JPH09194918A - Reducing gas heating method and device therefor - Google Patents

Reducing gas heating method and device therefor

Info

Publication number
JPH09194918A
JPH09194918A JP8005160A JP516096A JPH09194918A JP H09194918 A JPH09194918 A JP H09194918A JP 8005160 A JP8005160 A JP 8005160A JP 516096 A JP516096 A JP 516096A JP H09194918 A JPH09194918 A JP H09194918A
Authority
JP
Japan
Prior art keywords
gas
heating
carbon
carbon monoxide
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8005160A
Other languages
Japanese (ja)
Other versions
JP3889827B2 (en
Inventor
Takaaki Mori
孝明 毛利
Ryosuke Shimizu
良亮 清水
Yasumasa Morita
泰正 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Corp
Priority to JP00516096A priority Critical patent/JP3889827B2/en
Publication of JPH09194918A publication Critical patent/JPH09194918A/en
Application granted granted Critical
Publication of JP3889827B2 publication Critical patent/JP3889827B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the reduction in thickness caused by carbon deposition on the inner surface of a gas heating pipe and carburization-embrittlement of the heating pipe by rapidly heating at the temp. raising velocity having a prescribed value or higher in the dangerous temp. range easily depositing the carbon from a CO-containing reducing gas. SOLUTION: At the time of heating the reducing gas containing CO, the carbon is deposited by reaction 2CO←→CO2 +C. This deposited carbon is stuck onto the heating pipe and reacts with iron, and carburizing phenomenon is caused and the inner surface is embrittled and worn. This reaction is exothermic reaction, and according to the chemical equilibrium theory, the reaction is progressed to the right side as the temp. becomes lower, the carbon is easily deposited but on the other hand, since the reaction velocity is not high in the low temp., the dangerous temp. zone easily depositing the carbon exists. This range depends on the gas composition (particularly CO and CO2 concns.) and the operation pressure, but, this temp. is generally not over about 350 deg.C, at the time of heating this gas at >=1000 deg.C/sec temp. raising velocity, since the staying time of the gas is extremely short, such as <=0.35sec, the deposition of the carbon is effectively restrained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、主として直接還元
製鉄プロセスに用いられる一酸化炭素含有還元性ガスの
加熱方法に関する。
TECHNICAL FIELD The present invention relates to a method for heating a carbon monoxide-containing reducing gas mainly used in a direct reduction iron-making process.

【0002】[0002]

【従来の技術】直接還元製鉄プロセスでは、800〜1
000℃に加熱した還元性ガスを用いて鉄鉱石(酸化
鉄)を還元することにより、金属鉄を製造する。ここで
用いられる還元性ガスは一般に水素、一酸化炭素、二酸
化炭素及び水蒸気を含み、これに加えてメタン、窒素な
どを含む場合も多い。このような還元性ガスを800〜
1000℃に加熱するには炉内にガス加熱管を配した加
熱炉を用いる。加熱炉は一般にバーナを備えた燃焼室
(輻射伝熱部)と燃焼ガスを通す対流伝熱部とからな
り、還元性ガスはまず対流伝熱部に配されたガス加熱管
内を通過して約400〜450℃に予熱され、次いで燃
焼室に配されたガス加熱管内を通過して所望の温度にま
で加熱される。
In the direct reduction ironmaking process, 800-1
Metallic iron is produced by reducing iron ore (iron oxide) using a reducing gas heated to 000 ° C. The reducing gas used here generally contains hydrogen, carbon monoxide, carbon dioxide and water vapor, and often contains methane, nitrogen and the like in addition to this. Such reducing gas is 800 ~
To heat to 1000 ° C., a heating furnace in which a gas heating pipe is arranged is used. The heating furnace generally comprises a combustion chamber (radiation heat transfer section) equipped with a burner and a convection heat transfer section for passing combustion gas. The reducing gas first passes through a gas heating pipe arranged in the convection heat transfer section and is heated for about 30 minutes. It is preheated to 400 to 450 ° C. and then passed through a gas heating pipe arranged in the combustion chamber to be heated to a desired temperature.

【0003】燃焼室に配備されたガス加熱管は、外径1
50〜190mm程度の管が図1に示すように折り畳ま
れた形状をしているため伝熱コイルと呼ばれており、一
般に複数のこのような伝熱コイルが並列に接続されてい
る。伝熱コイルは伝熱コイルの両側の壁面に設けられた
ラジアントウォールバーナーの火炎からの輻射熱を受け
て加熱され、これにより伝熱コイル内を通過する還元性
ガスが所定の温度まで加熱される。このときのガスの昇
温速度は200〜300℃/秒程度である。
The gas heating pipe provided in the combustion chamber has an outer diameter of 1
It is called a heat transfer coil because a tube of about 50 to 190 mm has a folded shape as shown in FIG. 1, and a plurality of such heat transfer coils are generally connected in parallel. The heat transfer coil is heated by receiving radiant heat from the flame of a radiant wall burner provided on both wall surfaces of the heat transfer coil, and thereby the reducing gas passing through the heat transfer coil is heated to a predetermined temperature. The heating rate of the gas at this time is about 200 to 300 ° C./sec.

【0004】[0004]

【発明が解決しようとする課題】ところが、継続的に加
熱炉を使用していると上記ガス加熱管の一部が消耗減肉
するという現象(メタルダスティング)が生ずることが
わかり、そのたびに消耗減肉した部分のガス加熱管を交
換しなければならないという不都合があった。この現象
は特に燃焼室に配されたガス加熱管の一部(前半部、図
1参照)に多く見られる。これはガス加熱管内面の浸炭
脆化が原因であると思われる。すなわち、一酸化炭素を
含む還元性ガスを加熱すると次のような不均化反応(ブ
ドアール反応)によりカーボンが析出すると考えられ
る。 2CO ⇔ CO2 + C↓ こうして析出したカーボンはガス加熱管内面に付着し、
高温のガス加熱管の材料(主要成分)である鉄等と反応
して浸炭現象を生じ、ガス加熱管内面を脆化消耗させる
と考えられるのである。
However, it has been found that when the heating furnace is continuously used, a phenomenon (metal dusting) occurs in which a part of the gas heating pipe is consumed and thinned. There is a disadvantage in that the gas heating tube in the portion whose consumption has been reduced must be replaced. This phenomenon is often seen especially in a part of the gas heating pipe arranged in the combustion chamber (first half, see FIG. 1). This is probably due to carburizing and embrittlement of the inner surface of the gas heating pipe. That is, it is considered that when a reducing gas containing carbon monoxide is heated, carbon is deposited by the following disproportionation reaction (Budard reaction). 2CO ⇔ CO 2 + C ↓ The carbon thus deposited adheres to the inner surface of the gas heating pipe,
It is considered that the carburization phenomenon occurs by reacting with iron or the like, which is a material (main component) of the high-temperature gas heating tube, and the inner surface of the gas heating tube is embrittled and consumed.

【0005】このような浸炭脆化を防ぐ方策として、ガ
ス加熱管(特にその内面)の材質を改良してカーボンが
析出しても浸炭脆化が起こらないようにすることも考え
られる。しかしながら、加熱炉の使用条件やコストを考
慮すると、必ずしもすべての場合にそのような材質改良
のみで対処することができるとはいえず、あるいは不可
能ではないにしても現実的な解決策とはいえない場合が
しばしばある。
As a measure to prevent such carburizing embrittlement, it is considered to improve the material of the gas heating pipe (in particular, its inner surface) so that carburizing embrittlement does not occur even if carbon is deposited. However, considering the usage conditions and cost of the heating furnace, it is not always possible to deal with such material improvement alone in all cases, or even if it is not possible, it is not a realistic solution. There are often times when it cannot be said.

【0006】本発明は以上のような要請を念頭において
なされたものであり、材質改良とは別の観点からガス加
熱管の浸炭脆化による消耗減肉を防止する方策として、
一酸化炭素を含む還元性ガスを加熱する加熱炉のガス加
熱管内面へのカーボンの析出自体を防止しようとするも
のである。
The present invention has been made in view of the above demands, and as a measure for preventing the consumption wall thinning due to carburizing and embrittlement of the gas heating pipe from a viewpoint different from the material improvement,
It is intended to prevent the deposition of carbon itself on the inner surface of a gas heating tube of a heating furnace that heats a reducing gas containing carbon monoxide.

【0007】[0007]

【課題を解決するための手段】本発明は、一酸化炭素含
有還元性ガスを伝熱面を介して加熱する方法を提供す
る。その方法は、該ガスからカーボンが析出しやすい危
険温度帯域を定め、該ガスの該危険温度帯域における昇
温速度が1000℃/秒以上となるように急速加熱する
ものである。
The present invention provides a method of heating a carbon monoxide-containing reducing gas through a heat transfer surface. The method defines a dangerous temperature zone in which carbon easily precipitates from the gas, and rapidly heats the gas so that the temperature rising rate in the dangerous temperature zone is 1000 ° C./sec or more.

【0008】或いはその方法は、該ガスからカーボンが
析出しやすい危険温度帯域を定め、該ガスの該危険温度
帯域における滞留時間が0.35以下となるように急速
加熱するものである。
Alternatively, the method defines a dangerous temperature zone in which carbon is likely to precipitate from the gas, and rapidly heats the gas so that the residence time in the dangerous temperature zone is 0.35 or less.

【0009】本発明はまた、上記方法を実施するために
特に適した装置をも提供するものである。そのような装
置は、燃焼室内にバーナーとガス加熱管が配備された加
熱部を有し、該ガス加熱管を該バーナーの火炎で外側か
ら加熱する一方、一酸化炭素含有還元性ガスを該ガス加
熱管内に流通させることにより、該一酸化炭素含有還元
性ガスを昇温するガス加熱炉であって、該ガス加熱管が
外径30〜80mmの直管からなるマルチパス構造をと
る。
The invention also provides an apparatus which is particularly suitable for carrying out the method described above. Such a device has a heating part in which a burner and a gas heating pipe are arranged in a combustion chamber, and the gas heating pipe is heated from the outside by a flame of the burner, while a carbon monoxide-containing reducing gas is supplied to the gas. A gas heating furnace that raises the temperature of the carbon monoxide-containing reducing gas by flowing through the heating tube, and has a multi-pass structure in which the gas heating tube is a straight tube having an outer diameter of 30 to 80 mm.

【0010】[0010]

【作用】本発明において加熱の対象となる一酸化炭素含
有還元性ガスとしては、まず第一に直接還元製鉄用の還
元炉テールガスが上げられる。このガスの典型的な組成
の一例を示せば、
As the carbon monoxide-containing reducing gas to be heated in the present invention, the reducing furnace tail gas for direct reduction ironmaking is first of all mentioned. To give an example of a typical composition of this gas,

【表1】還元炉テールガス(脱CO 2後)2 70.7%(体積%、以下同じ) CO 16.7% CO2 1.0% CH4 3.5% N2 6.8% H2O 1.3%(飽和量) となる。[Table 1] Reduction furnace tail gas ( after CO 2 removal ) H 2 70.7% (volume%, the same applies below) CO 16.7% CO 2 1.0% CH 4 3.5% N 2 6.8% H 2 O 1.3% (saturated amount).

【0011】もちろん本発明において加熱の対象となる
ガスは上記還元炉テールガスに限られるものではなく、
典型的な組成を下記に示すような改質器からのリフォー
ムドガス、コークス炉ガス、高炉ガス、転炉ガスなど、
各種の一酸化炭素含有還元性ガスが対象となる。
Of course, the gas to be heated in the present invention is not limited to the reduction furnace tail gas described above,
Reformed gas from a reformer as shown in the typical composition, coke oven gas, blast furnace gas, converter gas, etc.
Various carbon monoxide-containing reducing gases are targeted.

【表2】改質器からのリフォームドガスの組成の一例2 58.2%(体積%、以下同じ) CO 12.9% CO2 5.7% CH4 0.3% H2O 22.9%[Table 2] Example of composition of reformed gas from reformer H 2 58.2% (volume%, the same applies hereinafter) CO 12.9% CO 2 5.7% CH 4 0.3% H 2 O 22 .9%

【表3】コークス炉ガスの組成の一例2 50〜57%(体積%、以下同じ) CO 5〜7 % CO2 2〜5 % CH4 22〜30% C2 + 2〜5 % N2 2〜6 % H2O 飽和量[Table 3] Example of composition of coke oven gas H 2 50 to 57% (volume%, same below) CO 5 to 7% CO 2 2 to 5% CH 4 22 to 30% C 2 + 2 to 5% N 2 2 to 6% H 2 O saturation amount

【表4】高炉ガスの組成の一例2 3〜4 %(体積%、以下同じ) CO 21〜24% CO2 20〜23% N2 52〜56% H2O 飽和量Table 4 example H 2 3 to 4% of the composition of the blast furnace gas (vol%, the same applies hereinafter) CO 21~24% CO 2 20~23% N 2 52~56% H 2 O saturation amount

【表5】転炉ガスの組成の一例2 1.5〜3.3%(体積%、以下同じ) CO 65〜67 % CO2 12〜14 % CH4 0.2〜0.4% N2 16〜19% H2O 飽和量 なお、一酸化炭素含有率が4%未満のガスはカーボン析
出の傾向が極めて小さいので、本発明の手段によらなく
てもガス加熱管の消耗減肉が実質的に生ずることはな
い。
[Table 5] Example of composition of converter gas H 2 1.5 to 3.3% (volume%, the same applies hereinafter) CO 65 to 67% CO 2 12 to 14% CH 4 0.2 to 0.4% N 2 16 to 19% H 2 O saturation amount Since a gas having a carbon monoxide content of less than 4% has a very small tendency of carbon precipitation, consumption of the gas heating pipe can be reduced without using the means of the present invention. Substantially never occurs.

【0012】一酸化炭素を含む還元性ガスからカーボン
を析出させる前記ブドアール反応は発熱反応であり、化
学平衡論的には低温ほど反応が右に進むためカーボンが
析出しやすいといえる。すなわち、ブドアール反応の化
学平衡定数 Kp(eq)=PCO2 */(PCO *2 (PCO2 * ………平衡二酸化炭素分圧、単位kg/cm2) (PCO * ………平衡一酸化炭素分圧、単位kg/cm2) は熱力学的には、所定の圧力条件下に温度に対して単調
減少する関数として表される。例えば圧力3.5Kg/cm2
Gの下で常温より900℃まで加熱する場合を想定し、
熱力学的に計算したKp(eq) の値を温度に対してプロ
ットすれば図2に示すような曲線となる。また別に、前
記に示した還元炉テールガスの組成から全圧3.5kg/c
m2Gの下での実際の一酸化炭素分圧PCO及び二酸化炭素
分圧PCO2を求め、 PCO2/(PCO2=Kp(obs) [(obs)は観測値(observed value)であることを示
す。]とおいたものを同じく図2に示す。Kp(eq) >
Kp(obs)である温度領域がカーボンが析出する可能性
のある領域であり、Kp(eq)/Kp(obs) の比が大き
いほどカーボンが析出しやすい。なお、Kp(obs)>
2.0(kg/cm2-1となるようなガスはカーボン析出の
傾向が極めて少ないので、本発明の手段によらなくても
ガス加熱管の消耗減肉が実質的に生ずることはない
The Baudard reaction for depositing carbon from a reducing gas containing carbon monoxide is an exothermic reaction, and in terms of chemical equilibrium, it can be said that carbon tends to deposit because the reaction proceeds to the right at lower temperatures. That is, the chemical equilibrium constant of the Boudart reaction Kp (eq) = P CO2 * / (P CO * ) 2 (P CO2 * ... …… Equilibrium carbon dioxide partial pressure, unit: kg / cm 2 ) (P CO * ……… Equilibrium The carbon monoxide partial pressure (unit: kg / cm 2 ) is thermodynamically expressed as a function that monotonically decreases with temperature under a given pressure condition. For example, pressure 3.5Kg / cm 2
Assuming heating from room temperature to 900 ° C under G,
If the value of Kp (eq) calculated thermodynamically is plotted against the temperature, a curve as shown in FIG. 2 is obtained. Separately, from the composition of the reduction furnace tail gas shown above, the total pressure is 3.5 kg / c.
The actual carbon monoxide partial pressure P CO and carbon dioxide partial pressure P CO2 under m 2 G were calculated, and P CO2 / (P CO ) 2 = Kp (obs) [(obs) is the observed value) Is shown. ] Is also shown in FIG. Kp (eq) >
The temperature region of Kp (obs) is a region where carbon may be deposited, and the higher the ratio of Kp (eq) / Kp (obs), the more likely carbon is to deposit. Kp (obs)>
A gas having a concentration of 2.0 (kg / cm 2 ) -1 has a very small tendency of carbon precipitation, so that even if the means of the present invention is not used, consumption of the gas heating pipe will not be substantially reduced.

【0013】一方、低温では前記ブドアール反応の反応
速度は大きくないから、カーボンが析出する可能性があ
る領域においては高温の方が析出しやすいともいえる。
従って、カーボンが析出しやすい危険温度帯域とは、熱
力学的にカーボン析出のポテンシャルが高く、かつ反応
速度も比較的大きな温度範囲と定義される。一般に、K
p(eq)>2.5Kp(obs) であるとき熱力学的にカー
ボン析出のポテンシャルが高いといえ、また450℃以
下では反応速度が小さいためカーボン析出の傾向は小さ
い。例えば図2に示す例では、カーボンが析出しやすい
危険温度帯域は一般に500℃〜775℃と定められ
る。
On the other hand, since the reaction rate of the Boudard reaction is not high at low temperature, it can be said that high temperature is more likely to deposit in a region where carbon may be deposited.
Therefore, the critical temperature zone in which carbon is likely to be deposited is defined as a temperature range in which the potential for carbon deposition is thermodynamically high and the reaction rate is relatively large. Generally, K
When p (eq)> 2.5 Kp (obs), it can be said that the carbon deposition potential is thermodynamically high, and at 450 ° C. or lower, the reaction rate is small and the carbon deposition tendency is small. For example, in the example shown in FIG. 2, the dangerous temperature zone in which carbon easily precipitates is generally set to 500 ° C. to 775 ° C.

【0014】上記のように、カーボンが析出しやすい危
険温度帯域は、加熱対象となるガスの組成(特に一酸化
炭素濃度と二酸化炭素濃度)及び操作圧力によって異な
る。対象となる系について定められた危険温度帯域を、
当該ガスは1000℃/秒以上、好ましくは1500〜
3500℃/秒の昇温速度で加熱される必要がある。こ
れは前記した従来の昇温速度(高々300℃/秒)に比
べてかなり大きな昇温速度である。なお、危険温度帯域
以外の温度域では、従来の昇温速度で加熱して差し支え
ない。
As described above, the dangerous temperature zone in which carbon is likely to be deposited varies depending on the composition of the gas to be heated (especially carbon monoxide concentration and carbon dioxide concentration) and the operating pressure. The critical temperature range defined for the target system is
The gas is 1000 ° C./sec or more, preferably 1500 to
It needs to be heated at a heating rate of 3500 ° C./sec. This is a considerably higher temperature rising rate than the above-mentioned conventional temperature rising rate (at most 300 ° C./second). In the temperature range other than the dangerous temperature range, the heating may be performed at the conventional heating rate.

【0015】一般に危険温度帯域は広くても350℃
(450℃から800℃まで昇温する場合)であるか
ら、1000℃/秒の昇温速度では0.35秒以下、1
500℃/秒及び3500℃/秒の昇温速度ではそれぞ
れ0.23秒以下及び0.1秒以下でガスは当該危険温
度帯域を通過することになる。かくして、ガスの危険温
度帯域での滞留時間は極めて短くなり、ブドアール反応
によるカーボンの析出は有効に抑制される。なお、上記
のように、450℃から800℃という温度範囲は通常
の条件下における危険温度帯域をほぼカバーする範囲で
あるから、450℃から800℃までを1000℃/秒
以上の速度で昇温させるように設計すれば、一般に本発
明の昇温条件は自動的に(予め危険温度帯域を定義しな
くても)満たされることになる。
Generally, the dangerous temperature range is 350 ° C even if it is wide.
(When the temperature is raised from 450 ° C. to 800 ° C.), 0.35 seconds or less at a heating rate of 1000 ° C./second, 1
At the heating rates of 500 ° C./sec and 3500 ° C./sec, the gas passes through the dangerous temperature zone in 0.23 seconds or less and 0.1 seconds or less, respectively. Thus, the residence time of the gas in the dangerous temperature zone becomes extremely short, and the precipitation of carbon due to the Boudard reaction is effectively suppressed. As described above, since the temperature range of 450 ° C to 800 ° C almost covers the dangerous temperature band under normal conditions, the temperature range of 450 ° C to 800 ° C is increased at a rate of 1000 ° C / sec or more. In general, the temperature raising conditions of the present invention are automatically satisfied (without defining a dangerous temperature zone) by designing so.

【0016】1000℃/秒以上という大きな昇温速度
を得るためには、従来より伝熱係数を大きくする必要が
ある。この場合の伝熱係数は火炎からガス流への伝熱に
ついてのものということになるが、これは火炎から管表
面への輻射伝熱、管外表面から管内表面への伝熱、及び
管内表面からガス流への対流伝熱が総合的に寄与する総
括伝熱係数である。ここで、管内表面からガス流への対
流伝熱を促進するためには、管内表面近傍に形成される
境膜(層流)部分の厚みを減らすことが有効である。境
膜の厚みはガス流速を大きくすれば減少するが、従来は
外径150〜190mm程度の比較的太い管を用いてい
たため、管内ガス線速度を上げようとすると(加熱管の
本数が減少することにより)ガス流量に対して伝熱面積
が小さくなり、それを避けようとすれば(加熱管の長さ
が長くなることにより)ガスの対流時間が長くなるとい
う欠点があった。これに対して、本発明においては、当
該危険温度帯域に相当する部分のガス加熱管として従来
のものに比べて細い管(外径30〜80mm)を用いる
ので上記欠点が解消する。当該危険温度帯域における平
均ガス線流速は約40m/秒以上とすることが好まし
い。
In order to obtain a large temperature rising rate of 1000 ° C./second or more, it is necessary to increase the heat transfer coefficient as compared with the conventional one. The heat transfer coefficient in this case is related to the heat transfer from the flame to the gas flow.This is the radiative heat transfer from the flame to the tube surface, the heat transfer from the tube outer surface to the tube inner surface, and the tube inner surface. Is the overall heat transfer coefficient, which is the overall contribution of convective heat transfer from the gas to the gas flow. Here, in order to promote convective heat transfer from the inner surface of the tube to the gas flow, it is effective to reduce the thickness of the boundary film (laminar flow) portion formed near the inner surface of the tube. The thickness of the boundary film decreases with increasing gas flow velocity, but since a relatively thick tube having an outer diameter of about 150 to 190 mm was conventionally used, an attempt was made to increase the gas linear velocity in the tube (the number of heating tubes decreases. Due to this, the heat transfer area becomes smaller with respect to the gas flow rate, and if it is attempted to avoid it, the convection time of the gas becomes longer (due to the longer heating tube). On the other hand, in the present invention, as the gas heating pipe of the portion corresponding to the dangerous temperature zone, a thin pipe (outer diameter of 30 to 80 mm) is used as compared with the conventional gas heating pipe, so that the above-mentioned drawback is eliminated. The average gas linear flow velocity in the dangerous temperature zone is preferably about 40 m / sec or more.

【0017】また、従来は図1に示すような折り畳み形
状の加熱管を用いているため、Uターン部におけるガス
の滞留やカーボンの局所的沈積、あるいはUターン部に
おけるエロージョンに起因すると思われる消耗減肉が見
られる。このような問題を解決するにはUターン部を設
けないことが好ましい。従って、本発明においては、当
該危険温度帯域部分を直管で構成した直管マルチパス方
式を採用する。これは不必要な圧損の増大を避けるた
め、ガス流速の増大に対しても好結果をもたらすと考え
られる。
Further, conventionally, since a heating tube having a folded shape as shown in FIG. 1 is used, it is thought that gas is accumulated in the U-turn portion, carbon is locally deposited, or erosion in the U-turn portion is considered to be consumed. You can see thinning. In order to solve such a problem, it is preferable not to provide the U-turn part. Therefore, in the present invention, the straight pipe multi-pass system in which the dangerous temperature zone portion is constituted by the straight pipe is adopted. This avoids unnecessary increase in pressure loss, and is therefore considered to bring good results even with an increase in gas flow rate.

【0018】通常、カーボンが析出しやすい危険温度帯
域は燃焼室に設けられたガス加熱管の前半部(一般に約
450℃から約800℃まで昇温する部分)にある。す
なわち、必ずしも燃焼室に設けられた全ガス加熱管を上
記のように比較的細い直管で構成し、かつ全断面積を絞
ってガス線流速を上げる必要はない。従って、燃焼室内
のガス加熱管を前半部と後半部とに分割し、前半部の加
熱管(当該危険温度帯域を含む部分)のみについて上記
構成をとれば、本発明の目的は達成される。
Usually, the dangerous temperature zone in which carbon is likely to precipitate is in the first half of the gas heating pipe provided in the combustion chamber (generally, the portion where the temperature rises from about 450 ° C to about 800 ° C). That is, it is not always necessary to increase the linear gas flow velocity by arranging all the gas heating pipes provided in the combustion chamber by the relatively thin straight pipes and reducing the total cross-sectional area. Therefore, the object of the present invention can be achieved by dividing the gas heating pipe in the combustion chamber into the first half and the second half, and adopting the above-mentioned configuration only for the first half of the heating pipe (the part including the dangerous temperature zone).

【0019】[0019]

【発明の実施の形態】実施例1 外径60.5mm、肉厚8.5mm、長さ13mの直管
5本を並列に接続したガス加熱管を有する実験用加熱炉
を製作し、次の組成を有する一酸化炭素含有還元性ガス
の加熱を行った。
BEST MODE FOR CARRYING OUT THE INVENTION Example 1 An experimental heating furnace having a gas heating pipe in which five straight pipes having an outer diameter of 60.5 mm, a wall thickness of 8.5 mm and a length of 13 m were connected in parallel was manufactured. A carbon monoxide-containing reducing gas having a composition was heated.

【表6】ガス組成2 70.7%(体積%、以下同じ) CO 16.7% CO2 1.0% CH4 3.5% N2 6.8% H2O 1.3%[Table 6] Gas composition H 2 70.7% (volume%, the same applies hereinafter) CO 16.7% CO 2 1.0% CH 4 3.5% N 2 6.8% H 2 O 1.3%

【0020】上記ガス加熱管入口部におけるガス温度は
450℃、出口部におけるガス温度は775℃とした。
ガス圧力は3.5kg/cm2Gとし、ガス流量及び加熱量を
調整して、次の2つの条件で運転を行った。
The gas temperature at the inlet of the gas heating tube was 450 ° C., and the gas temperature at the outlet was 775 ° C.
The gas pressure was 3.5 kg / cm 2 G, the gas flow rate and the heating amount were adjusted, and the operation was performed under the following two conditions.

【表7】運転条件 条件1 条件2 昇温速度 1625℃/秒 1080℃/秒 ガス滞留時間 0.2秒 0.3秒 ガス平均流速 65m/秒 43m/秒[Table 7] Operating conditions Condition 1 Condition 2 Temperature rising rate 1625 ° C / sec 1080 ° C / sec Gas residence time 0.2 sec 0.3 sec Average gas flow velocity 65 m / sec 43 m / sec

【0021】上記2条件でそれぞれ6000時間運転
し、その時点で加熱管の肉厚を測定したが、減肉はほと
んど観察されなかった。
Each of the above two conditions was operated for 6000 hours, and the wall thickness of the heating tube was measured at that time, but thinning was hardly observed.

【0022】実施例2 図3及び図4は本発明の実施に好適な装置(ガスヒータ
ー)の例を示すものである。図3は同装置の正面図、図
4は同装置の側面図である。同装置は大きく対流伝熱部
Aと輻射伝熱部Bからなり、輻射伝熱部Bは一次加熱部
B1及び二次加熱部B2からなる。対流伝熱部Aは輻射
伝熱部Bからの燃焼ガスの排気路に当たり、高温の燃焼
ガスの熱を利用して一酸化炭素含有還元性ガスの予熱を
行う部分である。また輻射伝熱部B(一次加熱部B1及
び二次加熱部B2)では、バーナーの火炎からの輻射熱
により対流伝熱部Aで予熱された一酸化炭素含有還元性
ガスが所定の温度までさらに加熱される。対流伝熱部
A、一次加熱部B1及び二次加熱部B2内には、それぞ
れ図に示すように対流伝熱部加熱管1、輻射伝熱部一次
加熱管2及び輻射伝熱部二次加熱管3が配備されてお
り、それらの間はクロスオーバー管4及び5で連絡され
ている。一酸化炭素含有還元性ガスは対流伝熱部加熱管
1を通過することにより常温から約450℃に加熱さ
れ、クロスオーバー管4を経て入口ヘッダー6から輻射
伝熱部一次加熱管2を通過することにより約775℃に
加熱され、さらにディストリビューター7からクロスオ
ーバー管5を経て輻射伝熱部二次加熱管3を通過するこ
とにより約920℃に加熱され、トランスファーライン
8により目的のプロセスへ移送される。一次加熱部B1
の炉壁には1段目バーナー9及び2段目バーナー10が
配備されており、これらは通常の長炎型バーナーであっ
て火炎の輻射熱により輻射伝熱部一次加熱管2を加熱す
る。二次加熱部B2の炉壁には長炎型の1段目バーナー
11及びラジアントウォールバーナー12が配備されて
おり、これらにより輻射伝熱部二次加熱管3を加熱す
る。二次加熱部の2段目バーナーとしてこのようにラジ
アントウォールバーナーを用いるのは、長炎型バーナー
と違って加熱管に直接炎が当たらないため、加熱管をオ
ーバーヒートする心配がないからである。輻射伝熱部一
次加熱管は入口ヘッダー6からディストリビューター7
までの間を多数本が平衡に並んで走っており、それぞれ
一次加熱部の直下で垂直に立ち上がってそのまま一次加
熱部内をまっすぐに上昇する。輻射伝熱部二次加熱管は
ディストリビューター7から水平に(かつ横方向に多少
広がりながら)複数本突き出ているクロスオーバー管5
に直接つながっており、従来型のコイル状の形態をなし
ている。なお、トランスファーライン8には高温に加熱
されたガスが通るため、その内部を耐火断熱キャスタブ
ル13で断熱する。
Embodiment 2 FIGS. 3 and 4 show an example of an apparatus (gas heater) suitable for carrying out the present invention. FIG. 3 is a front view of the device, and FIG. 4 is a side view of the device. The apparatus is roughly composed of a convection heat transfer section A and a radiant heat transfer section B, and the radiant heat transfer section B is composed of a primary heating section B1 and a secondary heating section B2. The convection heat transfer part A is a part which hits the exhaust path of the combustion gas from the radiant heat transfer part B and preheats the carbon monoxide-containing reducing gas by utilizing the heat of the high temperature combustion gas. Further, in the radiant heat transfer section B (primary heating section B1 and secondary heating section B2), the carbon monoxide-containing reducing gas preheated in the convection heat transfer section A is further heated to a predetermined temperature by radiant heat from the flame of the burner. To be done. In the convection heat transfer section A, the primary heating section B1 and the secondary heating section B2, as shown in the figure, respectively, the convection heat transfer section heating pipe 1, the radiant heat transfer section primary heating pipe 2 and the radiant heat transfer section secondary heating Tubes 3 are provided, with crossover tubes 4 and 5 connecting between them. The carbon monoxide-containing reducing gas is heated from room temperature to about 450 ° C. by passing through the convection heat transfer section heating pipe 1, passes through the crossover pipe 4 and the inlet header 6 through the radiant heat transfer unit primary heating pipe 2. Then, it is heated to about 775 ° C, further heated from the distributor 7 through the crossover pipe 5 to the radiant heat transfer section secondary heating pipe 3 to about 920 ° C, and transferred to the target process by the transfer line 8. To be done. Primary heating part B1
A first-stage burner 9 and a second-stage burner 10 are provided on the furnace wall of No. 1, which are ordinary long-flame type burners and heat the radiant heat transfer section primary heating pipe 2 by the radiant heat of the flame. A long flame type first stage burner 11 and a radiant wall burner 12 are provided on the furnace wall of the secondary heating section B2, and these heat the radiant heat transfer section secondary heating pipe 3. The reason why the radiant wall burner is used as the second stage burner of the secondary heating section is that, unlike the long flame type burner, the heating tube is not directly exposed to the flame, and there is no fear of overheating the heating tube. The radiant heat transfer part primary heating pipe is from inlet header 6 to distributor 7
A large number of them run side by side in equilibrium, and each of them rises vertically just below the primary heating part and rises straight up in the primary heating part. The radiant heat transfer section secondary heating pipes are a plurality of crossover pipes 5 horizontally (and a little laterally spreading) protruding from the distributor 7.
It is directly connected to and has a conventional coiled form. Since the gas heated to a high temperature passes through the transfer line 8, the inside thereof is insulated by the refractory heat insulating castable 13.

【0023】比較例 外径170mm、肉厚10mm、長さ8mの直管6本を
U字管でつないでなる伝熱コイルをガス加熱管とする、
図1に示す従来型加熱管と同型のガス加熱管を有する実
験用加熱炉を製作し、実施例1と同じ組成の一酸化炭素
含有還元性ガスを加熱した。
[0023] Comparative Example Outer diameter 170 mm, wall thickness 10 mm, the heat transfer coil made by connecting straight pipe six 8m long with U-shaped tube and the gas heating tube,
An experimental heating furnace having a gas heating tube of the same type as the conventional heating tube shown in FIG. 1 was manufactured, and a carbon monoxide-containing reducing gas having the same composition as in Example 1 was heated.

【0024】上記ガス加熱管入口部におけるガス温度は
450℃、出口部におけるガス温度は920℃とした。
ガス圧力は3.5kg/cm2Gとし、ガス流量及び加熱量を
調整して、次の条件で運転を行った。
The gas temperature at the inlet of the gas heating tube was 450 ° C., and the gas temperature at the outlet was 920 ° C.
The gas pressure was 3.5 kg / cm 2 G, the gas flow rate and heating amount were adjusted, and operation was performed under the following conditions.

【表8】運転条件 昇温速度 300℃/秒 ガス滞留時間 1.57秒 ガス平均流速 31m/秒[Table 8] Operating conditions Temperature rising rate 300 ° C / sec Gas residence time 1.57 sec Average gas flow velocity 31 m / sec

【0025】上記条件で6000時間運転し、その時点
で加熱管の肉厚を測定した結果、入口部に近い側の直管
2本分にわたって最大5mm程度の減肉が観察された。
As a result of operating for 6000 hours under the above conditions and measuring the wall thickness of the heating pipe at that time, a maximum thickness reduction of about 5 mm was observed over two straight pipes near the inlet.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来のガス加熱管とその消耗減肉箇所を示す。FIG. 1 shows a conventional gas heating pipe and a portion where its consumption is reduced.

【図2】ブドアール反応の平衡定数の温度依存性及びカ
ーボン析出危険帯域を示す。
FIG. 2 shows the temperature dependence of the equilibrium constant of the Boudard reaction and the carbon deposition critical zone.

【図3】本発明の実施に好適な装置の例を示す正面図で
ある。
FIG. 3 is a front view showing an example of an apparatus suitable for implementing the present invention.

【図4】図3の装置のX−X矢視及びY−Y矢視を示す
側面図である。
FIG. 4 is a side view showing the apparatus of FIG. 3 as viewed in the direction of arrows XX and YY.

【符号の説明】[Explanation of symbols]

A 対流伝熱部 B 輻射伝熱部 B1 一次加熱部 B2 二次加熱部 1 対流伝熱部加熱管 2 輻射伝熱部一次加熱管 3 輻射伝熱部二次加熱管 4 クロスオーバー管(対流伝熱部から輻射伝熱部へ) 5 クロスオーバー管(一次加熱部から二次加熱部へ) 6 入口ヘッダー 7 ディストリビューター 8 トランスファーライン 9 1段目バーナー 10 2段目バーナー 11 1段目バーナー(二次加熱部) 12 ラジアントウォールバーナー 13 耐火断熱キャスタブル 14 対流伝熱部床面 A Convection heat transfer part B Radiation heat transfer part B1 Primary heating part B2 Secondary heating part 1 Convection heat transfer part Heating tube 2 Radiation heat transfer part Primary heating tube 3 Radiation heat transfer part Secondary heating tube 4 Crossover tube (Convection transfer 5) Crossover tube (from primary heating part to secondary heating part) 6 Inlet header 7 Distributor 8 Transfer line 9 1st stage burner 10 2nd stage burner 11 1st stage burner (2nd Next heating part) 12 Radiant wall burner 13 Fireproof heat insulating castable 14 Convection heat transfer part Floor surface

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 一酸化炭素含有還元性ガスを伝熱面を介
して加熱する方法において、該ガスからカーボンが析出
しやすい危険温度帯域を定め、該ガスの該危険温度帯域
における昇温速度が1000℃/秒以上となるように急
速加熱することを特徴とする方法。
1. A method of heating a carbon monoxide-containing reducing gas via a heat transfer surface, wherein a dangerous temperature zone in which carbon is likely to be precipitated from the gas is determined, and a heating rate of the gas in the dangerous temperature zone is set. A method characterized by rapidly heating to 1000 ° C./second or more.
【請求項2】 該昇温速度が1500〜3500℃/秒
である請求項1記載の方法。
2. The method according to claim 1, wherein the heating rate is 1500 to 3500 ° C./sec.
【請求項3】 一酸化炭素含有還元性ガスを伝熱面を介
して加熱する方法において、該ガスからカーボンが析出
しやすい危険温度帯域を定め、該ガスの該危険温度帯域
における滞留時間が0.35秒以下となるように急速加
熱することを特徴とする方法。
3. A method of heating a carbon monoxide-containing reducing gas via a heat transfer surface, wherein a dangerous temperature zone in which carbon is likely to precipitate from the gas is defined, and a residence time of the gas in the dangerous temperature zone is 0. A method characterized in that rapid heating is performed so that the time is not longer than 35 seconds.
【請求項4】 該滞留時間が0.1〜0.23秒である
請求項3記載の方法。
4. The method according to claim 3, wherein the residence time is 0.1 to 0.23 seconds.
【請求項5】 一酸化炭素含有還元性ガスを伝熱面を介
して加熱する方法において、該ガスの450℃から80
0℃までの昇温速度が1000℃/秒以上となるように
急速加熱することを特徴とする方法。
5. A method of heating a carbon monoxide-containing reducing gas through a heat transfer surface, the method comprising heating the gas at 450 ° C. to 80 ° C.
A method characterized by rapidly heating so that the temperature rising rate up to 0 ° C is 1000 ° C / sec or more.
【請求項6】 該昇温速度が1500〜3500℃/秒
である請求項5記載の方法。
6. The method according to claim 5, wherein the heating rate is 1500 to 3500 ° C./sec.
【請求項7】 該ガスが直接還元製鉄用の還元炉テール
ガスである請求項1〜6のいずれか記載の方法。
7. The method according to claim 1, wherein the gas is a reducing furnace tail gas for direct reduction ironmaking.
【請求項8】 該ガスの一酸化炭素含有率が4体積%以
上(乾量基準)である請求項1〜6のいずれか記載の方
法。
8. The method according to claim 1, wherein the carbon monoxide content of the gas is 4% by volume or more (on a dry basis).
【請求項9】 該ガスの下記に定義されるKp(obs)値
が2.0以下である請求項1〜6のいずれか記載の方
法。 Kp(obs)=PCO2/(PCO2CO: 一酸化炭素分圧(単位kg/cm2) PCO2: 二酸化炭素分圧(単位kg/cm2
9. The method according to claim 1, wherein the Kp (obs) value defined below of the gas is 2.0 or less. Kp (obs) = P CO2 / (P CO ) 2 P CO : Carbon monoxide partial pressure (unit: kg / cm 2 ) P CO2 : Carbon dioxide partial pressure (unit: kg / cm 2 )
【請求項10】 該ガスの該危険温度帯域における伝熱
面に平行な速度成分の平均値が40m/秒以上である請
求項1〜4のいずれか記載の方法。
10. The method according to claim 1, wherein an average value of velocity components parallel to the heat transfer surface in the dangerous temperature zone of the gas is 40 m / sec or more.
【請求項11】 該ガスを450℃から800℃まで加
熱する領域における伝熱面に平行な速度成分の平均値が
40m/秒以上である請求項5または6記載の方法。
11. The method according to claim 5, wherein the average value of velocity components parallel to the heat transfer surface in the region where the gas is heated from 450 ° C. to 800 ° C. is 40 m / sec or more.
【請求項12】 燃焼室内にバーナーとガス加熱管が配
備された加熱部を有し、該ガス加熱管を該バーナーの火
炎で外側から加熱する一方、一酸化炭素含有還元性ガス
を該ガス加熱管内に流通させることにより、該一酸化炭
素含有還元性ガスを昇温するガス加熱炉において、該ガ
ス加熱管が外径30〜80mmの直管からなるマルチパ
ス構造をとることを特徴とするガス加熱炉。
12. A combustion unit having a burner and a gas heating pipe arranged in the combustion chamber, wherein the gas heating pipe is heated from the outside by the flame of the burner while the carbon monoxide-containing reducing gas is heated by the gas. In a gas heating furnace for raising the temperature of the carbon monoxide-containing reducing gas by circulating the gas in the tube, the gas heating tube has a multi-pass structure composed of a straight tube having an outer diameter of 30 to 80 mm. heating furnace.
【請求項13】 該加熱部は、該一酸化炭素含有還元性
ガスを450℃以下の温度から800℃以上の温度まで
昇温するものである請求項12記載のガス加熱炉。
13. The gas heating furnace according to claim 12, wherein the heating section heats the carbon monoxide-containing reducing gas from a temperature of 450 ° C. or lower to a temperature of 800 ° C. or higher.
【請求項14】 該加熱部に加え、該加熱部に供給され
る一酸化炭素含有還元性ガスを予熱する予熱部、及び該
加熱部から流出する一酸化炭素含有還元性ガスを更に昇
温する二次加熱部を有する請求項12記載のガス加熱
炉。
14. In addition to the heating section, a preheating section for preheating the carbon monoxide-containing reducing gas supplied to the heating section and a carbon monoxide-containing reducing gas flowing out from the heating section are further heated. The gas heating furnace according to claim 12, further comprising a secondary heating unit.
【請求項15】 該二次加熱部がラジアントウォールバ
ーナーを有する請求項14記載のガス加熱炉。
15. The gas heating furnace according to claim 14, wherein the secondary heating section has a radiant wall burner.
JP00516096A 1996-01-16 1996-01-16 Reducing gas heating method and apparatus Expired - Lifetime JP3889827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00516096A JP3889827B2 (en) 1996-01-16 1996-01-16 Reducing gas heating method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00516096A JP3889827B2 (en) 1996-01-16 1996-01-16 Reducing gas heating method and apparatus

Publications (2)

Publication Number Publication Date
JPH09194918A true JPH09194918A (en) 1997-07-29
JP3889827B2 JP3889827B2 (en) 2007-03-07

Family

ID=11603508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00516096A Expired - Lifetime JP3889827B2 (en) 1996-01-16 1996-01-16 Reducing gas heating method and apparatus

Country Status (1)

Country Link
JP (1) JP3889827B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104502459A (en) * 2014-12-08 2015-04-08 中国特种设备检测研究院 Acoustic emission-based method for diagnosing furnace tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104502459A (en) * 2014-12-08 2015-04-08 中国特种设备检测研究院 Acoustic emission-based method for diagnosing furnace tube

Also Published As

Publication number Publication date
JP3889827B2 (en) 2007-03-07

Similar Documents

Publication Publication Date Title
US9822427B2 (en) Production process
US11339450B2 (en) Method and device for reaction control
US6402852B2 (en) Apparatus and method for continuous removal of oxides from metal
US6183246B1 (en) Method of heating a continuously charged furnace particularly for steel-making products, and continuously charged heating furnace
JPH09194918A (en) Reducing gas heating method and device therefor
US5759499A (en) Thermal reactor with direct passage tube for current
US20040194921A1 (en) Method and apparatus to prevent metal dusting
JP2643086B2 (en) Belt type continuous heat treatment furnace for metal powder reduction treatment
US6458217B1 (en) Superadiabatic combustion generation of reducing atmosphere for metal heat treatment
JP3845143B2 (en) Continuous heating method and apparatus
CN103667641A (en) Small-dimension workpiece heat treatment method and special tooling
JPH10183233A (en) Heat insulating skid pipe
JPS6352085B2 (en)
JP4179717B2 (en) Combustion method of hydrocarbon fuel by burner
JPS6318647B2 (en)
JP2002054879A (en) Tower furnace for heat-treating metallic band material
JPS5933176B2 (en) How to set the heating zone temperature of a continuous annealing furnace
JPH10259420A (en) Method for reducing oxide of metallic plate
WO2022253468A1 (en) Method for heating a furnace
JP2927165B2 (en) Process gas supply and exhaust gas discharge method in continuous siliconizing line for high silicon steel strip production
JPH09229350A (en) Exhaust gas sensible heat collecting device for heating furnace
JPH02247334A (en) Continuous annealing equipment for cold-rolled band steel
JPS6160899B2 (en)
JPS5993840A (en) Gas sealing method of inlet and outlet for steel strip of continuous heat treatment furnace for steel strip
JPS595829B2 (en) Atmosphere heating furnace

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131208

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term