JPS6352085B2 - - Google Patents

Info

Publication number
JPS6352085B2
JPS6352085B2 JP3912280A JP3912280A JPS6352085B2 JP S6352085 B2 JPS6352085 B2 JP S6352085B2 JP 3912280 A JP3912280 A JP 3912280A JP 3912280 A JP3912280 A JP 3912280A JP S6352085 B2 JPS6352085 B2 JP S6352085B2
Authority
JP
Japan
Prior art keywords
gas
furnace
preheating section
matsufuru
air introduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3912280A
Other languages
Japanese (ja)
Other versions
JPS56136919A (en
Inventor
Yukio Yuzawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YAMAZAKI DENKI KK
Original Assignee
YAMAZAKI DENKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YAMAZAKI DENKI KK filed Critical YAMAZAKI DENKI KK
Priority to JP3912280A priority Critical patent/JPS56136919A/en
Publication of JPS56136919A publication Critical patent/JPS56136919A/en
Publication of JPS6352085B2 publication Critical patent/JPS6352085B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Furnace Details (AREA)

Description

【発明の詳細な説明】 本発明は、金属の連続熱処理方法および装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for continuous heat treatment of metals.

金属の熱処理たとえば、金属粉末の成型品を焼
結したり、それらや溶製材をろう付けする手段と
して、予熱部乃至脱ろう部(以下予熱部と称す)
と本加熱部ないし焼結部(以下本加熱部と称す)
とを連結し、それらに所定の雰囲気を供給すると
共にコンベアベルトあるいはプツシヤーで被処理
物を連続的に移送しつつ熱処理する構造のトンネ
ル型加熱炉が汎用されている。
Heat treatment of metals, for example, as a means of sintering molded products of metal powder or brazing them or molten materials, the preheating section or dewaxing section (hereinafter referred to as the preheating section)
and main heating section or sintering section (hereinafter referred to as main heating section)
A commonly used tunnel-type heating furnace has a structure in which a predetermined atmosphere is supplied to the two, and the workpiece is heat-treated while being continuously transported by a conveyor belt or pusher.

しかして、このようなトンネル型連続炉におい
ては、省エネルギーおよび省資源化の要求が高ま
りつつあり、そのひとつの方策として、予熱部に
燃焼バーナを設け、この燃焼バーナにより理論空
気量以下の空気を用いて重炭化水素ガスを燃焼さ
せ、発生した燃焼ガスを被処理物に吹付けてこれ
を加熱し、次いで本加熱部において所定の雰囲気
で電気ヒータなどにより加熱する方法が従来行わ
れている。
However, in such tunnel-type continuous furnaces, there is an increasing demand for energy saving and resource saving, and one measure to achieve this is to install a combustion burner in the preheating section, and use this combustion burner to emit less than the theoretical amount of air. Conventionally, a method has been used in which a heavy hydrocarbon gas is combusted using a heat exchanger, the generated combustion gas is sprayed onto a workpiece to heat it, and then the workpiece is heated in a main heating section using an electric heater or the like in a predetermined atmosphere.

このガス燃焼予熱方式は予熱と本加熱の双方を
電熱で行う方法に較べ、電力の節減および潤滑剤
のバーンオフ促進に効果がある。しかしながら、
上記の方法では、予熱の雰囲気が炭化水素の燃焼
ガスそのもので多量のH2OやCO2分を含んでいる
ため、脱ろう効果が良い反面前記成分により被処
理物が酸化しやすく、そのため次の本加熱部にお
いて脱炭が助長され、所期の良品が得られなくな
るという問題があり、これは脱ろう効果を上げる
ために予熱部の加熱温度を高くするとさらに顕著
になる。
This gas combustion preheating method is more effective in reducing power consumption and promoting burn-off of the lubricant than a method in which both preheating and main heating are performed using electric heat. however,
In the above method, the preheating atmosphere is the hydrocarbon combustion gas itself and contains a large amount of H 2 O and CO 2 , so while the dewaxing effect is good, the material to be treated is easily oxidized due to the above components, so the next step There is a problem in that decarburization is promoted in the main heating section, making it impossible to obtain the desired good quality product, and this problem becomes more noticeable when the heating temperature in the preheating section is raised to increase the dewaxing effect.

また、上記方法では、燃焼バーナによりいわば
直火式に加熱し、燃焼ガスを予熱部の入口から大
気に放散させているので、別途雰囲気ガス発生機
を用いて重炭化水素ガスなどの変成ガスを作りこ
れを本加熱部に導入しなければならず、そのため
装置コストが高くなると共に、ガスの無駄が多い
という欠点があり、さらに、さきのように予熱部
に多量のH2OやCO2分を含む燃焼ガスが連続的に
発生し、それら成分が熱による吸引作用で本加熱
ゾーンに混入拡散しやすいため雰囲気の汚損度が
高くなり、これを防止するには本加熱ゾーンへ多
量の吸熱型ガスを導入しなければならないため消
費用ガス量と熱量のロスが多いという欠点があつ
たものである。
In addition, in the above method, the combustion gas is directly heated using a combustion burner, and the combustion gas is dissipated into the atmosphere from the inlet of the preheating section, so a separate atmosphere gas generator is used to generate metamorphosed gas such as heavy hydrocarbon gas. This has to be introduced into the main heating section, which increases equipment cost and wastes a lot of gas.Furthermore, as mentioned earlier, a large amount of H 2 O and CO 2 must be introduced into the preheating section. Combustion gas containing This method has the disadvantage that there is a large loss of gas consumption and heat because gas must be introduced.

本発明は、前記した従来のガス燃焼加熱併用型
熱処理方法の不具合を解消しようとするもので、
その目的とするところは、雰囲気原料ガスの消費
量と、必要熱量を大きく節減でき、しかも雰囲気
組成を被処理物の材質物性に適合するように自在
にコントロールできその雰囲気管理も容易な省エ
ネルギー省資源型の熱処理方法を提供することに
ある。
The present invention aims to solve the problems of the conventional heat treatment method using gas combustion and heating.
The purpose of this is to greatly reduce the consumption of atmosphere raw material gas and the required amount of heat, and also to save energy and resources by being able to freely control the atmosphere composition to match the material properties of the workpiece, making it easy to manage the atmosphere. An object of the present invention is to provide a method for heat treating a mold.

この目的を達成するため本発明は、予熱部と本
加熱部を連結したトンネル状炉中で熱処理を行う
方法において、予熱部のマツフル外側で炭化水素
ガスと空気の混合ガスを燃焼して被処理物を予熱
する一方、被処理物を予熱した燃焼ガスを炉外に
導いて冷却脱水後予熱し、このガスに炭化水素ガ
スを添加変成し所定成分の吸熱型ガスに調整して
本加熱部に供給し、かつ予熱部マツフル内には、
脱水後の燃焼ガス、これと吸熱型ガスとの混合ガ
スまたはこの混合ガスに冷却前の燃焼ガスを添加
した混合ガスのいずれかを供給する構成としたも
のである。
In order to achieve this object, the present invention provides a method for performing heat treatment in a tunnel-shaped furnace in which a preheating section and a main heating section are connected, in which a mixed gas of hydrocarbon gas and air is combusted outside the matsufuru of the preheating section. While preheating the object, the combustion gas that has preheated the object to be treated is guided outside the furnace, cooled and dehydrated, and then preheated. Hydrocarbon gas is added to this gas to transform it and adjust it to an endothermic gas with a predetermined composition, which is then sent to the main heating section. In the supply and preheating section Matsufuru,
The structure is such that either the dehydrated combustion gas, a mixed gas of this and an endothermic gas, or a mixed gas obtained by adding combustion gas before cooling to this mixed gas is supplied.

また、本発明の他の目的は、上記熱処理方法の
実施に好適な装置を提供することにある。
Another object of the present invention is to provide an apparatus suitable for carrying out the above heat treatment method.

この目的を達成するため、本発明は、燃焼バー
ナーの内側にマツフルを挿通した予熱部と、該予
熱部と通じ内部にヒータを配した炉本体とを備
え、前記予熱部にはマツフル外側に通じる排気系
を設け、この排気系に熱交換器と冷却器を設け、
冷却器の出口側を前記熱交換器に挿通後分岐して
一方を前記炉本体中と通じる第1の炉気導入系と
なすとともに、他方を前記マツフル内に導通する
第2の炉気導入系となし、前記第1の炉気導入系
には変成用加熱器を介在させるとともに該変成用
加熱器の入口側にエンリツチ用ガス供給系を流量
調整弁を介して接続し、さらに第1の炉気導入系
の変成用加熱器の出口側を分岐し前記第2の導入
系と接続した構成としたものである。
In order to achieve this object, the present invention includes a preheating section in which a matzuru is inserted inside a combustion burner, and a furnace body that communicates with the preheating section and has a heater therein, and the preheating section has a main body that communicates with the outside of the matzuru. An exhaust system is installed, a heat exchanger and a cooler are installed in this exhaust system,
The outlet side of the cooler is inserted into the heat exchanger and then branched to form a first furnace air introduction system that communicates with the inside of the furnace main body on one side, and a second furnace air introduction system that communicates with the inside of the Matsufuru on the other side. A shift heater is interposed in the first furnace air introduction system, and an enrichment gas supply system is connected to the inlet side of the shift heater via a flow rate regulating valve. The outlet side of the shift conversion heater of the air introduction system is branched and connected to the second introduction system.

以下、本発明の実施例を添付図面に基いて説明
する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図は本発明に係る金属の連続熱処理方法を
示すもので、1は予熱部、2は予熱部1と直接又
は連結筒を介して連設された本加熱部、3は本加
熱部2に連結された冷却部、4は必要に応じて設
けられる置換室であり、前記予熱部1から冷却部
3又は置換室4まで一連のトンネル状に構成さ
れ、エンドレスコンベアもしくはプツシヤーなど
の送り手段5により被処理物を順次させるように
なつている。そして、本加熱部2に加熱ヒータ6
が設けられると共に、予熱部1には数個の燃焼バ
ーナ7が挿設されている。
FIG. 1 shows the continuous heat treatment method for metal according to the present invention, in which 1 is a preheating section, 2 is a main heating section connected directly to the preheating section 1 or via a connecting tube, and 3 is a main heating section 2. A cooling section 4 connected to the cooling section 4 is a replacement chamber provided as necessary, and is configured in a series of tunnels from the preheating section 1 to the cooling section 3 or replacement chamber 4, and is connected to a feeding means 5 such as an endless conveyor or pusher. This allows the objects to be processed to be sequentially processed. Then, a heating heater 6 is installed in the main heating section 2.
In addition, several combustion burners 7 are inserted in the preheating section 1.

このようなトンネル状の連続加熱炉により被処
理物Aを熱処理するに当り、本発明は、前記予熱
部1の燃焼バーナ7より内側にマツフル8を挿通
しておくもので、このマツフル8の先端を装入口
とする。マツフル8は、本加熱部2の前壁で止ま
つていてもよいが、熱処理温度が高温でない場合
は、本加熱部2の内部に通してもよい。そして、
操業にあたつては、燃焼バーナ7に炭化水素ガス
(CmHn)G1と空気G2の混合気を供給し、予熱部
1のマツフル外側空間9で燃焼させる。このとき
従前の加熱方法では、空気を理論量以下用いて不
完全燃焼させていたが、本発明では、空気/原料
比をほぼ理論燃焼に相当する状態に制御して完全
燃焼させるもので、これにより、被処理物Aはマ
ツフル8を介して加熱昇温され、燃結においては
脱ろうが進行し、ろう付けにおいては予熱が進行
する。
When heat-treating the workpiece A in such a tunnel-shaped continuous heating furnace, the present invention is to insert a Matsufuru 8 inside the combustion burner 7 of the preheating section 1, so that the tip of the Matsufuru 8 is inserted. is the charging port. The matsufuru 8 may be stopped at the front wall of the main heating section 2, but may be passed through the inside of the main heating section 2 if the heat treatment temperature is not high. and,
During operation, a mixture of hydrocarbon gas (CmHn) G 1 and air G 2 is supplied to the combustion burner 7 and is combusted in the outer space 9 of the preheating section 1 . At this time, in the conventional heating method, incomplete combustion was achieved by using less than the stoichiometric amount of air, but in the present invention, complete combustion is achieved by controlling the air/raw material ratio to a state equivalent to almost stoichiometric combustion. As a result, the temperature of the workpiece A is heated through the matsuru 8, dewaxing progresses during sintering, and preheating progresses during brazing.

しかして、従来の加熱方式では、燃焼ガスをそ
のまま予熱部1から大気へ放出させ、本加熱部2
に別途ガス発生機で製造した雰囲気を供給してい
たものであるが、本発明はまず前記のように燃焼
バーナ7で燃焼されたガスG3を大気に放出させ
ることなくマツフル外側空間9から外部へ引き出
し、この燃焼ガスG3を冷却器11により冷却し
てガス中の水分を一定量オートドレンにて除去す
る。
However, in the conventional heating method, the combustion gas is directly released from the preheating section 1 to the atmosphere, and the main heating section 2
However, in the present invention, the gas G3 combusted in the combustion burner 7 is first supplied to the outside from the Matsufuru outer space 9 without being released into the atmosphere as described above. This combustion gas G 3 is cooled by a cooler 11, and a certain amount of moisture in the gas is removed by an auto drain.

次いで脱水した燃焼ガスG4を計量して再度後
続する燃焼ガスG3との熱交換により適温に予熱
し、この予熱した脱水燃焼ガスG4に所定量炭化
水素G1′を添加してエンリツチし、この混合物を
変成用加熱器12に供給して加熱することにより
変成する。前記変成工程では、前記脱水燃焼ガス
G4に対する炭化水素ガスG1′の添加量を加減する
ことで本加熱部2に求められる雰囲気に適合した
規定成分に調整されるものであり、このようにし
て得られた吸熱型ガス(ENガス)G5を本加熱部
2に導入し、これを炉気としてさきの予熱を終え
た被処理物Aを加熱し、本焼結あるいはろう付け
を行うものである。
Next, the dehydrated combustion gas G 4 is weighed and preheated to an appropriate temperature by heat exchange with the following combustion gas G 3 , and a predetermined amount of hydrocarbon G 1 ' is added to the preheated dehydrated combustion gas G 4 to enrich it. , this mixture is supplied to the transformation heater 12 and heated to undergo transformation. In the metamorphosis step, the dehydrated combustion gas
By adjusting the amount of hydrocarbon gas G 1 ' added to G 4 , the specified composition is adjusted to suit the atmosphere required for the main heating section 2, and the endothermic gas (EN Gas) G5 is introduced into the main heating section 2, and the preheated workpiece A is heated using this as furnace air to perform main sintering or brazing.

以上のようにして、本加熱部2の炉気が構成さ
れるが、本発明はこれと併行して予熱部1から抜
き出して冷却脱水した燃焼ガスG4の一部を予熱
部1のマツフル8内に供給するもので、このとき
に脱水燃焼ガスに対しさきのエンリツチ一変成過
程で得られた吸熱型ガスG5の適量を添加混合す
ることにより、予熱部の雰囲気も被処理物の性
状、物性等の条件に適合した規定成分に調整され
る。なお、必要に応じ予熱部7のマツフル外側か
ら引き出したままの燃焼ガスG3をも上記ガスに
添加してマツフル中に導入する態様もとり得る。
従つて本発明によれば、予熱部の導入雰囲気を発
熱型ガス(EX)から吸熱型ガスENまで幅広く
自由かつ簡単にコントロールすることが可能であ
る。これは、実施する熱処理が焼結であるような
場合に有利であり、粉末の材質などに即応したも
つとも効果的な脱ろうを行うことができる。
The furnace air in the main heating section 2 is configured as described above, and in parallel with this, a part of the combustion gas G 4 extracted from the preheating section 1 and cooled and dehydrated is transferred to the Matsufuru 8 of the preheating section 1. At this time, by adding and mixing an appropriate amount of endothermic gas G5 obtained in the previous enrichment-transformation process to the dehydrated combustion gas, the atmosphere in the preheating section can be adjusted to match the properties of the material to be treated. The ingredients are adjusted to meet the conditions such as physical properties. Note that, if necessary, it is also possible to adopt a mode in which the combustion gas G3 drawn out from the outside of the Matsufuru in the preheating section 7 is also added to the above gas and introduced into the Matsufuru.
Therefore, according to the present invention, it is possible to freely and easily control the atmosphere introduced into the preheating section over a wide range from exothermic gas (EX) to endothermic gas EN. This is advantageous when the heat treatment to be performed is sintering, and it is possible to carry out a very effective dewaxing process that is responsive to the material of the powder.

次に上記発明を従来法と比較して作用効果を検
討する。
Next, the above invention will be compared with the conventional method to examine its effects.

いま炭化水素ガスとしてC4H10を例にとつてみ
ると、本発明の場合予熱部1では燃焼バーナ7に
より次の化学反応が生じる。
Taking C 4 H 10 as an example of hydrocarbon gas, in the case of the present invention, the following chemical reaction occurs in the preheating section 1 by the combustion burner 7.

2C4H10+13O2+49N2→8CO2+10H2O+49N2 これによりC4H10について+636kcal/molの発
熱量が得られ、この熱量で被処理物が予熱ないし
脱ろうされる。そして、予熱部1から抜き取つた
燃焼ガスを冷却することによりH2Oが近似的に
除去されるから、8CO2+49N2の成分のガスとな
る。本発明はこのものを予熱後C4H10ガスをエン
リツチし変成するもので、このとき変成炉では次
式の反応となる。
2C 4 H 10 +13O 2 +49N 2 →8CO 2 +10H 2 O + 49N 2 As a result, a calorific value of +636 kcal/mol is obtained for C 4 H 10 , and the object to be treated is preheated or dewaxed with this calorific value. By cooling the combustion gas extracted from the preheating section 1, H 2 O is approximately removed, resulting in a gas containing 8CO 2 +49N 2 . In the present invention, this material is preheated and then enriched with C 4 H 10 gas for transformation. At this time, the following reaction occurs in the transformation furnace.

2C4H10+8CO2+49N2→16CO+10H2+49N2 この反応によるガスを本発明は本加熱部2の炉
気として導入し、また前記ガス単体もしくはこれ
に予熱部からの燃焼ガスを脱水して得られた
8CO2+49N2のガスを混合したものを予熱部1の
雰囲気として導入するものである。
2C 4 H 10 +8CO 2 +49N 2 →16CO + 10H 2 +49N 2The present invention introduces the gas resulting from this reaction as the furnace air of the main heating section 2, and also introduces the gas alone or by dehydrating the combustion gas from the preheating section. was given
A mixture of 8CO 2 +49N 2 gases is introduced as the atmosphere in the preheating section 1.

しかして、前記のような本発明方法と従来法を
消費ガス量について比較してみると、本発明法と
従来法における変成反応は下記の通りである。
When comparing the amount of gas consumed between the method of the present invention and the conventional method as described above, the transformation reactions in the method of the present invention and the conventional method are as follows.

(1)式が本発明であり、(2)式が従来法であり、(1)
式と(2)式に対比させると下記の如くとなる。
Equation (1) is the present invention, Equation (2) is the conventional method, and (1)
Comparing Equation and Equation (2), we get the following.

従つて、本発明によれば、変成ガス原料の炭化
水素ガス消費量は、従来法にくらべ44%で済むこ
とになり、きわめて経済的となる。
Therefore, according to the present invention, the amount of hydrocarbon gas consumed as a raw material for converted gas is reduced to 44% compared to the conventional method, which is extremely economical.

次に、本発明法と従来法を熱収支について検討
すると、(1)式の場合C4H10について−195kcal/
molであり、(2)式の場合C4H10について+
76kcal/molである。そこでいま16.5m3/Hの変
成ガスを発生させるとすると、従来法では(2)式か
らC4H10の消費量が1m3/Hとなり、発生熱量
は、44.6mol×76kcal/mol=3390kcal/Hであ
る。一方、原料ガスを暖めるのに必要な熱量は、
比熱を0.33kcal/m3として−5445kcal/Hであ
り、合計すると−2055kcal/Hとなり、この熱量
を与えなければならないわけである。
Next, when considering the heat balance of the method of the present invention and the conventional method, in the case of equation (1), for C 4 H 10 -195kcal/
mol, and in the case of formula (2), + for C 4 H 10
It is 76kcal/mol. Therefore, if we are to generate 16.5 m 3 /H of metamorphosed gas, in the conventional method, the consumption of C 4 H 10 is 1 m 3 /H from equation (2), and the amount of heat generated is 44.6 mol × 76 kcal / mol = 3390 kcal. /H. On the other hand, the amount of heat required to warm the raw material gas is
If the specific heat is 0.33kcal/ m3 , it is -5445kcal/H, and the total is -2055kcal/H, which means that this amount of heat must be given.

これに対し、本発明方法は、(1)式からC4H10
消費量は0.44m3/Hであることから、必要熱量は
19.6mol×−195kcal/mol=−3822kcal/Hとな
り、原料ガスを暖めるのに必要な熱量は、−
5445kcal/Hである。だが、本発明は変成用の原
料ガスの大部分を予熱部で生じた燃焼ガスを利用
しており、0.44m3/HのC4H10の完全燃焼による
発熱量は、C4H10について636kcal/molであるこ
とから12466kcal/Hとなり、従つて合計すると
3199kcal/Hとなる。これは、従来法と較べ熱量
的に大きな利得がある。
On the other hand, in the method of the present invention, the amount of C 4 H 10 consumed is 0.44 m 3 /H from equation (1), so the required amount of heat is
19.6mol×-195kcal/mol=-3822kcal/H, and the amount of heat required to warm the raw material gas is -
It is 5445kcal/H. However, the present invention uses combustion gas generated in the preheating section as most of the raw material gas for shift conversion, and the calorific value of complete combustion of C 4 H 10 of 0.44 m 3 /H is approximately Since it is 636kcal/mol, it becomes 12466kcal/H, so the total is
It becomes 3199kcal/H. This has a large gain in terms of heat quantity compared to the conventional method.

次に、本発明による熱処理装置の一実施例を説
明すると、第2図ないし第4図の如くであり、1
は耐火物の側壁部あるいは必要に応じ上壁部に燃
焼バーナ7を挿設した予熱部、2は耐火物内側に
加熱ヒータ6を設けた本加熱部(炉本体)で、予
熱部1には燃焼バーナ7より内側にマツフル8が
挿通されている。本実施例では、前記マツフル8
を本加熱部2にも挿通しているが、加熱条件に応
じ、本加熱部2はマツフルを用いない外殻気密型
の炉体としてもよい。
Next, an embodiment of the heat treatment apparatus according to the present invention will be described. It is as shown in FIGS. 2 to 4.
2 is a preheating section in which a combustion burner 7 is inserted into the side wall of the refractory or the upper wall if necessary; 2 is the main heating section (furnace body) in which a heater 6 is installed inside the refractory; A matzuru 8 is inserted inside the combustion burner 7. In this embodiment, the Matsuful 8
is also inserted through the main heating section 2, but depending on the heating conditions, the main heating section 2 may be an airtight outer shell type furnace body without using a matzuru.

13は予熱部1の底壁部に設けられた排気導口
で、この排気導口13に排気系14が接続される
と共に、該排気系14には熱交換器10と冷却器
11が順次直列に介在され、それら熱交換器10
と冷却器11にそれぞれドレン管15,16が設
けられている。そして、前記排気系14には冷却
器11の出口側に流量計17が介在されていると
共に、熱交換器10に挿通される屈曲流路18が
形成され、この屈曲流路18の前方位置で2つの
系に分岐され、その一方は本加熱部2に通じる第
1の炉気導入系19として構成され、他方は予熱
部1のマツフル内に導通する第2の炉気導入系2
0となつている。21は第1の炉気導入系19と
接続したガス導入管で、マツフル中に挿入され先
端の小孔群から炉気を吹き出すようになつてい
る。22は第2の炉気導入系20と接続したガス
導入管で、予熱部1と本加熱部2の中間位置あた
りに設けられている。
Reference numeral 13 denotes an exhaust port provided on the bottom wall of the preheating section 1. An exhaust system 14 is connected to the exhaust port 13, and a heat exchanger 10 and a cooler 11 are connected in series to the exhaust system 14. and the heat exchanger 10
and cooler 11 are provided with drain pipes 15 and 16, respectively. A flow meter 17 is interposed in the exhaust system 14 on the outlet side of the cooler 11, and a bent flow path 18 is formed to be inserted into the heat exchanger 10. It is branched into two systems, one of which is configured as a first furnace air introduction system 19 that communicates with the main heating section 2, and the other is a second furnace air introduction system 2 that communicates with the inside of the preheating section 1.
It is 0. Reference numeral 21 denotes a gas introduction pipe connected to the first furnace air introduction system 19, which is inserted into the Matsufuru and blows out furnace air from a group of small holes at its tip. Reference numeral 22 denotes a gas introduction pipe connected to the second furnace air introduction system 20, and is provided at an intermediate position between the preheating section 1 and the main heating section 2.

しかして、前記第1の炉気導入系19には、ゼ
ネライト等の触媒を充てんした内筒231とその
まわりの加熱ヒータ232とを備えた変成用加熱
器23が介在され、この変成用加熱器23の手前
に、エンリツチ用ガスの供給系24が、流量計2
5遮断弁26および自動流量調節弁27を介して
接続され、第1の炉気導入系19に流れる脱水燃
焼ガスの流量すなわち、予熱部への挿入ガス量に
応じて任意量のエンリツチ用ガスを添加し、変成
用加熱器23に供給させるにしている。そして、
前記変成用加熱器23の出口側には流量計28お
よび調整弁29を介して前記第2の炉気導入系2
0に接続する混合系30が分岐されている。ま
た、第2の炉気導入系20には、熱交換器10の
入口側より手前から分岐した別の混合系31が調
整弁32を介して接続されている。
A shift heater 23 is interposed in the first reactor air introduction system 19 and includes an inner cylinder 231 filled with a catalyst such as generalite and a heater 232 around the inner cylinder 231. 23, an enrichment gas supply system 24 is connected to the flowmeter 2.
5 is connected via a shutoff valve 26 and an automatic flow rate control valve 27, and an arbitrary amount of enrichment gas is supplied depending on the flow rate of dehydrated combustion gas flowing into the first reactor air introduction system 19, that is, the amount of gas inserted into the preheating section. It is added and supplied to the shift conversion heater 23. and,
The second reactor air introduction system 2 is connected to the outlet side of the shift conversion heater 23 via a flow meter 28 and a regulating valve 29.
The mixing system 30 connected to 0 is branched. Further, another mixing system 31 branched from the inlet side of the heat exchanger 10 is connected to the second furnace air introduction system 20 via a regulating valve 32 .

なお、図示する構成は予熱部1での燃焼ガスを
系に押し込むかたちをとつているが、これに代え
系の適当な個所にポンプを設け、これで吸引、押
し込みを行つてもよい。また、第1の炉気導入系
19とエンリツチ用ガス供給系24の接続部付近
に比例混合器を介在せしめてもよい。
Note that the configuration shown is such that the combustion gas in the preheating section 1 is pushed into the system, but instead of this, a pump may be provided at an appropriate location in the system to perform suction and pushing. Further, a proportional mixer may be interposed near the connection between the first reactor air introduction system 19 and the enrichment gas supply system 24.

前記装置を用いて本発明を実施した状況を説明
すると予熱部1で燃焼バーナ7により炭化水素ガ
スと空気の混合物が完全燃焼され、これにより被
処理物Aはマツフル7を通して間接加熱される。
一方、燃焼ガスはマツフル7の外周から排気導口
13を経て排気系14に取り出され、この系にお
いて熱交換器10および冷却器11により冷却さ
れる。このとき燃焼ガス中の水分はドレン管1
5,16により一定量除去される。次いで、冷却
器11を通つた燃焼ガスは、流量計17により計
測され、熱交換器10に挿通された屈曲流路18
に流れることにより後続する燃焼ガスとの熱交換
で予熱される。
To explain the situation in which the present invention is carried out using the above-mentioned apparatus, a mixture of hydrocarbon gas and air is completely combusted by the combustion burner 7 in the preheating section 1, and the object A to be treated is thereby indirectly heated through the matzuru 7.
On the other hand, the combustion gas is taken out from the outer periphery of the matsuful 7 through the exhaust inlet 13 to the exhaust system 14, and is cooled by a heat exchanger 10 and a cooler 11 in this system. At this time, the moisture in the combustion gas is removed from the drain pipe 1.
5 and 16, a certain amount is removed. Next, the combustion gas that has passed through the cooler 11 is measured by a flow meter 17 and passed through a bent flow path 18 inserted into the heat exchanger 10.
It is preheated by heat exchange with the following combustion gas.

このようにして、予熱された脱水燃焼ガスは、
その一部が第2の炉気導入系20を通してガス導
入管22から予熱部1のマツフル中に供給され、
残る脱水燃焼ガスはエンリツチ用ガス供給系24
から供給された炭化水素ガスと混合され変成用加
熱器23にて変成される。このときの変成ガスの
成分組成は、流量計25と自動流量調整弁27の
開度コントロールにより自在に調整することが可
能であり、処理条件に適合した所定成分の吸熱型
ガスとして第1の炉気導入系19から本加熱部2
に連続供給される。
In this way, the preheated dehydrated combustion gas is
A part of it is supplied from the gas introduction pipe 22 to the Matsufuru of the preheating section 1 through the second furnace air introduction system 20,
The remaining dehydrated combustion gas is sent to the enrichment gas supply system 24.
The gas is mixed with hydrocarbon gas supplied from the converter and converted in the converter heater 23. The component composition of the converted gas at this time can be freely adjusted by controlling the opening of the flowmeter 25 and automatic flow rate adjustment valve 27, and the first furnace is used as an endothermic gas with a predetermined component that matches the processing conditions. From the air introduction system 19 to the main heating section 2
Continuously supplied.

そして、その際前記ガスの一部は第1の炉気導
入系19から混合系30により第2の炉気導入系
20に送られ、さきの脱水燃焼ガスと混合した状
態でマツフル中に供給される。前記吸熱型ガスの
添加量は流量計28と流量調整弁29で自由にコ
ントロールが可能であり、また、同時に他の混合
系31の調整弁32を操作することにより、
H2OやCO2を多量に含むガスを添加することも可
能である。もちろん各調整弁29,32,33を
閉じることにより予熱部1のマツフル8に炉気を
供給しないようにすることも可能であり、さらに
は、混合系の調整弁29,32を開いてそれらの
混合ガスをマツフルに供給することも可能であ
る。従つて、本発明装置によれば、予熱部1の雰
囲気を被処理物の物性や熱処理の目的等に応じた
最適な成分に自在に調整することが可能である。
At that time, a part of the gas is sent from the first reactor air introduction system 19 to the second reactor air introduction system 20 by the mixing system 30, and is supplied into the Matsufuru in a state mixed with the previous dehydrated combustion gas. Ru. The amount of the endothermic gas added can be freely controlled using the flow meter 28 and the flow rate adjustment valve 29, and by simultaneously operating the adjustment valve 32 of the other mixing system 31,
It is also possible to add a gas containing a large amount of H 2 O or CO 2 . Of course, it is also possible to close the adjustment valves 29, 32, 33 so that the furnace air is not supplied to the Matsufuru 8 of the preheating section 1, and furthermore, open the adjustment valves 29, 32 of the mixing system to It is also possible to supply mixed gas to Matsufuru. Therefore, according to the apparatus of the present invention, it is possible to freely adjust the atmosphere in the preheating section 1 to the optimum composition depending on the physical properties of the object to be treated, the purpose of heat treatment, etc.

以上説明した本発明によるときには、予熱部ガ
ス燃焼方式のトンネル状加熱炉により金属の連続
熱処理を行う方法において、予熱部では炭化水素
ガスの燃焼熱だけを利用し、被処理物と燃焼ガス
とをマツフルによつて隔離させ、マツフル内には
燃焼ガスを脱水したガスあるいは、これに炭化水
素をエンリツチして変成した吸熱型のガスとの混
合ガス、あるいはこの混合ガスに冷却前の燃焼ガ
スを添加した混合ガスを導入させるので、被処理
物に適した雰囲気を自在に構成させることがで
き、従つて焼結などにおいては被処理物の酸化や
焼結時の脱炭を容易に防止でき、予熱の高温化に
も十分対処することが可能となる。しかも、予熱
部の完全燃焼ガスを利用し、これを脱水予熱した
後炭化水素ガスをエンリツチして変成し吸熱型ガ
スとして本加熱部に導入するので、雰囲気原料ガ
スの消費量と熱量を大きく節減することが可能に
なり、適切な省資源、資エネルギーを図ることが
できる。また、予熱部に脱水されたガスあるいは
これと吸熱型ガスとの混合ガスを導入するので、
従来のこの種方式のように多量のH2O、CO2分を
含むガスが本加熱部に混入することがなくなり、
本加熱部の雰囲気を良好に保持することができ、
露点の低い条件での熱処理が可能になるなどのす
ぐれた効果が得られる。
According to the present invention as described above, in a method for continuous heat treatment of metal using a gas-fired tunnel heating furnace in the preheating section, only the combustion heat of hydrocarbon gas is used in the preheating section, and the object to be treated and the combustion gas are heated. It is isolated by a matzuru, and inside the matzuru, there is a gas obtained by dehydrating the combustion gas, a mixed gas with an endothermic gas enriched with hydrocarbons, or a combustion gas before cooling is added to this mixed gas. By introducing a mixed gas that is It becomes possible to sufficiently cope with the rise in temperature. Furthermore, the complete combustion gas in the preheating section is used, and after being dehydrated and preheated, hydrocarbon gas is enriched and transformed and introduced into the main heating section as an endothermic gas, which greatly reduces the consumption of atmospheric raw material gas and the amount of heat. This makes it possible to appropriately save resources and save energy. In addition, since dehydrated gas or a mixed gas of this and endothermic gas is introduced into the preheating section,
Unlike conventional methods of this type, gas containing large amounts of H 2 O and CO 2 does not enter the main heating section.
The atmosphere in the main heating section can be maintained well,
Excellent effects such as being able to perform heat treatment under low dew point conditions can be obtained.

また、本発明の第2発明によるときには、本発
明方法の実施に好適な装置を提供でき、ことに冷
却器の出口側の排気系を熱交換器に挿通すること
で簡便に燃焼ガスの冷却と脱水燃焼ガスの予熱を
図ることができ、また冷却器の出口側で第1の炉
気導入系と第2の炉気導入系を分岐し、第2の炉
気導入系と変成用加熱器以降の第1の炉気導入系
を結んでいることから、予熱部への導入雰囲気を
発熱型ガスから吸熱型ガスまで簡単かつ自由に調
整できるなどのすぐれた効果が得られる。
Further, according to the second aspect of the present invention, it is possible to provide an apparatus suitable for carrying out the method of the present invention, and in particular, by inserting the exhaust system on the outlet side of the cooler into a heat exchanger, combustion gas can be easily cooled. The dehydrated combustion gas can be preheated, and the first reactor air introduction system and the second reactor air introduction system are branched off at the outlet side of the cooler, and the second reactor air introduction system and the converter heater and later are separated. Since the first furnace air introduction system is connected to the first furnace air introduction system, excellent effects such as being able to easily and freely adjust the atmosphere introduced into the preheating section from exothermic gas to endothermic gas can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る金属の連続熱処理方法の
原理を示す系統図、第2図は本発明に係る金属の
連続熱処理装置の一実施例を示す断面図、第3図
は第2図−線にそう断面図、第4図は第2図
−線にそう断面図である。 1……予熱部、2……本加熱部、7……燃焼バ
ーナ、8……マツフル、10……熱交換器、11
……冷却器、14……排気系、19……第1の炉
気導入系、20……第2の炉気導入系、23……
変成用加熱器、24……エンリツチ用ガス供給
系、30,31……混合系、G1,G1′……炭化水
素ガス、G2……空気、G3……燃焼ガス、G4……
脱水燃焼ガス、G5……変成ガス。
FIG. 1 is a system diagram showing the principle of the continuous heat treatment method for metals according to the present invention, FIG. 2 is a sectional view showing an embodiment of the continuous heat treatment apparatus for metals according to the present invention, and FIG. 3 is the diagram shown in FIG. FIG. 4 is a sectional view taken along the lines of FIG. 2. 1... Preheating section, 2... Main heating section, 7... Combustion burner, 8... Matsufuru, 10... Heat exchanger, 11
... Cooler, 14 ... Exhaust system, 19 ... First reactor air introduction system, 20 ... Second reactor air introduction system, 23 ...
Shift conversion heater, 24...Enrichment gas supply system, 30, 31...Mixing system, G1 , G1 '...Hydrocarbon gas, G2 ...Air, G3 ...Combustion gas, G4 ... …
Dehydrated combustion gas, G 5 ... metamorphosed gas.

Claims (1)

【特許請求の範囲】 1 予熱部と本加熱部を連結したトンネル状炉中
で熱処理を行う方法において、予熱部のマツフル
外側で炭化水素ガスと空気の混合ガスを燃焼して
被処理物を予熱する一方、被処理物を予熱した燃
焼ガスを炉外に導いて冷却脱水後予熱し、このガ
スに炭化水素ガスを添加変成し所定成分の吸熱型
ガスに調整して本加熱部に供給し、かつ予熱部マ
ツフル内には、脱水後の燃焼ガス、これと吸熱型
ガスとの混合ガスまたはこの混合ガスに冷却前の
燃焼ガスを添加した混合ガスのいずれかを供給す
ることを特徴とする金属の連続熱処理方法。 2 燃焼バーナーの内側にマツフルを挿通した予
熱部と、該予熱部と通じ内部にヒータを配した炉
本体とを備え、前記予熱部にはマツフル外側に通
じる排気系を設け、この排気系に熱交換器と冷却
器を設け、冷却器の出口側を前記熱交換器に挿通
後分岐して一方を前記炉本体中と通じる第1の炉
気導入系となすとともに、他方を前記マツフル内
に導通する第2の炉気導入系となし、前記第1の
炉気導入系には変成用加熱器を介在させるととも
に該変成用加熱器の入口側にエンリツチ用ガス供
給系を流量調整弁を介して接続し、さらに第1の
炉気導入系の変成用加熱器の出口側を分岐し前記
第2の導入系と接続してなる金属の連続熱処理装
置。
[Claims] 1. A method of performing heat treatment in a tunnel-shaped furnace in which a preheating section and a main heating section are connected, in which a mixed gas of hydrocarbon gas and air is combusted outside the matsufuru of the preheating section to preheat the object to be treated. On the other hand, the combustion gas that has preheated the object to be treated is guided outside the furnace, cooled and dehydrated, and then preheated, hydrocarbon gas is added to this gas to transform it, adjust it to an endothermic gas with a predetermined composition, and supply it to the main heating section. and a metal characterized in that the preheating part Matsufuru is supplied with either the combustion gas after dehydration, a mixed gas of this and an endothermic gas, or a mixed gas obtained by adding combustion gas before cooling to this mixed gas. continuous heat treatment method. 2. The combustion burner is equipped with a preheating section in which a Matsufuru is inserted, and a furnace body that communicates with the preheating section and has a heater inside, and the preheating section is provided with an exhaust system that communicates with the outside of the Matsufuru, and heat is supplied to the exhaust system. An exchanger and a cooler are provided, and the outlet side of the cooler is inserted into the heat exchanger and then branched to form a first furnace air introduction system that communicates with the inside of the furnace main body, and the other conducts into the inside of the Matsufuru. A second reactor air introduction system is provided in which a shift heater is interposed in the first reactor air introduction system, and an enrichment gas supply system is connected to the inlet side of the shift heater via a flow rate regulating valve. A continuous heat treatment apparatus for metal, which is connected to the first furnace air introduction system, and further has an outlet side of a converting heater of a first furnace air introduction system branched and connected to the second introduction system.
JP3912280A 1980-03-28 1980-03-28 Method and apparatus for continuous heat treatment of metal Granted JPS56136919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3912280A JPS56136919A (en) 1980-03-28 1980-03-28 Method and apparatus for continuous heat treatment of metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3912280A JPS56136919A (en) 1980-03-28 1980-03-28 Method and apparatus for continuous heat treatment of metal

Publications (2)

Publication Number Publication Date
JPS56136919A JPS56136919A (en) 1981-10-26
JPS6352085B2 true JPS6352085B2 (en) 1988-10-18

Family

ID=12544285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3912280A Granted JPS56136919A (en) 1980-03-28 1980-03-28 Method and apparatus for continuous heat treatment of metal

Country Status (1)

Country Link
JP (1) JPS56136919A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4519302B2 (en) * 2000-10-24 2010-08-04 株式会社ダイヤメット Sintered product manufacturing apparatus and method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3745880B2 (en) * 1997-07-17 2006-02-15 中外炉工業株式会社 Roller hearth type continuous sealing furnace
US6241515B1 (en) * 2000-05-30 2001-06-05 Tat Technologies, Inc Device and method for treating combustibles obtained from a thermal processing apparatus and apparatus employed thereby
JP2009215627A (en) * 2008-03-12 2009-09-24 Mitsubishi Materials Techno Corp Dewaxing device and continuous sintering furnace
JP5622150B2 (en) * 2011-01-27 2014-11-12 住友電工焼結合金株式会社 Open firing furnace and dewaxing method in the firing furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4519302B2 (en) * 2000-10-24 2010-08-04 株式会社ダイヤメット Sintered product manufacturing apparatus and method

Also Published As

Publication number Publication date
JPS56136919A (en) 1981-10-26

Similar Documents

Publication Publication Date Title
US4046557A (en) Method for producing metallic iron particles
US5118479A (en) Process for using fluidized bed reactor
US4431407A (en) Process for burning limestone, dolomite or the like and annular shaft furnace for performing the same
US4019895A (en) Method of reducing ore using a plasma burner
US4224057A (en) Method for carburizing sponge iron
US2900247A (en) Method of making sponge iron
US4636342A (en) Method for continuously manufacturing non-fired pellets
JPS61185591A (en) Manufacture of gas
JPS6352085B2 (en)
US2845260A (en) Neutral heating with controlled preheat
US2557379A (en) Decarburization of iron or iron alloy castings
JPH0380843B2 (en)
US4348226A (en) Direct reduction process for producing metallic iron
JP2000515931A (en) Metal reduction and melting methods
JP2002357388A (en) Heat treating furnace
GB2077299A (en) Controlling blast furnace operation
US4049440A (en) Method for producing metallic iron pellets
US2706110A (en) Metallurgical heating furnace
US20020011132A1 (en) Process to preheat and carburate directly reduced iron (DRI) to be fed to an electric arc furnace (EAF)
CN113614049A (en) Method and apparatus for producing quick lime using coke dry fire extinguishing equipment
US2087893A (en) Recovery of sulphur
JP2001514701A (en) Treatment method of reducing gas in ore reduction process
JPS6126327Y2 (en)
US4042226A (en) Method and apparatus for producing metallic iron pellets
WO2001092801A1 (en) Device and method for treating combustibles obtained from a thermal processing apparatus and apparatus employed thereby