JPH09194967A - Silver-oxide type sintered electrical contact material and its manufacture - Google Patents

Silver-oxide type sintered electrical contact material and its manufacture

Info

Publication number
JPH09194967A
JPH09194967A JP1808296A JP1808296A JPH09194967A JP H09194967 A JPH09194967 A JP H09194967A JP 1808296 A JP1808296 A JP 1808296A JP 1808296 A JP1808296 A JP 1808296A JP H09194967 A JPH09194967 A JP H09194967A
Authority
JP
Japan
Prior art keywords
silver
oxide
electrical contact
contact material
internal oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1808296A
Other languages
Japanese (ja)
Inventor
Kazuhito Ichinose
一仁 一之瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP1808296A priority Critical patent/JPH09194967A/en
Publication of JPH09194967A publication Critical patent/JPH09194967A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a silver-oxide system sintered electrical contact material which is not only excellent in the stability or contact resistance, welding resistance and resistance to consumption but also has a high electric conductivity and a manufacturing method thereof. SOLUTION: The manufacturing method for the silver-oxide system sintered electrical contact material is excecuted by sintering, densification-processing and, next, high pressure-internally oxidizing the raw material powder contng. silver, and then heat treating an obtained internally oxidized body in an atmosphere of a oxygen partial pressure lower than that of high pressure-internally oxidation or in an atmosphere substantially not contng. oxygen, and at a temperature above that of high pressure-internally oxidation and at 400 to 960 deg.C in a method of molding., sintering and then high pressure-internally oxidizing raw material powder contng. silver. Further, the silver-oxide system sintered electrical control material has an electric conductivity of >=60% (IACS).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、銀−酸化物系焼結
電気接点材料およびその製造方法に関する。
TECHNICAL FIELD The present invention relates to a silver-oxide-based sintered electrical contact material and a method for producing the same.

【0002】[0002]

【従来の技術】銀−酸化物系電気接点材料は、リレー、
コンダクター安全ブレーカー、配線用遮断器、気中遮断
器などにおいて、小〜大電流にわたって使用されてい
る。従来、銀−酸化物系電気接点材料として、Ag−C
dO系の材料が知られている。この材料は、溶解・鋳造
材であるAg−Cd合金中のCdを、酸素分圧が大気圧
〜30気圧程度の低酸素分圧下で内部酸化する方法で製
造される。そして、電気接点材料に必要な性質である、
低接触抵抗、高耐溶着性および高耐消耗性を比較的バラ
ンスよく備えている。
2. Description of the Related Art Silver-oxide type electrical contact materials are relays,
Used in small to large currents in conductor safety breakers, circuit breakers, air circuit breakers, etc. Conventionally, Ag-C has been used as a silver-oxide electrical contact material.
dO-based materials are known. This material is manufactured by a method of internally oxidizing Cd in an Ag-Cd alloy which is a melting / casting material under a low oxygen partial pressure with an oxygen partial pressure of about atmospheric pressure to about 30 atmospheric pressure. And the properties required for electrical contact materials,
It has a relatively well-balanced low contact resistance, high welding resistance and high wear resistance.

【0003】しかし、Ag−CdO系電気接点材料は、
人体に対して有害なCdを含んでいるため、Cdをでき
るだけ使用しないで、上記と同様、溶解・鋳造材中にS
n、Zn、In、Mn等の元素を添加し、これらの添加
元素を低酸素分圧下で内部酸化する方法で製造する銀−
酸化物系電気接点材料が開発されている。しかし、上記
銀−酸化物系電気接点材料は、電気接点材料として要求
される性能向上に対して、十分応え得るものではなかっ
た。すなわち、次の欠点があった。
However, Ag-CdO type electrical contact materials are
Since it contains Cd which is harmful to the human body, Cd should not be used as much as possible.
Silver produced by a method in which elements such as n, Zn, In, and Mn are added, and these additional elements are internally oxidized under a low oxygen partial pressure.
Oxide-based electrical contact materials have been developed. However, the above-mentioned silver-oxide type electrical contact material has not been able to sufficiently meet the performance improvement required as an electrical contact material. That is, there were the following drawbacks.

【0004】(1)材料の内部になるほど、酸化物が粗
大化し、酸化物粒子の分散状態が不均一となるため、安
定した接点性能が得られない。 (2)材料の中心部に酸化物の稀薄な層が生じるため、
電気接点としての寿命が短い。 (3)材料の耐消耗性や耐溶着性を向上させるために、
溶解・鋳造材中の添加元素の濃度を増大することが考え
られる。しかし、添加元素の濃度の上限には、銀中に固
溶可能な範囲という限度がある上、固溶可能な範囲内で
あっても、内部酸化の工程でかなりの時間を要し、時に
は材料表面に酸化物の緻密な層が生じ内部酸化が進行し
なくなることがある。
(1) As the inside of the material becomes coarser, the oxide becomes coarser and the dispersion state of the oxide particles becomes non-uniform, so that stable contact performance cannot be obtained. (2) Since a thin layer of oxide occurs in the center of the material,
Short life as an electrical contact. (3) To improve the wear resistance and welding resistance of the material,
It is conceivable to increase the concentration of the additive element in the molten / cast material. However, the upper limit of the concentration of the additive element is limited to the range where it can be solid-solubilized in silver, and even if it is within the range where it can be solid-solubilized, a considerable amount of time is required for the internal oxidation step, and sometimes the material is A dense layer of oxide may be formed on the surface and internal oxidation may not proceed.

【0005】上記(1)の理由は、次のように考えられ
る。すなわち、酸化物の粒径は、内部酸化の先端が通過
するときの核生成速度と、核生成に続く粒子の成長速度
および粗大化速度との競合によって決まる。このため、
低酸素分圧下の内部酸化では材料の表面から内部に内部
酸化が向かうにつれ、酸素の拡散速度が低下し、酸化物
粒子は粗大化する。このようにして酸化物の分散状態が
不均一になった電気接点材料では、接点の開閉時に生ず
るアークによる消耗の進行とともに接触部分の酸化物の
分散状態が変化するため、銀成分の偏析が進み、耐溶着
性などの特性に影響を与える。
The reason for (1) above is considered as follows. That is, the particle size of the oxide is determined by the competition between the nucleation rate as the internal oxidation tip passes through and the particle growth rate and coarsening rate following nucleation. For this reason,
In internal oxidation under a low oxygen partial pressure, as the internal oxidation proceeds from the surface of the material to the inside, the diffusion rate of oxygen decreases and the oxide particles become coarse. In an electrical contact material in which the oxide dispersion state is non-uniform in this way, the dispersion state of the oxide in the contact area changes as the wear caused by the arc that occurs when the contact opens and closes, leading to the segregation of silver components. Affects properties such as welding resistance.

【0006】また、上記(2)および(3)の理由は、
次のように考えられる。すなわち、材料中心部における
酸化物の稀薄な層の生成および材料表面における酸化物
の緻密な層の生成は、いずれも、酸素の拡散速度が低下
したため、添加元素が表面に向かって拡散したことによ
る。上記のような、溶解・鋳造材中の添加元素を、酸素
分圧が大気圧〜30気圧程度の低酸素分圧下で内部酸化
する方法で生ずる欠点は、酸素分圧が数百気圧という高
酸素分圧下で内部酸化する方法を採ることにより解消で
きる。
The reasons for the above (2) and (3) are as follows.
It is considered as follows. That is, the formation of a dilute layer of oxide in the central part of the material and the formation of a dense layer of oxide on the surface of the material are both due to the fact that the additive element diffused toward the surface because the diffusion rate of oxygen decreased. . The above-mentioned drawbacks caused by the internal oxidation of the additive element in the molten / casting material under the low oxygen partial pressure of oxygen atmospheric pressure to about 30 atmospheric pressure is a high oxygen partial pressure of several hundred atmospheric pressure. This can be solved by adopting the method of internal oxidation under partial pressure.

【0007】この理由は、次のように考えられる。すな
わち、高酸素分圧下での内部酸化により、酸素の拡散速
度の低下を極度に抑え、低酸素分圧下の内部酸化では粗
大化し易かった酸化物粒子を微細に分散させることがで
きる。また、添加元素が表面に向かって拡散し難いため
に、材料の中心部に酸化物の稀薄な層が生じず、高い元
素濃度の材料でも材料表面に酸化物の緻密な層が生じな
くなる。
The reason for this is considered as follows. That is, it is possible to extremely suppress the decrease in the diffusion rate of oxygen by the internal oxidation under the high oxygen partial pressure, and to finely disperse the oxide particles which are easily coarsened by the internal oxidation under the low oxygen partial pressure. Further, since the additive element is difficult to diffuse toward the surface, a thin layer of oxide is not formed in the central portion of the material, and a dense layer of oxide is not formed on the surface of the material even if the material has a high element concentration.

【0008】しかし、この方法には、次の欠点が別に生
じたり残る。すなわち、 (1)材料中に内部酸化物が波状に析出するため、耐消
耗性になお問題がある。 (2)導電率が、上記低酸素分圧下で内部酸化する方法
で製造した材料より低い。 (3)接触抵抗の安定性にもなお問題がある。 (4)高硬度のため、所定の接点形状に加工するのが困
難である。
However, this method has the following drawbacks and remains. That is, (1) since the internal oxide is precipitated in a wavy shape in the material, there is still a problem in wear resistance. (2) The conductivity is lower than that of the material produced by the method of internal oxidation under the low oxygen partial pressure. (3) The stability of the contact resistance still has a problem. (4) Due to its high hardness, it is difficult to process it into a predetermined contact shape.

【0009】上記のような溶解・鋳造法を利用する方法
の欠点を解消するため、粉末冶金法を利用する方法が提
案されている。すなわち、銀を含む原料粉末を成形、焼
結した後、高酸素分圧下で内部酸化する方法が知られて
いる。この方法において、添加元素を酸化物状で原料粉
末中に含むようにすると、上記高酸素分圧下で内部酸化
する工程で1μm以下の酸化物粒子が微細に、かつ均一
に析出し、材料の高温強度の増加をもたらす。従って、
接点開閉時に生ずるアークによる消耗が抑えられ、特に
高い添加元素濃度の材料に起きる内部酸化物の波状析出
(上記(1))が起こらず、耐消耗性が著しく改善され
た材料を製造することができる。しかしながら、この方
法により製造した銀−酸化物系焼結電気接点材料は、導
電率がまだ低いという問題があった。
In order to solve the drawbacks of the method using the melting / casting method as described above, a method using the powder metallurgy method has been proposed. That is, a method is known in which a raw material powder containing silver is molded, sintered, and then internally oxidized under a high oxygen partial pressure. In this method, when the raw material powder is made to contain the additive element in the form of oxide, oxide particles of 1 μm or less are finely and uniformly deposited in the step of internal oxidation under the above-mentioned high oxygen partial pressure, resulting in high temperature of the material. Results in increased strength. Therefore,
It is possible to manufacture a material whose wear resistance is remarkably improved because the wear caused by the arc generated when the contact is opened and closed is suppressed, and the wavy precipitation of the internal oxide ((1) above) that occurs in the material with a particularly high additive element concentration does not occur. it can. However, the silver-oxide-based sintered electrical contact material produced by this method has a problem that the electrical conductivity is still low.

【0010】[0010]

【発明が解決しようとする課題】そこで、本発明は、上
記事情に鑑み、接触抵抗の安定性、耐溶着性および耐消
耗性に優れるだけでなく、高い導電率をも有する銀−酸
化物系焼結電気接点材料およびその製造方法を提供する
ことを目的とする。
Therefore, in view of the above circumstances, the present invention is a silver-oxide system having not only excellent contact resistance stability, welding resistance and wear resistance but also high conductivity. It is an object to provide a sintered electrical contact material and a method for manufacturing the same.

【0011】[0011]

【課題を解決するための手段】本発明の第1のもの(以
下、第1発明という)は、銀を含む原料粉末を成形、焼
結した後、高圧内部酸化する方法において、該高圧内部
酸化して得られた内部酸化体を、該高圧内部酸化の酸素
分圧より低い酸素分圧の雰囲気または実質的に酸素を含
まない雰囲気、および該高圧内部酸化の温度より高く、
かつ400〜960℃の温度で熱処理することを特徴と
する銀−酸化物系焼結電気接点材料の製造方法である。
ここで、高圧内部酸化とは、酸素分圧50〜500気
圧、温度200〜900℃の条件で行う内部酸化を意味
する。
The first aspect of the present invention (hereinafter referred to as the first invention) is a method of forming a raw material powder containing silver, sintering the same, and then performing high-pressure internal oxidation. The obtained internal oxidant is an atmosphere having an oxygen partial pressure lower than the oxygen partial pressure of the high-pressure internal oxidation or an atmosphere substantially containing no oxygen, and higher than the temperature of the high-pressure internal oxidation,
And a heat treatment at a temperature of 400 to 960 ° C., which is a method for producing a silver-oxide-based sintered electrical contact material.
Here, the high-pressure internal oxidation means internal oxidation carried out under conditions of an oxygen partial pressure of 50 to 500 atm and a temperature of 200 to 900 ° C.

【0012】また、本発明の第2のもの(以下、第2発
明という)は、第1発明において、得られた焼結体を、
銀−酸化物系焼結電気接点材料の耐消耗性をさらに向上
させるために緻密化加工した後、内部酸化する方法であ
る。そして、本発明の第3のもの(以下、第3発明とい
う)は、上記第1発明または第2発明の銀−酸化物系焼
結電気接点材料の製造方法で製造され、導電率が60%
(IACS)以上である銀−酸化物系焼結電気接点材料
である。
A second aspect of the present invention (hereinafter referred to as the second aspect of the invention) is the sintered body obtained in the first aspect of the invention.
This is a method of performing internal oxidization after densification processing in order to further improve wear resistance of the silver-oxide-based sintered electrical contact material. A third aspect of the present invention (hereinafter referred to as the third aspect) is produced by the method for producing a silver-oxide sintered electrical contact material according to the first aspect or the second aspect, and has a conductivity of 60%.
It is a silver-oxide type sintered electrical contact material having (IACS) or more.

【0013】[0013]

【発明の実施の形態】第1発明および第2発明の銀−酸
化物系焼結電気接点材料の製造方法において、Agに添
加される添加元素としては、Sn、Zn、In、Al、
Cd、Ga、Mg、Mn、Sb、Ti、Zr、Ca、C
e、Be、Th、Sr、Cr、Hf、Si、Bi、P
b、Fe、NiおよびCoよりなる群から選ばれた少な
くとも1種が挙げられる。第2発明における緻密化加工
は、製造される銀−酸化物系焼結電気接点材料の耐消耗
性を向上させるために行うもので、具体的には、圧縮加
工、鍛造加工、押出し加工等が挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION In the method for producing a silver-oxide-based sintered electrical contact material according to the first invention and the second invention, the additive elements added to Ag are Sn, Zn, In, Al,
Cd, Ga, Mg, Mn, Sb, Ti, Zr, Ca, C
e, Be, Th, Sr, Cr, Hf, Si, Bi, P
At least one selected from the group consisting of b, Fe, Ni and Co can be mentioned. The densification process in the second invention is performed to improve the wear resistance of the produced silver-oxide-based sintered electrical contact material, and specifically, compression process, forging process, extrusion process and the like are performed. Can be mentioned.

【0014】粉末冶金法に供する原料粉末には、通常、
上記添加元素を、酸化物状で1〜30重量%、金属状で
0.5〜20重量%含ませる。上記酸化物が1重量%未
満では、銀−酸化物系焼結電気接点材料の導電率は高
く、接触抵抗は小さくなるものの、耐消耗性と耐溶着性
が悪化し、一方、30重量%を超えると、耐消耗性と耐
溶着性は向上するものの、導電率が低下し、さらに接触
抵抗が大きく、かつ不安定になる。
The raw material powder to be subjected to the powder metallurgy method is usually
The additive element is contained in an oxide form in an amount of 1 to 30% by weight and in a metallic form in an amount of 0.5 to 20% by weight. If the amount of the oxide is less than 1% by weight, the conductivity of the silver-oxide-based sintered electrical contact material is high and the contact resistance is low, but the wear resistance and the welding resistance are deteriorated. When it exceeds the above range, the wear resistance and the welding resistance are improved, but the conductivity is lowered, the contact resistance is further increased, and the resistance becomes unstable.

【0015】第1発明および第2発明において、高圧内
部酸化した後、得られた内部酸化体を、該高圧内部酸化
の酸素分圧より低い酸素分圧の雰囲気または実質的に酸
素を含まない雰囲気、および該高圧内部酸化の温度より
高く、かつ400〜960℃の温度で熱処理することが
重要である。このように熱処理することによって、第3
発明である、導電率が60%(IACS)以上の銀−酸
化物系焼結電気接点材料を製造することができる。
In the first and second inventions, after the high-pressure internal oxidation, the obtained internal oxidant is subjected to an atmosphere having an oxygen partial pressure lower than the oxygen partial pressure of the high-pressure internal oxidation or an atmosphere containing substantially no oxygen. , And higher than the temperature of the high-pressure internal oxidation and at a temperature of 400 to 960 ° C. is important. By performing the heat treatment in this way, the third
The invention is capable of producing a silver-oxide-based sintered electrical contact material having an electrical conductivity of 60% (IACS) or more.

【0016】この理由は、次のように考えられる。すな
わち、高圧内部酸化の際、高酸素分圧下で酸素を材料中
に過剰に拡散させるため、高圧内部酸化後も酸素が材料
中に過飽和に固溶している。この過飽和に固溶した酸素
が銀−酸化物系焼結電気接点材料の導電率を低下させ
る。上記のように熱処理することによって、上記過飽和
に固溶した酸素が放出され、導電率が60%(IAC
S)以上の銀−酸化物系焼結電気接点材料を製造するこ
とができると考えられる。この熱処理の温度が400℃
未満では、上記酸素の放出が十分でなく、導電率が60
%(IACS)以上の銀−酸化物系焼結電気接点材料を
製造し難く、また960℃を超えると、材料の溶融が目
立ってくる。上記熱処理における雰囲気は、酸素分圧
0.21気圧以下の雰囲気または実質的に酸素を含まな
い雰囲気とするのが、雰囲気調製が簡便で好ましい。上
記熱処理によって、銀−酸化物系焼結電気接点材料の導
電率が向上するため、接点開閉時の温度上昇も少なくな
り、従って、接触抵抗もより低く、かつより安定するこ
とになる。
The reason for this is considered as follows. That is, during high-pressure internal oxidation, oxygen is excessively diffused into the material under a high oxygen partial pressure, so that oxygen is supersaturated as a solid solution in the material even after high-pressure internal oxidation. This supersaturated solid solution oxygen reduces the conductivity of the silver-oxide-based sintered electrical contact material. By performing the heat treatment as described above, oxygen dissolved in the supersaturation as a solid solution is released, and the conductivity becomes 60% (IAC).
It is believed that S) and above silver-oxide based sintered electrical contact materials can be produced. The temperature of this heat treatment is 400 ° C
If it is less than the above, the above-mentioned release of oxygen is not sufficient, and the conductivity is 60.
% (IACS) or more of a silver-oxide-based sintered electrical contact material is difficult to manufacture, and above 960 ° C., melting of the material becomes conspicuous. The atmosphere in the heat treatment is preferably an atmosphere having an oxygen partial pressure of 0.21 atm or less or an atmosphere containing substantially no oxygen because the atmosphere preparation is simple and easy. The heat treatment improves the conductivity of the silver-oxide-based sintered electrical contact material, so that the temperature rise during opening and closing of the contact is reduced, and therefore the contact resistance is lower and more stable.

【0017】[0017]

【実施例】以下、第2発明、第3発明の実施例、比較例
および従来例について説明する。 [実施例1]Snを9重量%含み、残部が実質的にAg
からなる溶湯を、冷却速度を104〜105℃/sとす
るヘリウムガスアトマイズ法によりアトマイズして、平
均粒径10μm以下のAg−Sn合金粉末を作製した。
この合金粉末に、SnO2 粉末(平均粒径0.1μm以
下)とAl23粉末(平均粒径0.1μm以下)を夫々
11重量%、4重量%添加し、ボールミルで混合した。
得られた原料粉末を金型を用いて圧粉成形した後、成形
体を真空雰囲気中で焼結し、さらに、押し出し加工によ
り緻密化加工してビレットを得た。上記押し出しビレッ
トから線材を経て、リベットを得た。
EXAMPLES Examples of the second and third inventions, comparative examples and conventional examples will be described below. [Example 1] 9 wt% of Sn was contained, and the balance was substantially Ag.
Was melted by a helium gas atomizing method at a cooling rate of 104 to 105 ° C./s to prepare an Ag—Sn alloy powder having an average particle diameter of 10 μm or less.
11% by weight and 4% by weight of SnO 2 powder (average particle size of 0.1 μm or less) and Al 2 O 3 powder (average particle size of 0.1 μm or less) were added to this alloy powder and mixed by a ball mill.
The raw material powder thus obtained was compacted using a mold, the compact was sintered in a vacuum atmosphere, and further densified by extrusion to obtain a billet. A rivet was obtained from the extruded billet through the wire rod.

【0018】次にリベットを温度500℃、酸素分圧3
00気圧の条件で高圧内部酸化した。得られた内部酸化
体に対して、導電率を測定した(導電率の測定方法は、
以後、他の実施例、比較例、従来例でも同様である)。
その後、余剰酸素を除去するために、温度900℃、保
持時間16時間、雰囲気窒素気流(酸素分圧0気圧)中
の条件で、内部酸化体を熱処理した。得られた電気接点
に対して、接触抵抗と導電率を測定した(接触抵抗の測
定方法は、以後、他の実施例、比較例、従来例でも同様
である)。さらに、この電気接点の接点特性を調べるた
め、この電気接点を銅台金に溶接した後、電磁接触器を
用いて開閉試験を行った。その試験条件は、AC220
V、50Hz、リアクトル負荷150A、開閉頻度0.
1秒ON−2.9秒OFF、開閉回数30000回(最
高)とした。開閉試験後、接触抵抗を測定し、また、開
閉試験前後の電気接点重量の差として、消耗量を算出し
た。得られた結果を表1に示す。
Next, the rivet is set at a temperature of 500 ° C. and an oxygen partial pressure of 3
High-pressure internal oxidation was performed under the conditions of 00 atm. The conductivity was measured with respect to the obtained internal oxidant (the method for measuring the conductivity is
Thereafter, the same applies to other examples, comparative examples, and conventional examples).
Then, in order to remove excess oxygen, the internal oxidant was heat-treated under the conditions of a temperature of 900 ° C., a holding time of 16 hours, and an atmospheric nitrogen stream (oxygen partial pressure of 0 atm). The contact resistance and the conductivity of the obtained electrical contact were measured (the method of measuring the contact resistance is the same in other examples, comparative examples, and conventional examples hereinafter). Furthermore, in order to examine the contact characteristics of this electrical contact, after opening the electrical contact on a copper base metal, a switching test was performed using an electromagnetic contactor. The test conditions are AC220.
V, 50 Hz, reactor load 150 A, switching frequency 0.
It was set to 1 second ON-2.9 seconds OFF, and opened / closed 30000 times (maximum). After the switching test, the contact resistance was measured, and the consumption amount was calculated as the difference in the weight of the electrical contacts before and after the switching test. Table 1 shows the obtained results.

【0019】[実施例2〜9]Ag−Sn合金粉末に、
SnO2 粉末(平均粒径0.1μm以下)と表1に示し
た酸化物粉末(いずれも、平均粒径0.1μm以下)を
夫々11重量%、4重量%添加し、ボールミルで混合し
た以外は、実施例1と同様に試験した。結果を表1に示
す。
[Examples 2 to 9] Ag-Sn alloy powder was added,
11% by weight and 4% by weight of SnO 2 powder (average particle size of 0.1 μm or less) and oxide powders shown in Table 1 (all of which have an average particle size of 0.1 μm or less) were added and mixed by a ball mill. Was tested as in Example 1. The results are shown in Table 1.

【0020】[実施例10]Ag−Sn合金粉末に、S
nO2 粉末(平均粒径0.1μm以下)を15重量%添
加し、ボールミルで混合した以外は、実施例1と同様に
試験した。結果を表1に示す。
[Example 10] Ag-Sn alloy powder was added with S
The same test as in Example 1 was carried out except that 15% by weight of nO 2 powder (average particle size: 0.1 μm or less) was added and mixed in a ball mill. The results are shown in Table 1.

【0021】[0021]

【表1】 [Table 1]

【0022】[実施例11〜19] (1)Znを9重量%含み、残部が実質的にAgからな
る溶湯を、冷却速度を104〜105℃/sとするヘリ
ウムガスアトマイズ法によりアトマイズして、平均粒径
10μm以下のAg−Zn合金粉末を作製したこと、
(2)(1)のAg−Zn合金粉末に、ZnO粉末(平
均粒径0.1μm以下)と表2に示した酸化物粉末(い
ずれも、平均粒径0.1μm以下)を夫々11重量%、
4重量%添加し、ボールミルで混合したこと、および
(3)余剰酸素を除去するために、温度900℃、保持
時間16時間、雰囲気大気(酸素分圧0.21気圧)中
の条件で、内部酸化体を熱処理したこと以外は、実施例
1と同様に試験した。結果を表2に示す。
Examples 11 to 19 (1) A molten metal containing 9% by weight of Zn and the balance being substantially Ag was atomized by a helium gas atomizing method at a cooling rate of 104 to 105 ° C./s, and That an Ag—Zn alloy powder having an average particle size of 10 μm or less was produced,
(2) To the Ag—Zn alloy powder of (1), ZnO powder (average particle size 0.1 μm or less) and oxide powders shown in Table 2 (both average particle size 0.1 μm or less) were 11 weight each. %,
4% by weight was added and mixed by a ball mill, and (3) in order to remove excess oxygen, the temperature was 900 ° C., the holding time was 16 hours, and the atmosphere was atmospheric (oxygen partial pressure was 0.21 atm). The same test as in Example 1 was carried out except that the oxidant was heat-treated. Table 2 shows the results.

【0023】[実施例20]Ag−Zn合金粉末に、Z
nO粉末(平均粒径0.1μm以下)を15重量%添加
し、ボールミルで混合した以外は、実施例11と同様に
試験した。結果を表2に示す。
[Example 20] Z powder was added to Ag-Zn alloy powder.
The same test as in Example 11 was carried out except that 15% by weight of nO powder (average particle size: 0.1 μm or less) was added and mixed by a ball mill. Table 2 shows the results.

【0024】[0024]

【表2】 [Table 2]

【0025】[実施例21〜29] (1)Inを9重量%含み、残部が実質的にAgからな
る溶湯を、冷却速度を104〜105℃/sとするヘリ
ウムガスアトマイズ法によりアトマイズして、平均粒径
10μm以下のAg−In合金粉末を作製したこと、お
よび(2)(1)のAg−In合金粉末に、In23
末(平均粒径0.1μm以下)と表3に示した酸化物粉
末(いずれも、平均粒径0.1μm以下)をそれぞれ1
9重量%、1重量%添加し、ボールミルで混合したこと
以外は、実施例1と同様に試験した。結果を表3に示
す。
[Examples 21 to 29] (1) A molten metal containing 9% by weight of In and the balance being substantially Ag was atomized by a helium gas atomizing method at a cooling rate of 104 to 105 ° C./s, and Table 2 shows that an Ag-In alloy powder having an average particle size of 10 µm or less was prepared, and (2) (1) the Ag-In alloy powder was an In 2 O 3 powder (average particle size of 0.1 µm or less). 1 of each oxide powder (all have an average particle size of 0.1 μm or less)
The same test as in Example 1 was conducted except that 9% by weight and 1% by weight were added and mixed by a ball mill. The results are shown in Table 3.

【0026】[実施例30]Ag−In合金粉末に、I
23粉末(平均粒径0.1μm以下)を20重量%添
加し、ボールミルで混合した以外は、実施例21と同様
に試験した。結果を表3に示す。
Example 30 Ag-In alloy powder was added with I
The same test as in Example 21 was carried out except that 20% by weight of n 2 O 3 powder (average particle size: 0.1 μm or less) was added and mixed in a ball mill. The results are shown in Table 3.

【0027】[0027]

【表3】 [Table 3]

【0028】[従来例]溶解・鋳造法により溶湯を鋳造
して、Ag−Cd合金インゴットを作製した。この合金
インゴットを圧延して線材を得、線材からリベットを得
た。次にリベットを温度500℃、酸素分圧300気圧
の条件で高圧内部酸化した。得られた電気接点は、13
重量%のCdOを含んでいた。この電気接点に対して、
接触抵抗と導電率を測定した。さらに、この電気接点の
接点特性を調べるため、実施例1と同様にして開閉試験
を行った。また、開閉試験後、接触抵抗を測定し、ま
た、開閉試験前後の電気接点重量の差として、消耗量を
算出した。得られた結果を表4に示す。
[Conventional Example] A molten metal was cast by a melting / casting method to prepare an Ag-Cd alloy ingot. This alloy ingot was rolled to obtain a wire rod, and a rivet was obtained from the wire rod. Next, the rivet was subjected to high-pressure internal oxidation under the conditions of a temperature of 500 ° C. and an oxygen partial pressure of 300 atm. The electrical contact obtained is 13
It contained wt% CdO. For this electrical contact,
Contact resistance and conductivity were measured. Further, in order to examine the contact characteristics of this electric contact, a switching test was conducted in the same manner as in Example 1. Further, after the switching test, the contact resistance was measured, and the consumption amount was calculated as the difference in the weight of the electrical contacts before and after the switching test. Table 4 shows the obtained results.

【0029】[比較例1]溶解・鋳造法により溶湯を鋳
造して、Ag−Sn合金インゴットを作製した。この合
金インゴットを圧延して線材を得、線材からリベットを
得た。次にリベットを温度500℃、酸素分圧300気
圧の条件で高圧内部酸化した。得られた内部酸化体は、
15重量%のSnO2 を含んでいた。この内部酸化体に
対して、導電率を測定した。その後、余剰酸素を除去す
るために、温度900℃、保持時間16時間、雰囲気窒
素気流(酸素分圧0気圧)中の条件で、内部酸化体を熱
処理すること以後は、実施例1と同様に試験した。得ら
れた結果を表4に示す。
[Comparative Example 1] A molten metal was cast by a melting / casting method to prepare an Ag-Sn alloy ingot. This alloy ingot was rolled to obtain a wire rod, and a rivet was obtained from the wire rod. Next, the rivet was subjected to high-pressure internal oxidation under the conditions of a temperature of 500 ° C. and an oxygen partial pressure of 300 atm. The internal oxidant obtained is
It contained 15% by weight of SnO 2 . The conductivity of this internal oxidant was measured. Then, in order to remove excess oxygen, the internal oxidant was heat-treated under the conditions of a temperature of 900 ° C., a holding time of 16 hours, and an atmospheric nitrogen stream (oxygen partial pressure of 0 atm), and thereafter, as in Example 1. Tested. Table 4 shows the obtained results.

【0030】[比較例2] (1)溶解・鋳造法により溶湯を鋳造して、Ag−Zn
合金インゴットを作製したこと、および(2)余剰酸素
を除去するために、温度900℃、保持時間16時間、
雰囲気大気(酸素分圧0.21気圧)中の条件で、内部
酸化体を熱処理したこと以外は、比較例1と同様に試験
した。なお、内部酸化体は、15重量%のZnOを含ん
でいた。結果を表4に示す。
Comparative Example 2 (1) A molten metal was cast by a melting / casting method to obtain Ag-Zn.
An alloy ingot was produced, and (2) in order to remove excess oxygen, a temperature of 900 ° C., a holding time of 16 hours,
The test was performed in the same manner as in Comparative Example 1 except that the internal oxidant was heat-treated under the conditions of atmospheric air (oxygen partial pressure of 0.21 atm). The internal oxidant contained 15% by weight of ZnO. The results are shown in Table 4.

【0031】[比較例3]溶解・鋳造法により溶湯を鋳
造して、Ag−In合金インゴットを作製したこと以外
は、比較例1と同様に試験した。なお、内部酸化体は、
20重量%のIn23を含んでいた。結果を表4に示
す。
[Comparative Example 3] A test was performed in the same manner as Comparative Example 1 except that an Ag-In alloy ingot was produced by casting a molten metal by a melting / casting method. The internal oxidant is
It contained 20% by weight of In 2 O 3 . The results are shown in Table 4.

【0032】[0032]

【表4】 [Table 4]

【0033】表1〜4から次のことがいえる。すなわ
ち、実施例1〜30で製造された電気接点は、いずれも
従来例のAg−CdO系の電気接点に匹敵する導電率と
接触抵抗の安定性を有し、かつ優れた耐溶着性と耐消耗
性を兼ね備えていた。これに対して、比較例で製造され
た電気接点は、いずれも耐溶着性と耐消耗性が十分なも
のではない。
The following can be said from Tables 1 to 4. That is, each of the electrical contacts manufactured in Examples 1 to 30 has stability of conductivity and contact resistance comparable to those of the conventional Ag-CdO-based electrical contacts, and has excellent welding resistance and resistance. It was also consumable. On the other hand, none of the electrical contacts manufactured in Comparative Examples have sufficient welding resistance and wear resistance.

【0034】[0034]

【発明の効果】本発明の銀−酸化物系焼結電気接点材料
およびその製造方法によって製造された銀−酸化物系焼
結電気接点材料によれば、導電率、耐消耗性、耐溶着性
に優れ、しかも接触抵抗が安定した銀−酸化物系焼結電
気接点材料を提供することができる。
According to the silver-oxide sintered electrical contact material of the present invention and the silver-oxide sintered electrical contact material produced by the method for producing the same, the electrical conductivity, wear resistance, and welding resistance are improved. It is possible to provide a silver-oxide-based sintered electrical contact material having excellent contact resistance and stable contact resistance.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 銀を含む原料粉末を成形、焼結した後、
高圧内部酸化する方法において、該高圧内部酸化して得
られた内部酸化体を、該高圧内部酸化の酸素分圧より低
い酸素分圧の雰囲気または実質的に酸素を含まない雰囲
気、および該高圧内部酸化の温度より高く、かつ400
〜960℃の温度で熱処理することを特徴とする銀−酸
化物系焼結電気接点材料の製造方法。
1. After molding and sintering a raw material powder containing silver,
In the high-pressure internal oxidation method, the internal oxidant obtained by the high-pressure internal oxidation is treated in an atmosphere having an oxygen partial pressure lower than the oxygen partial pressure of the high-pressure internal oxidation, or an atmosphere containing substantially no oxygen, and the high-pressure internal oxidation. Higher than the oxidation temperature and 400
A method for producing a silver-oxide-based sintered electrical contact material, which comprises heat-treating at a temperature of ˜960 ° C.
【請求項2】 銀を含む原料粉末を成形、焼結した後、
高圧内部酸化する方法において、該焼結した後、緻密化
加工し、次に、該高圧内部酸化した後、得られた内部酸
化体を、該高圧内部酸化の酸素分圧より低い酸素分圧の
雰囲気または実質的に酸素を含まない雰囲気、および該
高圧内部酸化の温度より高く、かつ400〜960℃の
温度で熱処理することを特徴とする銀−酸化物系焼結電
気接点材料の製造方法。
2. After molding and sintering a raw material powder containing silver,
In the method of high-pressure internal oxidation, after sintering, densification, and then high-pressure internal oxidation, the obtained internal oxidant is treated with an oxygen partial pressure lower than that of the high-pressure internal oxidation. A method for producing a silver-oxide-based sintered electrical contact material, which comprises performing heat treatment in an atmosphere or an atmosphere substantially containing no oxygen, and at a temperature higher than the temperature of the high-pressure internal oxidation and a temperature of 400 to 960 ° C.
【請求項3】 緻密化加工は、圧縮加工、鍛造加工また
は押出し加工である請求項2に記載の銀−酸化物系焼結
電気接点材料の製造方法。
3. The method for producing a silver-oxide-based sintered electrical contact material according to claim 2, wherein the densification processing is compression processing, forging processing or extrusion processing.
【請求項4】 熱処理する際の酸素分圧は、0.21気
圧以下である請求項1、2または3に記載の銀−酸化物
系焼結電気接点材料の製造方法。
4. The method for producing a silver-oxide-based sintered electrical contact material according to claim 1, 2 or 3, wherein the oxygen partial pressure during the heat treatment is 0.21 atm or less.
【請求項5】 原料粉末は、Sn、Zn、In、Al、
Cd、Ga、Mg、Mn、Sb、Ti、Zr、Ca、C
e、Be、Th、Sr、Cr、Hf、Si、Bi、P
b、Fe、NiおよびCoよりなる群から選ばれた少な
くとも1種の元素を、酸化物状で1〜30重量%、金属
状で0.5〜20重量%含む請求項1〜4のいずれかに
記載の銀−酸化物系焼結電気接点材料の製造方法。
5. The raw material powder is Sn, Zn, In, Al,
Cd, Ga, Mg, Mn, Sb, Ti, Zr, Ca, C
e, Be, Th, Sr, Cr, Hf, Si, Bi, P
5. At least one element selected from the group consisting of b, Fe, Ni and Co is contained in an oxide form of 1 to 30% by weight and a metallic form of 0.5 to 20% by weight. The method for producing a silver-oxide-based sintered electrical contact material according to 1.
【請求項6】 高圧内部酸化は、酸素分圧50〜500
気圧、温度200〜900℃の条件で行う請求項1〜5
のいずれかに記載の銀−酸化物系焼結電気接点材料の製
造方法。
6. The high pressure internal oxidation is carried out at an oxygen partial pressure of 50 to 500.
It carries out on the conditions of atmospheric pressure and temperature 200-900 degreeC.
A method for producing a silver-oxide-based sintered electrical contact material according to any one of 1.
【請求項7】 請求項1〜6のいずれかの方法で製造さ
れ、導電率が60%(IACS)以上である銀−酸化物
系焼結電気接点材料。
7. A silver-oxide-based sintered electrical contact material produced by the method according to claim 1 and having an electrical conductivity of 60% (IACS) or more.
JP1808296A 1996-01-09 1996-01-09 Silver-oxide type sintered electrical contact material and its manufacture Pending JPH09194967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1808296A JPH09194967A (en) 1996-01-09 1996-01-09 Silver-oxide type sintered electrical contact material and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1808296A JPH09194967A (en) 1996-01-09 1996-01-09 Silver-oxide type sintered electrical contact material and its manufacture

Publications (1)

Publication Number Publication Date
JPH09194967A true JPH09194967A (en) 1997-07-29

Family

ID=11961735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1808296A Pending JPH09194967A (en) 1996-01-09 1996-01-09 Silver-oxide type sintered electrical contact material and its manufacture

Country Status (1)

Country Link
JP (1) JPH09194967A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006206963A (en) * 2005-01-28 2006-08-10 Kansai Pipe Kogyo Kk Alumina dispersion-strengthened silver rod, its production method, electric contact material and relay for electric vehicle
CN106086503A (en) * 2016-07-20 2016-11-09 浙江大学 A kind of high connductivity flexibility silver-based composite material and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006206963A (en) * 2005-01-28 2006-08-10 Kansai Pipe Kogyo Kk Alumina dispersion-strengthened silver rod, its production method, electric contact material and relay for electric vehicle
CN106086503A (en) * 2016-07-20 2016-11-09 浙江大学 A kind of high connductivity flexibility silver-based composite material and preparation method thereof

Similar Documents

Publication Publication Date Title
US4162160A (en) Electrical contact material and method for making the same
US4141727A (en) Electrical contact material and method of making the same
US6432157B1 (en) Method for preparing Ag-ZnO electric contact material and electric contact material produced thereby
KR940004945B1 (en) Silver base electrical contact materials and method of making the same
JPH0896643A (en) Electric contact point material
JPH09194967A (en) Silver-oxide type sintered electrical contact material and its manufacture
JPH11269579A (en) Silver-tungsten/wc base sintered type electric contact material and its production
KR950006738B1 (en) Contact point for a vacuum interrupter
JPH101730A (en) Manufacture of silver-oxide sintered electrical contact material
JPS6048578B2 (en) electrical contact materials
JPS641536B2 (en)
JPH08127829A (en) Electric contact material and its production
JPH116022A (en) Electrical contact material and its production
US4249944A (en) Method of making electrical contact material
JPH08209268A (en) Copper-chromium-nickel composite material and its production
JPH07188702A (en) Ag-base alloy powder and its production
JPH0813065A (en) Sintered material for electrical contact and production thereof
JP2831834B2 (en) Manufacturing method of contact material for vacuum valve
US3799770A (en) Electrical contact material containing silver,cadmium oxide,tin and cobalt
JPH0873966A (en) Production of electrical contact material
JPS6254043A (en) Manufacture of silver-tin oxide type electrical contact point material
JPH11503559A (en) Method of manufacturing molded article made of silver-based contact material
JPH06187865A (en) Electrical contact material and manufacture thereof
JPH0474405B2 (en)
JPH0959727A (en) Production of sintered contact material of silver oxide series