JPH0474405B2 - - Google Patents

Info

Publication number
JPH0474405B2
JPH0474405B2 JP58139142A JP13914283A JPH0474405B2 JP H0474405 B2 JPH0474405 B2 JP H0474405B2 JP 58139142 A JP58139142 A JP 58139142A JP 13914283 A JP13914283 A JP 13914283A JP H0474405 B2 JPH0474405 B2 JP H0474405B2
Authority
JP
Japan
Prior art keywords
materials
resistance
contact
electrical contact
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58139142A
Other languages
Japanese (ja)
Other versions
JPS6029404A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58139142A priority Critical patent/JPS6029404A/en
Publication of JPS6029404A publication Critical patent/JPS6029404A/en
Publication of JPH0474405B2 publication Critical patent/JPH0474405B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は電気接点材料の製造方法、特に、耐溶
着性に優れた無害な電気接点用焼結材料の製造方
法に関する。 従来、中負荷領域の電気接点材料として汎用さ
れているAgCdO系焼結材料は、優れた接点性能
を有しているが、有害なCdを材料とするためそ
の製造工程および使用中にCdを含有する粉塵と
なつて公害を発生する恐れがあり、しかもAg含
有量が多い為コストが高いという欠点もあつた。
他方、Cdを含有しない無害な電気接点材料とし
てAgNi系焼結材料が実用化されているが、この
AgNi系焼結材料はAgCdO系のものに比べ耐溶着
性において劣るという問題があつた。 本発明は、従来のAgNi系焼結材料の欠点であ
る耐溶着性を向上させると共に、AgCdO系電気
接点材料と同等以上の接点性能を有する安価な電
気接点材料を製造できるようにすることを目的と
するものである。 本発明の要旨は、Ni10〜30%、Cu酸化物Cu換
算で1.7〜10%、C0.1〜0.5%、残部実質的にAgか
らなる混合粉末を加圧成形した後、中性もしくは
還元性雰囲気中で焼結させるとともに、前記酸化
物の少なくとも一部を還元して、AgおよびNi中
に金属の形態で固溶させることを特徴とする電気
接点材料の製造方法にある。本発明に係る電気接
点用焼結材料の成分組成を前記のように限定した
理由について説明すると、Niは耐消耗性を向上
させるために添加されるが、Niが10%未満では
その効果が得られず、また30%を越えると加工性
が悪くなるので、10〜30%とした。Cu酸化物は
接触抵抗とNiの分散性を向上させるために添加
されるもので、その添加量が金属Cuに換算して
1.7%未満ではNiの分散性の改善がみられず、10
%を越えると耐溶着性が劣化するので1.7〜10%
とした。また、Cは耐溶着性を向上させるために
添加されるもので、その添加量が0.1%未満では
その添加効果が充分に達成されず、0.5%を越え
ると加工性が悪くなるので0.1〜0.5%とした。 前記成分組成の本発明方法に係る電気接点材料
は、従来のAgNi系焼結材料に比べ耐溶着性が大
幅に改善され、AgCdO系焼結材料と同等以上の
耐溶着性を示す。また、接触抵抗に関しては、
AgにNiを添加すると接触抵抗が増大するが、Cu
酸化物及びCを併添加して共存させつつ焼結する
ことにより、AgCdO系のものよりも小さくする
ことができる。さらに、耐消耗性に関しては、
AgCdO系のものに比べて若干劣るが実用上問題
となる程度の差ではない。しかも、本発明方法に
係る電気接点材料は、AgCdO系焼結材料に比べ
Ag含有量を低減できるので安価に製造すること
ができ、有害なCdを含有しないので公害発生の
原因となることがない。 前記電気接点材料は、本発明によれば、原料と
してAg、Ni、Cu酸化物およびCの各微粉末を用
い、これらを所定比で配合し、加圧成形後、分解
アンモニアガス(N2+H2)などの還元性雰囲気
中700〜800℃で1〜20時間焼結する方法により製
造されるが、これは原料としてAg、Ni、金属Cu
およびCを用いた場合に比べ、焼結過程で前記酸
化物の少なくとも一部が還元されてNi中に固溶
し、Ni合金の微細化加工が行なわれるため、よ
り微細なNi合金粒子のAgマトリツクスへの分散
を得ることができるからである。また、焼結後、
得られた焼結体にサイジング、コイニングなどの
再加工を施すのが好ましい。 原料粉末としては、通常、0.1〜103μ、好まし
くは0.5〜20μのものが使用できるが、これらは市
販のものをそのまま使用すればよい。 以下、本発明の実施例について説明する。 実施例 原料粉末をAg(平均粒径:1.08μ)70重量%、
Ni(平均粒径:2.2μ)19.7重量%、Cu2O(平均粒
径:5μ)10重量%(Cu換算)、C(平均粒系:5μ)
0.3重量%の割合で配合してボールミルにて均一
に混合し、その混合粉末を4t/cm2の圧力下で直径
20mm、長さ30mmに成形し、得られた成形体を還元
性ガス雰囲気(N2+H2)中750℃で2時間加熱
して焼結させ電気接点用焼結体を得た。この焼結
体を700〜800℃に加熱し、押出機を用いて直径6
mmの棒状体に成形した後、伸線ヘツダーにて加工
して得た接点をリレーに組み込み、供試品とし
た。 比較例 1 原料として実施例で用いたAgとCdOとの粉末
を用い、実施例と同様にしてAg−12%CdOから
なる焼結体を得て接点となし、これをリレーに組
み込み供試品とした。 比較例 2 原料として実施例で用いたAgおよびNiの粉末
を用い、これらをAg70%、Ni30%の重量比で混
合し、実施例と同様にしてAgNi径焼結体を得て
接点となし、これをリレーに組み込み供試品とし
た。 比較例 3 実施例で用いた原料粉末AgおよびNiを金属Cu
およびCとともにAg70%、Ni19.7%、Cu金属粉
(平均粒径:5μ)10%、C(平均粒径:5μ)0.3%
の重量比で混合し、実施例と同様にして焼結体を
得て接点となし、これをリレーに組み込み供試品
とした。 前記各実施例および比較例で得た供試品につい
て、下記の条件で接触抵抗、耐消耗性および溶着
特性を測定した。それらの結果を表に示す。な
お、耐消耗性について35万回開閉動作させた時、
接点の接触力が5g以下になつたリレーの個数で
表わしてある。 [試験条件] 供試品:リレー(2C)各5個 電 圧:AC220V 電 流:4A 負 荷:抵抗負荷 接触力:初期20〜30g 開閉頻度:30回/分
The present invention relates to a method for manufacturing an electrical contact material, and more particularly, to a method for manufacturing a harmless sintered material for electrical contacts with excellent welding resistance. Conventionally, AgCdO-based sintered materials, which have been widely used as electrical contact materials in the medium load range, have excellent contact performance, but because they are made from harmful Cd, they contain Cd during the manufacturing process and during use. There is a risk that it will turn into dust and cause pollution, and it also has the disadvantage of being expensive due to the high Ag content.
On the other hand, AgNi-based sintered materials have been put into practical use as harmless electrical contact materials that do not contain Cd.
AgNi-based sintered materials have a problem in that they have inferior adhesion resistance compared to AgCdO-based materials. The purpose of the present invention is to improve the welding resistance, which is a drawback of conventional AgNi-based sintered materials, and to make it possible to manufacture inexpensive electrical contact materials that have contact performance equivalent to or better than AgCdO-based electrical contact materials. That is. The gist of the present invention is to press and mold a mixed powder consisting of 10 to 30% Ni, 1.7 to 10% Cu oxide in terms of Cu, 0.1 to 0.5% C, and the balance substantially Ag, and then The present invention provides a method for producing an electrical contact material, which comprises sintering in an atmosphere and reducing at least a portion of the oxide to form a solid solution in Ag and Ni in the form of metal. To explain the reason why the composition of the sintered material for electrical contacts according to the present invention is limited as described above, Ni is added to improve wear resistance, but if Ni is less than 10%, this effect is not achieved. Moreover, if it exceeds 30%, workability will deteriorate, so it was set at 10 to 30%. Cu oxide is added to improve contact resistance and Ni dispersibility, and the amount added is calculated in terms of metallic Cu.
If it is less than 1.7%, no improvement in Ni dispersibility is observed, and 10
If it exceeds 1.7 to 10%, the welding resistance will deteriorate.
And so. In addition, C is added to improve welding resistance, and if the amount added is less than 0.1%, the effect of addition will not be fully achieved, and if it exceeds 0.5%, workability will deteriorate, so 0.1 to 0.5 %. The electrical contact material according to the method of the present invention having the above-mentioned composition has significantly improved adhesion resistance compared to conventional AgNi-based sintered materials, and exhibits adhesion resistance equal to or higher than that of AgCdO-based sintered materials. Regarding contact resistance,
Adding Ni to Ag increases contact resistance, but Cu
By sintering while adding oxide and C to coexist, it is possible to make the size smaller than that of the AgCdO type. Furthermore, regarding wear resistance,
Although it is slightly inferior to the AgCdO type, it is not a difference that would cause a practical problem. Moreover, the electrical contact material according to the method of the present invention is more effective than the AgCdO-based sintered material.
Since the Ag content can be reduced, it can be manufactured at low cost, and since it does not contain harmful Cd, it does not cause pollution. According to the present invention, the electrical contact material uses fine powders of Ag, Ni, Cu oxide, and C as raw materials, blends these in a predetermined ratio, and presses and molds the materials, followed by decomposed ammonia gas (N 2 +H 2 ) is manufactured by sintering at 700 to 800°C for 1 to 20 hours in a reducing atmosphere, but this method uses Ag, Ni, and metal Cu as raw materials.
Compared to the case where Ag and C are used, at least a part of the oxide is reduced and dissolved in Ni during the sintering process, and the Ni alloy is refined. This is because the distribution in the matrix can be obtained. In addition, after sintering,
It is preferable to subject the obtained sintered body to reprocessing such as sizing and coining. As the raw material powder, powders of 0.1 to 10 3 μm, preferably 0.5 to 20 μm can be used, and commercially available powders may be used as they are. Examples of the present invention will be described below. Example Raw material powder was Ag (average particle size: 1.08μ) 70% by weight,
Ni (average particle size: 2.2μ) 19.7% by weight, Cu 2 O (average particle size: 5μ) 10% by weight (Cu conversion), C (average particle size: 5μ)
Blend at a ratio of 0.3% by weight, mix uniformly in a ball mill, and crush the mixed powder under a pressure of 4t/cm 2 to a diameter
The resulting molded body was heated and sintered at 750° C. for 2 hours in a reducing gas atmosphere (N 2 + H 2 ) to obtain a sintered body for an electrical contact. This sintered body was heated to 700 to 800℃, and then extruded into a sintered body with a diameter of 6 mm.
After forming it into a rod-shaped body of mm in diameter, it was processed using a wire drawing header, and the obtained contact was assembled into a relay and used as a test product. Comparative Example 1 Using the Ag and CdO powder used in the example as raw materials, a sintered body of Ag-12%CdO was obtained in the same manner as in the example and used as a contact, and this was incorporated into a relay to make a sample. And so. Comparative Example 2 Using the Ag and Ni powders used in the examples as raw materials, they were mixed at a weight ratio of 70% Ag and 30% Ni, and in the same manner as in the examples, an AgNi diameter sintered body was obtained and used as a contact, This was assembled into a relay and used as a sample. Comparative Example 3 The raw material powder Ag and Ni used in the example were replaced with metal Cu.
Along with C, Ag70%, Ni19.7%, Cu metal powder (average particle size: 5μ) 10%, C (average particle size: 5μ) 0.3%
A sintered body was obtained as a contact point in the same manner as in the example, and this was incorporated into a relay as a sample. The contact resistance, abrasion resistance, and welding properties of the samples obtained in each of the Examples and Comparative Examples described above were measured under the following conditions. The results are shown in the table. Regarding wear resistance, when opened and closed 350,000 times,
It is expressed as the number of relays whose contact force was 5 g or less. [Test conditions] Sample: 5 relays (2C) each Voltage: AC220V Current: 4A Load: Resistive load Contact force: Initial 20-30g Opening/closing frequency: 30 times/min

【表】 表1に示す結果から明らかなように、本発明に
係る電気接点材料は、比較例2や比較例3のもの
に比べ耐溶着性が大幅に改善され、比較例1のも
のと同等以上の特性を示している。また、接触抵
抗については、すべての比較例よりも秀れている
ことがわかる。しかも、耐消耗性については、比
較例2や比較例3と同等であり、比較例1のもの
と比べてわずかに劣るものの、実用上あまり問題
とならない程度の差であることがわかる。
[Table] As is clear from the results shown in Table 1, the electrical contact material according to the present invention has significantly improved welding resistance compared to those of Comparative Examples 2 and 3, and is equivalent to that of Comparative Example 1. It shows the above characteristics. Furthermore, it can be seen that the contact resistance is superior to all comparative examples. Furthermore, the abrasion resistance is equivalent to Comparative Examples 2 and 3, and although it is slightly inferior to that of Comparative Example 1, it can be seen that the difference is such that it does not pose much of a problem in practice.

Claims (1)

【特許請求の範囲】[Claims] 1 Ni10〜30%、Cu酸化物Cu換算で1.7〜10%、
C0.1〜0.5%、残部実質的にAgからなる混合粉末
を加圧成形した後、中性もしくは還元性雰囲気中
で焼結させるとともに、前記酸化物の少なくとも
一部を還元して、AgおよびNi中に金属の形態で
固溶させることを特徴とする電気接点材料の製造
方法。
1 Ni 10-30%, Cu oxide Cu equivalent 1.7-10%,
After pressure-molding a mixed powder consisting of 0.1 to 0.5% C and the remainder substantially Ag, it is sintered in a neutral or reducing atmosphere, and at least a portion of the oxide is reduced to produce Ag and A method for producing an electrical contact material, characterized by dissolving Ni in the form of a metal.
JP58139142A 1983-07-28 1983-07-28 Manufacture of electrical contact material Granted JPS6029404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58139142A JPS6029404A (en) 1983-07-28 1983-07-28 Manufacture of electrical contact material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58139142A JPS6029404A (en) 1983-07-28 1983-07-28 Manufacture of electrical contact material

Publications (2)

Publication Number Publication Date
JPS6029404A JPS6029404A (en) 1985-02-14
JPH0474405B2 true JPH0474405B2 (en) 1992-11-26

Family

ID=15238529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58139142A Granted JPS6029404A (en) 1983-07-28 1983-07-28 Manufacture of electrical contact material

Country Status (1)

Country Link
JP (1) JPS6029404A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011125244A1 (en) * 2010-04-09 2011-10-13 三菱マテリアル株式会社 Clay-like composition for forming a sintered object, powder for a clay-like composition for forming a sintered object, method for manufacturing a clay-like composition for forming a sintered object, sintered silver object, and method for manufacturing a sintered silver object
JP2013019032A (en) * 2011-07-12 2013-01-31 Tokuriki Honten Co Ltd Electrical contact material and method for producing the same

Also Published As

Publication number Publication date
JPS6029404A (en) 1985-02-14

Similar Documents

Publication Publication Date Title
US6432157B1 (en) Method for preparing Ag-ZnO electric contact material and electric contact material produced thereby
JPH0896643A (en) Electric contact point material
JPH0151530B2 (en)
JPH0474405B2 (en)
JPS6048578B2 (en) electrical contact materials
JPH0474404B2 (en)
JPH0421738B2 (en)
JPH0474403B2 (en)
JPS59226138A (en) Manufacture of electrical contact material
JPH0521961B2 (en)
JPH0443973B2 (en)
JPH0443972B2 (en)
JPS59226136A (en) Manufacture of electrical contact material
JPS6026632A (en) Electrical contact material
JPS6350413B2 (en)
JPH029096B2 (en)
JPH0368493B2 (en)
JPH116022A (en) Electrical contact material and its production
JPH0127137B2 (en)
JPS58193333A (en) Electric contact material
JPH0115572B2 (en)
JPS59226137A (en) Manufacture of electrical contact material
JPH11140563A (en) Electrical contact material
JPS58117844A (en) Electrical contact material
JPS5938345A (en) Electrical contact material