JPH09196530A - Cooling device for rotation signal detector - Google Patents

Cooling device for rotation signal detector

Info

Publication number
JPH09196530A
JPH09196530A JP668396A JP668396A JPH09196530A JP H09196530 A JPH09196530 A JP H09196530A JP 668396 A JP668396 A JP 668396A JP 668396 A JP668396 A JP 668396A JP H09196530 A JPH09196530 A JP H09196530A
Authority
JP
Japan
Prior art keywords
rotation signal
signal detector
refrigerant
pump
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP668396A
Other languages
Japanese (ja)
Inventor
Tadashi Yoshida
正 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP668396A priority Critical patent/JPH09196530A/en
Publication of JPH09196530A publication Critical patent/JPH09196530A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a cooling device for a rotation signal detector, which has a high cooling efficiency and can prevent the rotation signal detector from being damaged by heat caused by a raise in temperature. SOLUTION: A cooling device to cool a specified rotation signal detector 100 includes a specified casing 5 to accommodate a sensor of the rotation signal detector 100, refrigerant inlet and outlet pipes 8 and 9 connected to the casing 5, a pump 11 to send the refrigerant under pressure to cool the rotation signal detector 100, a controller 10 and 14 to control the flow rate of the refrigerant discharged from the pump 11 based on the temperature of the refrigerant flowing out of the rotation signal detector 100, and a cooler 12 to cool down the refrigerant flowing out of the pump 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、各種タービン、ポ
ンプ、ファン等の回転翼の振動を非接触で計測する回転
信号検出器の冷却装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling device for a rotation signal detector which measures the vibrations of rotary blades of various turbines, pumps, fans, etc. in a non-contact manner.

【0002】[0002]

【従来の技術】図5は、従来の回転信号検出器の構成を
示す断面図である。回転信号検出器は上記の通り、一般
に各種タービン、ポンプ、ファン等の回転翼の振動を非
接触で計測する装置である。そして、その構造が簡易か
つ小型であり電源が不要であるとともに、保守の必要が
ない等の利点を有する電磁式の回転信号検出器が数多く
使用されている。
2. Description of the Related Art FIG. 5 is a sectional view showing the structure of a conventional rotation signal detector. As described above, the rotation signal detector is a device that generally measures the vibration of rotating blades of various turbines, pumps, fans, etc. in a non-contact manner. A large number of electromagnetic rotation signal detectors are used, which have the advantages that their structure is simple and compact, they do not require a power supply, and they do not require maintenance.

【0003】図5に示す電磁式の回転信号検出器は、ケ
ーシング5内に永久磁石2、ヨーク1および検出コイル
3を装備しており、検出コイル3から信号線4を介して
外部へ回転信号を出力する。また冷却部である冷却管1
9内に前記回転信号検出器のケーシング5が収められて
おり、冷却管19内を流れる水により前記ケーシング5
の周りを冷却している。
The electromagnetic rotation signal detector shown in FIG. 5 is equipped with a permanent magnet 2, a yoke 1 and a detection coil 3 in a casing 5, and the rotation signal is transmitted from the detection coil 3 to the outside via a signal line 4. Is output. In addition, the cooling pipe 1 which is the cooling unit
The casing 5 of the rotation signal detector is housed in the casing 9, and the casing 5 is made by the water flowing in the cooling pipe 19.
Is cooling around.

【0004】このように永久磁石2、検出コイル3およ
びヨーク1により構成される電磁式の回転信号検出器で
は、ヨーク1の近傍に磁性体が近づくと、ヨーク1周り
の検出コイル3を通過する磁束が変化し、その変化分に
比例した周波数の誘起電圧が検出コイル3に生じる。そ
して前記磁束は、周波数(f=回転数/60Hz)に比
例した脈動をし、これが回転信号として信号線4を介し
外部へ出力される。
As described above, in the electromagnetic rotation signal detector composed of the permanent magnet 2, the detection coil 3 and the yoke 1, when the magnetic body approaches the yoke 1, it passes through the detection coil 3 around the yoke 1. The magnetic flux changes, and an induced voltage having a frequency proportional to the change is generated in the detection coil 3. The magnetic flux pulsates in proportion to the frequency (f = rotation speed / 60 Hz), and this is output as a rotation signal to the outside via the signal line 4.

【0005】[0005]

【発明が解決しようとする課題】上述したような従来の
電磁式の回転信号検出器は、タービン等の回転翼振動数
を非接触で計測する検出器であるため、高温中で使用さ
れている。一般に回転信号検出器は、温度上昇に伴ない
永久磁石2や検出コイル3の性能が低下し、データの信
頼性が低下する傾向にあるため、充分な冷却が必要であ
る。そのため、温度上昇に伴なう熱による検出器の破損
を防止するために、前述したような水による冷却を行な
っている。しかし、前述したようにケーシング5の外側
から冷却を行なっているため、冷却効率が低いという欠
点がある。本発明の目的は、温度上昇に伴なう熱による
回転信号検出器の破損を防止するとともに、冷却効率の
高い回転信号検出器の冷却装置を提供することにある。
Since the conventional electromagnetic rotation signal detector as described above is a detector for measuring the vibration frequency of the rotor blade of a turbine or the like in a non-contact manner, it is used at a high temperature. . Generally, the rotation signal detector needs to be sufficiently cooled because the performance of the permanent magnet 2 and the detection coil 3 is deteriorated as the temperature rises and the reliability of data tends to be deteriorated. Therefore, in order to prevent damage to the detector due to heat associated with temperature rise, cooling with water as described above is performed. However, since cooling is performed from the outside of the casing 5 as described above, there is a drawback that the cooling efficiency is low. An object of the present invention is to provide a cooling device for a rotation signal detector, which prevents damage to the rotation signal detector due to heat accompanying temperature rise and has high cooling efficiency.

【0006】[0006]

【課題を解決するための手段】上記課題を解決し目的を
達成するために、本発明の回転信号検出器の冷却装置は
以下の如く構成されている。本発明の回転信号検出器の
冷却装置は、所定の回転信号検出器を冷却する回転信号
検出器の冷却装置であり、前記回転信号検出器における
センサー部を所定のケーシング内に収め、かつ前記ケー
シングに冷媒の入口管と出口管を設けるとともに、前記
回転信号検出器を冷却するために冷媒を圧送するポンプ
と、前記回転信号検出器から出る冷媒の温度を計測し、
その温度を基に前記ポンプから出る冷媒の流量を制御す
る制御手段と、前記ポンプから出る冷媒を冷却する冷却
手段と、を備える。
In order to solve the above problems and achieve the object, a cooling device for a rotation signal detector of the present invention is configured as follows. The cooling device for a rotation signal detector of the present invention is a cooling device for a rotation signal detector for cooling a predetermined rotation signal detector, wherein a sensor portion of the rotation signal detector is housed in a predetermined casing, and the casing is With an inlet pipe and an outlet pipe for the refrigerant, a pump for pumping the refrigerant to cool the rotation signal detector, and measuring the temperature of the refrigerant exiting the rotation signal detector,
Control means for controlling the flow rate of the refrigerant flowing out of the pump based on the temperature and cooling means for cooling the refrigerant flowing out of the pump are provided.

【0007】上記手段を講じた結果、次のような作用が
生じる。本発明の回転信号検出器の冷却装置によれば、
前記回転信号検出器から出る冷媒の温度を計測し、その
温度を基にポンプから出る冷媒の流量を制御し、かつ前
記ポンプから出る冷媒を冷却する。すなわち、高温の蒸
気が通る蒸気タービンケーシング内へ前記回転信号検出
器を一部を突出させて取り付けることにより、生じる温
度上昇を抑えるための冷媒による冷却構造を成すことが
できる。
As a result of taking the above-mentioned means, the following actions occur. According to the rotation signal detector cooling device of the present invention,
The temperature of the refrigerant discharged from the rotation signal detector is measured, the flow rate of the refrigerant discharged from the pump is controlled based on the temperature, and the refrigerant discharged from the pump is cooled. That is, by partially projecting the rotation signal detector into the steam turbine casing through which high-temperature steam passes, a cooling structure using a refrigerant for suppressing a temperature rise that occurs can be formed.

【0008】これにより、前記ポンプから吐出された冷
媒は前記回転信号検出器内に入り、例えばヨーク、永久
磁石、検出コイル等を冷却した後吐出される。さらに、
冷媒の前記ポンプの出口温度を計測し、前記制御手段に
より前記ポンプ出口の流量を制御するとともに、前記回
転信号検出器から出た冷媒が前記冷却手段で冷やされ
る。
As a result, the refrigerant discharged from the pump enters the rotation signal detector and is discharged after cooling the yoke, the permanent magnet, the detection coil, etc. further,
The outlet temperature of the pump of the refrigerant is measured, the flow rate of the pump outlet is controlled by the control unit, and the refrigerant output from the rotation signal detector is cooled by the cooling unit.

【0009】よって、熱による前記回転信号検出器の破
損を防止できるとともに、前記検出器出口の冷媒の温度
を監視することで、前記検出器内の温度上昇に伴なうヨ
ーク、永久磁石、検出コイル等の性能低下がなくなり、
前記検出器にて検出されるデータの信頼性を維持でき
る。さらに、蒸気タービン実機稼動時の翼振動監視装置
への展開が可能になる。
Therefore, damage to the rotation signal detector due to heat can be prevented, and by monitoring the temperature of the refrigerant at the detector outlet, the yoke, the permanent magnet, and the detection associated with the temperature increase in the detector can be detected. There is no deterioration in the performance of the coil,
The reliability of the data detected by the detector can be maintained. Further, it can be applied to a blade vibration monitoring device when the steam turbine is actually operated.

【0010】[0010]

【発明の実施の形態】図1は、本発明の実施の形態に係
る冷却型の回転信号検出器の構成を示す断面図である。
図1に示す回転信号検出器100は、上述したような従
来の回転信号検出器を冷却型構造としたものである。そ
して、ヨーク1、永久磁石2、検出コイル3および信号
線4により構成されるセンサー部が、ケーシング5内に
収められている。さらに図1に示すように、ステンレス
仕切板(冷却用)6、Oリング7、冷媒入口管8および
冷媒出口管9を備えた冷却構造を成している。
1 is a sectional view showing the structure of a cooling type rotation signal detector according to an embodiment of the present invention.
The rotation signal detector 100 shown in FIG. 1 is a cooling type structure of the conventional rotation signal detector as described above. Then, a sensor portion including the yoke 1, the permanent magnet 2, the detection coil 3, and the signal line 4 is housed in the casing 5. Further, as shown in FIG. 1, a cooling structure including a stainless steel partition plate (for cooling) 6, an O-ring 7, a refrigerant inlet pipe 8 and a refrigerant outlet pipe 9 is formed.

【0011】冷媒は冷媒入口管8から入り、ヨーク1、
永久磁石2および検出コイル3を冷却した後、冷媒出口
管9から出る。このとき、ヨーク1の先端部はステンレ
ス仕切板6で保護、密封されている。また冷媒が濡れな
いよう、永久磁石2とケーシング5との間をOリング7
でシールしている。
Refrigerant enters through the refrigerant inlet pipe 8 and the yoke 1,
After cooling the permanent magnet 2 and the detection coil 3, they exit from the refrigerant outlet pipe 9. At this time, the tip of the yoke 1 is protected and sealed by the stainless partition plate 6. Further, an O-ring 7 is provided between the permanent magnet 2 and the casing 5 so that the refrigerant does not get wet.
Sealed with.

【0012】図2は、本発明の実施の形態に係る冷却装
置の構成を示すブロック図である。この冷却装置は、ポ
ンプ11、冷却器12、およびコントローラ10により
構成されている。ポンプ11の出口は冷却器12の入口
に接続されており、冷却器12の出口はポンプ11の入
口に接続されている。また、コントローラ10はポンプ
11の出口流量を制御するものである。
FIG. 2 is a block diagram showing the configuration of the cooling device according to the embodiment of the present invention. This cooling device includes a pump 11, a cooler 12, and a controller 10. The outlet of the pump 11 is connected to the inlet of the cooler 12, and the outlet of the cooler 12 is connected to the inlet of the pump 11. Further, the controller 10 controls the outlet flow rate of the pump 11.

【0013】図3は、図1に示した回転信号検出器と図
2に示した冷却装置を、蒸気タービン実機稼動時の翼振
動監視装置へ応用した構成を示す図である。図3におい
て18はタービン車室であり、このタービン車室18の
円周上に上述した回転信号検出器100が取付けられて
いる。そしてタービン車室18内には、翼振動数を計測
する回転翼16とロータ17が備えられている。さら
に、回転信号検出器100の冷媒入口管8と冷媒出口管
9には環状をなす冷媒配管15が付設されている。この
冷媒配管15により、冷媒はタンク13、ポンプ11、
冷却器12、回転信号検出器100を循環する。
FIG. 3 is a diagram showing a configuration in which the rotation signal detector shown in FIG. 1 and the cooling device shown in FIG. 2 are applied to a blade vibration monitoring device when a steam turbine is actually operating. In FIG. 3, reference numeral 18 denotes a turbine casing, and the rotation signal detector 100 described above is mounted on the circumference of the turbine casing 18. The turbine casing 18 is provided with a rotor 16 and a rotor 17 for measuring the blade vibration frequency. Further, an annular refrigerant pipe 15 is attached to the refrigerant inlet pipe 8 and the refrigerant outlet pipe 9 of the rotation signal detector 100. Through the refrigerant pipe 15, the refrigerant is supplied to the tank 13, the pump 11,
The cooler 12 and the rotation signal detector 100 are circulated.

【0014】また、回転信号検出器100の冷媒出口管
9付近には温度計14が取付けられている。コントロー
ラ10は、温度計14で計測される出口冷媒の温度を監
視しながらポンプ11の流量制御を行なうことで、温度
調整を行なう。
A thermometer 14 is attached near the refrigerant outlet pipe 9 of the rotation signal detector 100. The controller 10 adjusts the temperature by controlling the flow rate of the pump 11 while monitoring the temperature of the outlet refrigerant measured by the thermometer 14.

【0015】図4は、上記した冷却装置のポンプ用コン
トローラ仕様プロット図である。図4に示すプロット図
において、横軸は冷媒出口管9の出口温度を、縦軸はポ
ンプ11の回転数を示している。図4に示すように、コ
ントローラ10は冷媒出口管9の出口温度がT1 ℃にな
るまでポンプ11の回転数を一定値に保っている。そし
て、冷媒出口管9の出口温度がT1 ℃以上になると、コ
ントローラ10はポンプ11の回転数を上昇させる。こ
れにより冷媒配管15内の冷媒流量が増し、回転信号検
出器100内の温度上昇を抑えることになる。
FIG. 4 is a plot diagram of controller specifications for the pump of the cooling device described above. In the plot diagram shown in FIG. 4, the horizontal axis represents the outlet temperature of the refrigerant outlet pipe 9, and the vertical axis represents the rotation speed of the pump 11. As shown in FIG. 4, the controller 10 keeps the rotation speed of the pump 11 at a constant value until the outlet temperature of the refrigerant outlet pipe 9 reaches T1 ° C. Then, when the outlet temperature of the refrigerant outlet pipe 9 becomes T1 ° C. or higher, the controller 10 increases the rotation speed of the pump 11. As a result, the flow rate of the refrigerant in the refrigerant pipe 15 increases, and the temperature rise in the rotation signal detector 100 is suppressed.

【0016】なお、本発明は上記実施の形態に限定され
ず、要旨を変更しない範囲で適宜変形して実施できる。 (実施の形態のまとめ)実施の形態に示された構成およ
び作用効果をまとめると次の通りである。実施の形態に
示された回転信号検出器の冷却装置は、所定の回転信号
検出器100を冷却する回転信号検出器の冷却装置であ
り、前記回転信号検出器100におけるセンサー部を所
定のケーシング5内に収め、かつ前記ケーシング5に冷
媒の入口管8と出口管9を設けるとともに、前記回転信
号検出器100を冷却するために冷媒を圧送するポンプ
11と、前記回転信号検出器100から出る冷媒の温度
を計測し、その温度を基に前記ポンプ11から出る冷媒
の流量を制御する制御手段(10、14)と、前記ポン
プ11から出る冷媒を冷却する冷却手段(12)と、を
備える。
The present invention is not limited to the above-mentioned embodiment, and can be carried out by appropriately modifying it without changing the scope of the invention. (Summary of Embodiment) The configuration, operation and effect shown in the embodiment are summarized as follows. The cooling device for a rotation signal detector described in the embodiment is a cooling device for a rotation signal detector that cools a predetermined rotation signal detector 100, and the sensor portion of the rotation signal detector 100 has a predetermined casing 5. A pump 11 for supplying a refrigerant to cool the rotation signal detector 100, and a refrigerant discharged from the rotation signal detector 100, which are accommodated in the casing 5 and are provided with a refrigerant inlet pipe 8 and a refrigerant outlet pipe 9. The control means (10, 14) for controlling the flow rate of the refrigerant discharged from the pump 11 on the basis of the measured temperature, and the cooling means (12) for cooling the refrigerant discharged from the pump 11.

【0017】このように上記回転信号検出器の冷却装置
においては、前記回転信号検出器100から出る冷媒の
温度を計測し、その温度を基にポンプ11から出る冷媒
の流量を制御し、かつ前記ポンプ11から出る冷媒を冷
却する。すなわち、高温の蒸気が通る蒸気タービンケー
シング内へ前記回転信号検出器100を一部を突出させ
て取り付けることにより、生じる温度上昇を抑えるため
の冷媒による冷却構造を成すことができる。
As described above, in the cooling device for the rotation signal detector, the temperature of the refrigerant discharged from the rotation signal detector 100 is measured, the flow rate of the refrigerant discharged from the pump 11 is controlled based on the temperature, and The refrigerant discharged from the pump 11 is cooled. That is, by partially mounting the rotation signal detector 100 in the steam turbine casing through which high-temperature steam passes, a cooling structure using a refrigerant for suppressing a temperature rise that occurs can be formed.

【0018】これにより、前記ポンプ11から吐出され
た冷媒は前記回転信号検出器100内に入り、ヨーク
1、永久磁石2、検出コイル3等を冷却した後吐出され
る。さらに、冷媒の前記ポンプ11の出口温度を計測
し、前記制御手段(10、14)により前記ポンプ11
出口の流量を制御するとともに、前記回転信号検出器1
00から出た冷媒が前記冷却手段(12)で冷やされ
る。
As a result, the refrigerant discharged from the pump 11 enters the rotation signal detector 100, cools the yoke 1, the permanent magnet 2, the detection coil 3, etc., and is then discharged. Furthermore, the outlet temperature of the pump 11 of the refrigerant is measured, and the pump 11 is controlled by the control means (10, 14).
The rotation signal detector 1 is controlled while controlling the flow rate at the outlet.
The cooling medium (00) is cooled by the cooling means (12).

【0019】よって、熱による前記回転信号検出器10
0の破損を防止できるとともに、前記検出器100出口
の冷媒の温度を監視することで、前記検出器100内の
温度上昇に伴なうヨーク1、永久磁石2、検出コイル3
等の性能低下がなくなり、前記検出器100にて検出さ
れるデータの信頼性を維持できる。さらに、蒸気タービ
ン実機稼動時の翼振動監視装置への展開が可能になる。
Therefore, the rotation signal detector 10 based on heat is used.
0 can be prevented from being damaged, and the temperature of the refrigerant at the outlet of the detector 100 is monitored, so that the yoke 1, the permanent magnet 2, and the detection coil 3 associated with the temperature rise in the detector 100 can be prevented.
As a result, the reliability of the data detected by the detector 100 can be maintained. Further, it can be applied to a blade vibration monitoring device when the steam turbine is actually operated.

【0020】[0020]

【発明の効果】本発明によれば、温度上昇に伴なう熱に
よる回転信号検出器の破損を防止するとともに、冷却効
率の高い回転信号検出器の冷却装置を提供できる。
According to the present invention, it is possible to prevent the rotation signal detector from being damaged by heat associated with temperature rise and provide a cooling device for a rotation signal detector having high cooling efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態に係る冷却型の回転信号検
出器の構成を示す断面図。
FIG. 1 is a sectional view showing a configuration of a cooling type rotation signal detector according to an embodiment of the present invention.

【図2】本発明の実施の形態に係る冷却装置の構成を示
すブロック図。
FIG. 2 is a block diagram showing the configuration of the cooling device according to the embodiment of the present invention.

【図3】本発明の実施の形態に係る回転信号検出器と冷
却装置を、蒸気タービン実機稼動時の翼振動監視装置へ
応用した構成を示す図。
FIG. 3 is a diagram showing a configuration in which the rotation signal detector and the cooling device according to the embodiment of the present invention are applied to a blade vibration monitoring device when a steam turbine is actually operating.

【図4】本発明の実施の形態に係る冷却装置のポンプ用
コントローラ仕様プロット図。
FIG. 4 is a plot diagram of controller specifications for a pump of the cooling device according to the exemplary embodiment of the present invention.

【図5】従来の電磁式の回転信号検出器の構成を示す断
面図。
FIG. 5 is a cross-sectional view showing the configuration of a conventional electromagnetic rotation signal detector.

【符号の説明】[Explanation of symbols]

100…回転信号検出器 1…ヨーク 2…永久磁石 3…検出コイル 4…信号線 5…ケーシング 6…ステンレス仕切板 7…Oリング 8…冷媒入口管 9…冷媒出口管 10…コントローラ 11…ポンプ 12…冷却器 13…タンク 14…温度計 15…冷媒配管 16…回転翼 17…ロータ 18…タービン車室 19…冷却管 100 ... Rotation signal detector 1 ... Yoke 2 ... Permanent magnet 3 ... Detection coil 4 ... Signal line 5 ... Casing 6 ... Stainless partition plate 7 ... O-ring 8 ... Refrigerant inlet pipe 9 ... Refrigerant outlet pipe 10 ... Controller 11 ... Pump 12 ... Cooler 13 ... Tank 14 ... Thermometer 15 ... Refrigerant piping 16 ... Rotor blade 17 ... Rotor 18 ... Turbine casing 19 ... Cooling tube

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】所定の回転信号検出器を冷却する回転信号
検出器の冷却装置であり、 前記回転信号検出器におけるセンサー部を所定のケーシ
ング内に収め、かつ前記ケーシングに冷媒の入口管と出
口管を設けるとともに、 前記回転信号検出器を冷却するために冷媒を圧送するポ
ンプと、 前記回転信号検出器から出る冷媒の温度を計測し、その
温度を基に前記ポンプから出る冷媒の流量を制御する制
御手段と、 前記ポンプから出る冷媒を冷却する冷却手段と、 を備えたことを特徴とする回転信号検出器の冷却装置。
1. A cooling device of a rotation signal detector for cooling a predetermined rotation signal detector, wherein a sensor portion of the rotation signal detector is housed in a predetermined casing, and an inlet pipe and an outlet of a refrigerant are provided in the casing. A pipe is provided, and a pump that pumps refrigerant to cool the rotation signal detector, and the temperature of the refrigerant that comes out of the rotation signal detector are measured, and the flow rate of the refrigerant that comes out of the pump is controlled based on that temperature. And a cooling means for cooling the refrigerant discharged from the pump.
JP668396A 1996-01-18 1996-01-18 Cooling device for rotation signal detector Withdrawn JPH09196530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP668396A JPH09196530A (en) 1996-01-18 1996-01-18 Cooling device for rotation signal detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP668396A JPH09196530A (en) 1996-01-18 1996-01-18 Cooling device for rotation signal detector

Publications (1)

Publication Number Publication Date
JPH09196530A true JPH09196530A (en) 1997-07-31

Family

ID=11645169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP668396A Withdrawn JPH09196530A (en) 1996-01-18 1996-01-18 Cooling device for rotation signal detector

Country Status (1)

Country Link
JP (1) JPH09196530A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011007678A (en) * 2009-06-26 2011-01-13 Ihi Corp Optical probe
EP3517977A3 (en) * 2018-01-09 2019-10-30 Weston Aerospace Limited Magnetic gas turbine sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011007678A (en) * 2009-06-26 2011-01-13 Ihi Corp Optical probe
EP3517977A3 (en) * 2018-01-09 2019-10-30 Weston Aerospace Limited Magnetic gas turbine sensor
US10976221B2 (en) 2018-01-09 2021-04-13 Weston Aerospace Limited Magnetic gas turbine sensor

Similar Documents

Publication Publication Date Title
TWI638123B (en) Motor housing temperature control system
JP3346698B2 (en) High temperature motor pump and its operation method
US9093871B2 (en) Bidirectional pumping and energy recovery system
CN101499697A (en) Liquid cooling motor
US7090469B2 (en) Turbomolecular pump
JP2017166360A (en) Temperature control device and turbo molecular pump
JP2005045997A (en) Control of fan speed using altitude sensor
CN216922617U (en) Self-cooling system of magnetic suspension air compressor
JPH09196530A (en) Cooling device for rotation signal detector
JP4565282B2 (en) Surge detection method for centrifugal compressor
JP2006017089A (en) Temperature control device for turbo molecular pump
JP2018119751A (en) Heat exchanger
TW201943966A (en) Method for controlling at least one radial blower in a cooling system, as well as radial blower
KR101876785B1 (en) Cooling device of motor for pump
JPH05248646A (en) Protective device for boiler circulation pump
WO2016090735A1 (en) Automatic speed regulating ecm motor and freezer using same
CN107044391B (en) Cooling system of wind turbine generator
JP2015059465A (en) Vacuum pump
CN110792626A (en) Nuclear main pump with electromagnetic axial force balancing device
CN204787489U (en) Dry -type numerical control plasma cutting machine power cooling water system for water cooled generator
KR20150057257A (en) Apparatus for controlling operation point of cooling sea water centrifugal pump
KR200193068Y1 (en) Apparatus for cooling magnet using air and water
CN114953976B (en) Intelligent heat dissipation control method for vehicle electric drive system
JPH0932580A (en) Gas turbine blade tip clearance control device
CN205991023U (en) Cooling fan

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030401