured resistance Rmeas. This is because the contact state between the consumed electrode surface and the plate surface is not good, and the influence of the plate-to-electrode resistance Rde described above is increased. That is, the measured resistance Rmeas at the time of electrode wear is largely influenced by the resistance component that does not represent the heat generation state of the welded portion, and if the measured resistance Rmeas is used for monitoring the welding quality, there is a risk of causing a quality determination error. In order to monitor the welding quality with higher accuracy, it is necessary to use the resistance Rr measured from the plate-electrode interface.
Although it is possible to actually measure the resistance Rr using the measurement line as shown in this embodiment, it is difficult to attach the measurement line to the plate-electrode interface at the welding line in the actual manufacturing site.

【0013】図4は第1発明の電極と被溶接材の界面に
発生する電圧または抵抗を算定する界面抵抗の算定方法
を実施するフローチャートである。溶接を行う被溶接材
の板厚、重ね枚数、板の材質と板の材質による物理定
数、そして電極の形状と種類、電極の材質による物理定
数を予め入力し、与えられた数値をもとに熱伝導モデル
の境界条件を設定する。この熱伝導モデルは溶接部の幾
何学的形状と物理定数からなり、溶接部の電圧と溶接電
流から数値解析を行う数学的モデルである。そして溶接
部を流れる溶接電流と溶接部にかかる電圧から、熱伝導
モデルを用いた数値解析を行い、溶接部の通電路である
通電径、電位分布、電流密度分布の算出し、溶接各部位
の電流密度と固有抵抗から発熱計算と熱伝導計算を行え
ば溶接部の温度分布を推定することができる。また溶接
開始から終了まで予め設定された極短時間の時間ステッ
プ毎に行うことにより、溶接過程中の発熱状態を逐次推
定することができる。ここで各時間毎に算出される溶接
部の各部位の固有抵抗から板中の合成抵抗、すなわち板
抵抗Rrealを推定することができる。そして、推定
された板抵抗Rrealと測定抵抗Rmeasを用いれ
ば各時間ステップ毎に板対電極間抵抗Rdeを推定する
ことができる。図5は測定抵抗Rmeasと熱伝導モデ
ルから推定した板抵抗Rrealを用いて板対電極間抵
抗Rdeを推定する方法の説明図である。
FIG. 4 is a flow chart for carrying out the interface resistance calculation method for calculating the voltage or resistance generated at the interface between the electrode and the material to be welded according to the first invention. The thickness of the material to be welded, the number of layers, the physical constants of the plate material and plate material, the shape and type of the electrode, and the physical constants of the electrode material are input in advance and based on the given values. Set the boundary conditions for the heat conduction model. This heat conduction model is a mathematical model that consists of the geometrical shape and physical constants of the weld, and is used for numerical analysis from the voltage and current of the weld. Then, from the welding current flowing through the weld and the voltage applied to the weld, a numerical analysis using a heat conduction model is performed to calculate the current-carrying diameter of the weld, the current distribution, the potential distribution, and the current density distribution. If the heat generation calculation and the heat conduction calculation are performed from the current density and the specific resistance, the temperature distribution of the weld can be estimated. Further, the heat generation state during the welding process can be sequentially estimated by performing the preset time step for each very short time from the start to the end of welding. Here, the combined resistance in the plate, that is, the plate resistance Rreal can be estimated from the specific resistance of each part of the welded portion calculated for each time. Then, by using the estimated plate resistance Rreal and the measured resistance Rmeas, the plate-to-electrode resistance Rde can be estimated at each time step. FIG. 5 is an explanatory diagram of a method of estimating the plate-to-electrode resistance Rde using the measured resistance Rmeas and the plate resistance Rreal estimated from the heat conduction model.

【0014】溶接中の任意の時刻t0において、熱伝導
モデルにより推定される板抵抗RrealをRcとす
る。なお、通電開始時においては板抵抗Rrealは初
期の境界条件設定で与えられる被溶接材の初期温度によ
って推定される。次回ステップとなる時刻t1では測定
抵抗RmeasとしてRm’が測定されるが、その測定
値には板対電極間の界面に発生する表面抵抗が含まれる
ため、数値解析に用いるべき、すなわち前記表面抵抗を
差し引いた抵抗Rsimは時刻t0における板抵抗Rc
と時刻t1における測定抵抗Rm’の間に存在する。そ
こで測定抵抗Rm’と板抵抗Rcの差分から一定の内分
点を求め、数値解析に用いる算出抵抗Rsimとしてt
1におけるRs’を用いる。ここで測定抵抗Rm’と算
出抵抗Rs’の差分が時刻t1における板対電極間抵抗
として推定される。算出抵抗Rs’と時刻t1における
溶接電流から熱伝導モデルを用いた数値解析を行い、推
定される溶接部の合成抵抗が板抵抗Rc’となる。時刻
t2においては時刻t1に推定した板抵抗Rc’と時刻
t2での測定抵抗Rm’’を用いて前述と同じく算出抵
抗Rs’’を推定する。この過程を溶接終了まで設定し
た時間ステップ毎にくり返すことによって、測定抵抗R
measと算出抵抗Rsimの差分から板対電極間抵抗
Rdeを算定することができる。このように本発明によ
れば溶接部の発熱状態を表さない電極と被溶接材の界面
抵抗を算定することができる。さらに、従来から行われ
ている電極間抵抗を用いた溶接品質の監視方法において
も、本発明の方法により上記界面抵抗の影響を除くこと
ができるため、より高精度な溶接品質の判定と監視を行
うことができる。特に電極消耗時あるいは亜鉛めっき鋼
板の溶接時に効果を発揮するものである。
At an arbitrary time t0 during welding, the plate resistance Rreal estimated by the heat conduction model is Rc. At the start of energization, the sheet resistance Rreal is estimated by the initial temperature of the material to be welded given by the initial boundary condition setting. At time t1 which is the next step, Rm ′ is measured as the measured resistance Rmeas, but since the measured value includes the surface resistance generated at the interface between the plate and the electrode, it should be used for numerical analysis. The resistance Rsim obtained by subtracting is the plate resistance Rc at time t0.
And the measured resistance Rm ′ at time t1. Therefore, a constant internal division point is obtained from the difference between the measured resistance Rm ′ and the plate resistance Rc, and t is calculated as the calculated resistance Rsim used for the numerical analysis.
Rs ′ in 1 is used. Here, the difference between the measured resistance Rm ′ and the calculated resistance Rs ′ is estimated as the resistance between the plate and the electrode at time t1. Numerical analysis using a heat conduction model is performed from the calculated resistance Rs ′ and the welding current at time t1, and the estimated combined resistance of the welded portion becomes the plate resistance Rc ′. At time t2, the calculated resistance Rs ″ is estimated in the same manner as described above using the plate resistance Rc ′ estimated at time t1 and the measured resistance Rm ″ at time t2. By repeating this process at each set time step until the end of welding, the measured resistance R
The plate-to-electrode resistance Rde can be calculated from the difference between meas and the calculated resistance Rsim. As described above, according to the present invention, it is possible to calculate the interface resistance between the electrode and the material to be welded, which does not represent the heat generation state of the welded portion. Further, even in the conventional welding quality monitoring method using the electrode resistance, the influence of the interface resistance can be eliminated by the method of the present invention, so that more accurate welding quality determination and monitoring can be performed. It can be carried out. In particular, it is effective when the electrodes are consumed or the galvanized steel sheet is welded.

【0015】なお、本実施例では電極間の抵抗を用いた
場合を説明したが、電極間の電圧を用いた場合において
も全く同じ方法によって、同じ発明の効果が得られるも
のである。
Although the case where the resistance between the electrodes is used has been described in the present embodiment, the same effect of the invention can be obtained by the same method even when the voltage between the electrodes is used.

【0016】次に第2発明の溶接品質の監視方法につい
て図6、図7、図8を用いて説明する。図6は第2発明
の溶接品質の監視方法を実施するフローチャートであ
る。しかるに第1発明の界面電圧または界面抵抗の算定
方法によれば、電極間の電圧または抵抗と溶接電流から
熱伝導モデルを用いた数値解析を行うことによって、板
対電極界面の抵抗あるいは電圧の算定と、溶接部の温度
分布を推定することができる。そこで図6に示すように
各時間ステップ毎に数値解析によって推定した溶接部の
温度分布から、被溶接材の溶融温度以上になった範囲を
算出することによって溶融部を推定することができるも
のである。そして前記溶融部の推定結果から溶融部の形
成開始時刻あるいは溶接終了時点の溶融部の大きさすな
わちナゲット、板対板界面の溶融部径すなわちナゲット
径などを推定することができ、溶接品質の監視を行うこ
とができるものである。さらに板対電極界面に発生する
電圧または抵抗を算定し、測定した電極間電圧または抵
抗から差し引けば、測定した電極間の抵抗または電圧を
そのまま用いた場合に比し高精度の溶接品質の監視を行
うことができる。図7、図8に本発明の溶接品質の監視
方法を用いた実験結果を示す。図7は第1発明の界面電
圧または界面抵抗の算定方法を用いず、測定した電極間
の電圧をそのまま熱伝導モデルによる数値解析に適用し
た実験結果であるが、図8は第2発明の溶接品質の監視
方法による実験結果を示す。溶接条件は亜鉛めっき鋼
板、板厚2.0mmの2枚重ね、溶接電流10.0kA
一定、加圧力400kgf、溶接時間22cycle
(60Hz)で連続的に溶接を行い、破壊試験によるナ
ゲット径の実測値が0mmとなるまで溶接を行った。な
お、本実施例では実測した板抵抗を参考に測定抵抗Rm
と推定される板抵抗Rcの差分の75%を前期板抵抗R
cに加え算出抵抗Rsimとした。溶接回数の増加に伴
う電極の消耗によって、ナゲット径は次第に小さくなり
約2300回の溶接でナゲット径が生成されなくなっ
た。図7に示した測定した電極間電圧をそのまま用いた
場合には、電極消耗に伴う板対電極間抵抗を含めて数値
解析を行うため約2000回の溶接以降、顕著にナゲッ
ト径の推定誤差を生じるようになる。一方、図8に示し
た第2発明の溶接品質の監視方法を用いた場合には、電
極の消耗に伴う板対電極間の抵抗を算定し、溶接部の発
熱抵抗を用いて数値解析を行うため精度良くナゲット径
の推定を行うことができる。このように本実施例によれ
ば、被溶接材と電極の界面に発生する電圧または抵抗を
算定し、これを用いて電極間より測定した電圧または抵
抗から溶接部の発熱抵抗を算出して熱伝導モデルによる
数値解析を行うため、電極と被溶接材の接触状態如何に
関わらず高精度の溶接品質の監視を実現することができ
る。なお、各発明は本実施例になんら限定されるもので
はなく、各発明の要旨を変えない範囲で種々の変形実施
が可能であることは言うまでもない。
Next, the welding quality monitoring method of the second invention will be described with reference to FIGS. 6, 7 and 8. FIG. 6 is a flow chart for implementing the welding quality monitoring method of the second invention. However, according to the method of calculating the interface voltage or interface resistance of the first invention, the resistance or voltage of the plate-electrode interface is calculated by performing a numerical analysis using a heat conduction model from the voltage or resistance between the electrodes and the welding current. Then, the temperature distribution of the welded portion can be estimated. Therefore, as shown in FIG. 6, it is possible to estimate the fusion zone by calculating the range above the fusion temperature of the material to be welded from the temperature distribution of the weld zone estimated by numerical analysis at each time step. is there. Then, from the estimation result of the fusion zone, it is possible to estimate the size of the fusion zone at the time when the formation of the fusion zone or the welding end, that is, the nugget, the fusion zone diameter at the plate-to-plate interface, that is, the nugget diameter, etc., and monitor the welding quality. Is what you can do. Furthermore, by calculating the voltage or resistance generated at the plate-electrode interface and subtracting it from the measured inter-electrode voltage or resistance, the welding quality can be monitored with higher accuracy than if the measured inter-electrode resistance or voltage was used as is. It can be performed. 7 and 8 show experimental results using the method for monitoring welding quality according to the present invention. FIG. 7 is an experimental result in which the measured voltage between electrodes is directly applied to the numerical analysis by the heat conduction model without using the calculation method of the interface voltage or the interface resistance of the first invention, but FIG. 8 is the welding result of the second invention. The experimental result by the quality monitoring method is shown. Welding conditions are galvanized steel sheets, two sheets with a plate thickness of 2.0 mm, welding current 10.0 kA
Constant, pressure 400 kgf, welding time 22 cycle
Welding was continuously performed at (60 Hz), and welding was performed until the measured value of the nugget diameter by the fracture test was 0 mm. In this embodiment, the measured resistance Rm is referred to with reference to the actually measured plate resistance.
75% of the difference of the plate resistance Rc estimated as
In addition to c, the calculated resistance is Rsim. The nugget diameter was gradually reduced due to the consumption of the electrode due to the increase in the number of weldings, and the nugget diameter was not generated after about 2,300 weldings. When the measured inter-electrode voltage shown in FIG. 7 is used as it is, a numerical analysis including the resistance between the plate and the electrode due to electrode consumption is performed, so that a significant nugget diameter estimation error occurs after about 2000 weldings. Will occur. On the other hand, when the welding quality monitoring method of the second invention shown in FIG. 8 is used, the resistance between the plate and the electrode due to the consumption of the electrode is calculated, and the numerical analysis is performed using the heat generation resistance of the welded portion. Therefore, the nugget diameter can be accurately estimated. As described above, according to the present embodiment, the voltage or resistance generated at the interface between the material to be welded and the electrode is calculated, and the heat resistance of the weld is calculated from the voltage or resistance measured between the electrodes by using this. Since the numerical analysis is performed using the conduction model, highly accurate welding quality monitoring can be realized regardless of the contact state between the electrode and the workpiece. Needless to say, each invention is not limited to this embodiment, and various modifications can be made without departing from the spirit of each invention.

【0017】[0017]

【発明の効果】第1発明の抵抗溶接の界面電圧または界
面抵抗の算定方法は測定された電極間の電圧または抵抗
から、熱伝導モデルを用いた数値解析によって被溶接材
と電極の界面に発生する電圧または抵抗を算定できるた
め、溶接品質の監視を行う上で大きな影響を与える界面
の電圧または抵抗を溶接品質の監視方法に組み込むこと
ができ、より精度の良い溶接品質の監視が可能になる効
果を奏するものである。
EFFECT OF THE INVENTION The method of calculating the interface voltage or interface resistance of resistance welding of the first aspect of the invention is that the voltage or resistance between the measured electrodes is generated at the interface between the material to be welded and the electrode by numerical analysis using a heat conduction model. Since the voltage or resistance to be measured can be calculated, the voltage or resistance at the interface, which has a great influence on the monitoring of the welding quality, can be incorporated into the method for monitoring the welding quality, which enables more accurate monitoring of the welding quality. It is effective.

【0018】第2発明の溶接品質の監視方法は第1発明
の抵抗溶接の界面電圧または界面抵抗の算定方法を、熱
伝導モデルを用いた数値解析による溶融部の推定演算手
法に組み込むことによってより精度の良い溶接品質の監
視を実現する効果を奏するものである。
The welding quality monitoring method according to the second aspect of the present invention is more effective by incorporating the method for calculating the interfacial voltage or the interfacial resistance of the resistance welding according to the first aspect of the invention into the estimation calculation method for the fusion zone by the numerical analysis using the heat conduction model. This has the effect of realizing accurate welding quality monitoring.

【図面の簡単な説明】[Brief description of drawings]

【図1】電極及び被溶接材とその界面に発生する抵抗ま
たは電圧の概念図
FIG. 1 is a conceptual diagram of resistance or voltage generated at an electrode and a material to be welded and its interface.

【図2】電極または被溶接材の表面状態の模式図FIG. 2 is a schematic diagram of the surface condition of the electrode or the material to be welded.

【図3】電極間抵抗と板抵抗の実測を行った実験結果を
示すグラフ
FIG. 3 is a graph showing the results of an experiment in which the interelectrode resistance and the plate resistance are actually measured.

【図4】界面電圧または界面抵抗の算定を実施するフロ
ーチャート
FIG. 4 is a flowchart for performing calculation of interface voltage or interface resistance.

【図5】測定抵抗と推定された板抵抗から算出抵抗を算
定する方法を示した概念図
FIG. 5 is a conceptual diagram showing a method of calculating a calculated resistance from a measured resistance and an estimated plate resistance.

【図6】界面電圧または界面抵抗の算定方法を用いた溶
接品質の監視方法を実施するフローチャート
FIG. 6 is a flowchart for implementing a welding quality monitoring method using the interface voltage or interface resistance calculation method.

【図7】界面電圧または界面抵抗の算定方法を用いずに
行ったナゲット径の推定実験結果を示すグラフ
FIG. 7 is a graph showing the results of a nugget diameter estimation experiment performed without using the method of calculating the interface voltage or interface resistance.

【図8】界面電圧または界面抵抗の算定方法を用いたと
きのナゲット径の推定実験結果を示すグラフ
FIG. 8 is a graph showing an experimental result of nugget diameter estimation when a method of calculating interface voltage or interface resistance is used.

【符号の説明】[Explanation of symbols]

Rmeas 電極間の抵抗 Rel 電極部分の抵抗 Rde 被溶接材と電極の界面に発生する抵抗 Rdc 被溶接材間の界面に発生する抵抗 Rreal 被溶接材の固有抵抗発熱による抵抗 Rr 被溶接材と電極の界面から測定した抵抗 Vmeas 電極間の電圧 Vel 電極部分の電圧 Vde 被溶接材と電極の界面に発生する電圧 Vdc 被溶接材間の界面に発生する電圧 Vreal 被溶接材の固有抵抗発熱による電圧 Rmeas Resistance between electrodes Rel Resistance of electrode part Rde Resistance generated at interface between welding target and electrode Rdc Resistance generated at interface between welding target Rreal Real resistance of welding target Rr Resistance between welding target and electrode Resistance measured from the interface Vmeas Voltage between electrodes Vel Voltage of electrode part Vde Voltage generated at interface between welded material and electrode Vdc Voltage generated at interface between welded materials Vreal Voltage due to heat generation of resistance of welded material

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被溶接材を挟む電極間の電圧、または電
極間の電圧と溶接電流から算出した電極間の抵抗と、少
なくとも前記被溶接材の固有抵抗発熱により定まる電圧
または抵抗を用いて、電極と被溶接材の界面に発生する
電圧または抵抗を算定することを特徴とする抵抗溶接の
界面電圧または界面抵抗の算定方法。
1. A voltage between electrodes sandwiching a material to be welded, or a resistance between electrodes calculated from a voltage between electrodes and a welding current, and at least a voltage or resistance determined by heat generation of the resistance of the material to be welded, A method for calculating the interface voltage or resistance of resistance welding, which comprises calculating the voltage or resistance generated at the interface between the electrode and the material to be welded.
【請求項2】 被溶接材を挟む電極間の電圧、または電
極間の電圧と溶接電流から算出した電極間の抵抗と、少
なくとも前記被溶接材の固有抵抗発熱により定まる電圧
または抵抗を用いて、電極と被溶接材の界面に発生する
電圧または抵抗を算定するとともに、前記算定された電
圧または抵抗を用いて溶接品質を判定することを特徴と
する溶接品質の監視方法。
2. The voltage between electrodes sandwiching the material to be welded, or the resistance between the electrodes calculated from the voltage between the electrodes and the welding current, and at least the voltage or resistance determined by the specific resistance heat generation of the material to be welded, A method for monitoring welding quality, characterized in that a voltage or resistance generated at an interface between an electrode and a material to be welded is calculated, and welding quality is judged by using the calculated voltage or resistance.
JP00891196A 1996-01-23 1996-01-23 Calculation method of interface resistance of resistance welding and monitoring method of welding quality Expired - Fee Related JP3186562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00891196A JP3186562B2 (en) 1996-01-23 1996-01-23 Calculation method of interface resistance of resistance welding and monitoring method of welding quality

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00891196A JP3186562B2 (en) 1996-01-23 1996-01-23 Calculation method of interface resistance of resistance welding and monitoring method of welding quality

Publications (2)

Publication Number Publication Date
JPH09196881A true JPH09196881A (en) 1997-07-31
JP3186562B2 JP3186562B2 (en) 2001-07-11

Family

ID=11705856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00891196A Expired - Fee Related JP3186562B2 (en) 1996-01-23 1996-01-23 Calculation method of interface resistance of resistance welding and monitoring method of welding quality

Country Status (1)

Country Link
JP (1) JP3186562B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008073703A (en) * 2006-09-19 2008-04-03 Toyota Motor Corp Method of and system for determining quality of spot welding
JP2010137234A (en) * 2008-12-09 2010-06-24 Panasonic Ev Energy Co Ltd Method for deciding quality of resistance welding and device for deciding the same
CN102243274A (en) * 2011-05-05 2011-11-16 昆明理工大学 Method for measuring and calculating interface resistivity of Pb-Sn-Al laminated composite material
JP2014057979A (en) * 2012-09-18 2014-04-03 Nec Corp Resistance-welding device and resistance-welding method
CN107344270A (en) * 2016-05-06 2017-11-14 通用汽车环球科技运作有限责任公司 The method and apparatus assessed for the weld bond between the terminal and electrode member to battery unit
CN111104759A (en) * 2019-12-09 2020-05-05 国联汽车动力电池研究院有限责任公司 Design simulation method for welding shape of lithium battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008073703A (en) * 2006-09-19 2008-04-03 Toyota Motor Corp Method of and system for determining quality of spot welding
JP2010137234A (en) * 2008-12-09 2010-06-24 Panasonic Ev Energy Co Ltd Method for deciding quality of resistance welding and device for deciding the same
US8395072B2 (en) 2008-12-09 2013-03-12 Panasonic Ev Energy Co., Ltd. Resistance welding quality determination method and resistance welding quality determination apparatus
CN102243274A (en) * 2011-05-05 2011-11-16 昆明理工大学 Method for measuring and calculating interface resistivity of Pb-Sn-Al laminated composite material
JP2014057979A (en) * 2012-09-18 2014-04-03 Nec Corp Resistance-welding device and resistance-welding method
CN107344270A (en) * 2016-05-06 2017-11-14 通用汽车环球科技运作有限责任公司 The method and apparatus assessed for the weld bond between the terminal and electrode member to battery unit
US10274448B2 (en) 2016-05-06 2019-04-30 GM Global Technology Operations LLC Method and apparatus for evaluating a weld junction between a terminal and an electrode element of a battery cell
CN107344270B (en) * 2016-05-06 2020-02-28 通用汽车环球科技运作有限责任公司 Method and device for evaluating weld craters between terminals and electrode elements of battery cells
CN111104759A (en) * 2019-12-09 2020-05-05 国联汽车动力电池研究院有限责任公司 Design simulation method for welding shape of lithium battery
CN111104759B (en) * 2019-12-09 2023-09-29 国联汽车动力电池研究院有限责任公司 Design simulation method for welding shape of lithium battery

Also Published As

Publication number Publication date
JP3186562B2 (en) 2001-07-11

Similar Documents

Publication Publication Date Title
US6057523A (en) Method of controlling welding conditions of a resistance welder
US6506997B2 (en) Spot welding system and method for sensing welding conditions in real time
WO2016174842A1 (en) Resistance spot welding method
JPH10314956A (en) Method and device for evaluating quality of resistance welded zone
US7718918B2 (en) Production or assembly line method of spot welding
JPH1133743A (en) Resistance welding system using accumulated heating value per unit cubage as index
JP2001276980A (en) Connecting apparatus
JP3379323B2 (en) Control device of resistance welding machine
JP2000126872A (en) Control method of resistance welding machine
JP3221296B2 (en) Control device and control method for resistance welding
JPH04178275A (en) Resistance spot welding
JPH09196881A (en) Computing method for interface voltage of resistance welding and its interface resistance, and monitoring method for welding quality
Kim et al. Sensitivity analysis for process parameters influencing weld quality in robotic GMA welding process
JP2012200765A (en) Method and device for evaluating quality of resistance welding
Zhang et al. On-line evaluation of electrode wear by servo gun in resistance spot welding
JPH08318377A (en) Resistance spot welding method
JP3119775B2 (en) Welding quality monitoring device for resistance welding
JP3760434B2 (en) Resistance welding quality control method, resistance welding method and resistance welding apparatus
JP4527566B2 (en) Spot welding quality judgment method and spot welding machine
JPH09216072A (en) Control device of resistance welding equipment
JPH11285848A (en) Resistance spot welding method
CN118671145B (en) Welding quality detection method, device, equipment and storage medium
JP5988015B1 (en) Resistance spot welding method
JP4642267B2 (en) Pulse arc welding welding stability assessment device
JP7158115B2 (en) Evaluation method of joint point of spot welding

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees