JPH0919290A - Heat resistant and gamma-cyano-alpha-aminobutylic acid-synthetic enzyme and its production - Google Patents

Heat resistant and gamma-cyano-alpha-aminobutylic acid-synthetic enzyme and its production

Info

Publication number
JPH0919290A
JPH0919290A JP7171171A JP17117195A JPH0919290A JP H0919290 A JPH0919290 A JP H0919290A JP 7171171 A JP7171171 A JP 7171171A JP 17117195 A JP17117195 A JP 17117195A JP H0919290 A JPH0919290 A JP H0919290A
Authority
JP
Japan
Prior art keywords
cyano
aminobutyric acid
acid synthase
thermostable
bacterium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7171171A
Other languages
Japanese (ja)
Other versions
JP3827751B2 (en
Inventor
Masahiro Ikemoto
昌弘 池本
Keigo Komura
啓悟 小村
Yuji Furuya
祐治 古谷
Tatsuhiko Kobayashi
達彦 小林
Akira Shimizu
昌 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ikeda Shokken KK
Original Assignee
Ikeda Shokken KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ikeda Shokken KK filed Critical Ikeda Shokken KK
Priority to JP17117195A priority Critical patent/JP3827751B2/en
Publication of JPH0919290A publication Critical patent/JPH0919290A/en
Application granted granted Critical
Publication of JP3827751B2 publication Critical patent/JP3827751B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a new synthetic enzyme capable of producing γ-cyano-α- aminobutylic acid from O-acetyl-L-homoserine as a substrate. SOLUTION: This heat resistant and γ-cyano-α-aminobutylic acid-producing enzyme is produced by Bacillus stearothermophilus CN3 strain and has the following properties and actions; the enzyme produces γcyano-α-aminobutylic acid from O-acetyl-L-homoserine and a cyanide compound, the optimum pH: 7.5-8.5, the stable pH range: 6.0-10.5, the optimum temperature: 55-65 deg.C, temperature stability: stable until 60 deg.C when kept at pH 7.5 for 30 minutes, molecular weight: about 180kd by a gel filtration.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の技術分野】この発明は、耐熱性γ−シアノ−α
−アミノ酪酸合成酵素と、その製造法に関するものであ
る。さらに詳しくは、この発明は、O−アセチル−L−
ホモセリンを基質としてγ−シアノ−α−アミノ酪酸を
生成することのでき、しかも熱安定性に優れた新しいγ
−シアノ−α−アミノ酪酸合成酵素と、この合成酵素の
製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a heat-resistant γ-cyano-α.
-Aminobutyric acid synthase and a method for producing the same. More specifically, the present invention relates to O-acetyl-L-
A new γ that is capable of producing γ-cyano-α-aminobutyric acid using homoserine as a substrate and that has excellent thermal stability
TECHNICAL FIELD The present invention relates to cyano-α-aminobutyric acid synthase and a method for producing this synthase.

【0002】[0002]

【従来の技術とその課題】従来より、γ−シアノ−α−
アミノ酪酸を生成するための酵素として、クロモバクテ
リウム(Chromobacterium )属に属する細菌(C.violac
eum ) より単離して得られるγ−シアノ−α−アミノ酪
酸合成酵素の存在が知られている(Biochemistry, 12,
p5369-5377, 1973)。
2. Description of the Related Art γ-Cyano-α-
As an enzyme for producing aminobutyric acid, a bacterium belonging to the genus Chromobacterium ( C. violac
It is known that γ-cyano-α-aminobutyric acid synthase obtained by isolation from Eum ) (Biochemistry, 12 ,
p5369-5377, 1973).

【0003】このγ−シアノ−α−アミノ酪酸合成酵素
(以下、従来酵素と記載することがある)は、L−ホモ
シスチンに反応性が高いため、基質としてL−ホモシス
チンを用い、これをシアン化物と反応させてγ−シアノ
−α−アミノ酪酸を生成する。しかしながら、L−ホモ
シスチンを基質として用いた場合には、シアンを含む副
産物が生成し、反応効率の低下やγ−シアノ−α−アミ
ノ酪酸の精製に影響が出るなどの問題を有していた。
Since this γ-cyano-α-aminobutyric acid synthase (hereinafter sometimes referred to as a conventional enzyme) has high reactivity with L-homocystine, L-homocystin is used as a substrate and cyanide is used. To produce γ-cyano-α-aminobutyric acid. However, when L-homocystine is used as a substrate, a by-product containing cyan is generated, which has a problem that the reaction efficiency is reduced and the purification of γ-cyano-α-aminobutyric acid is affected.

【0004】これに対して、基質としてO−アセチル−
L−ホモセリンを用いた場合には、シアンを含む副産物
を生成することなくγ−シアノ−α−アミノ酪酸を生成
することができるが、上記の従来酵素は、O−アセチル
−L−ホモセリンに対する反応性が低く(L−ホモシス
チンに対する反応性を100%とすると、O−アセチル
−L−ホモセリンに対するそれは5%)、効率的にγ−
シアノ−α−アミノ酪酸を生成することが不可能であっ
た。
On the other hand, O-acetyl- is used as a substrate.
When L-homoserine is used, γ-cyano-α-aminobutyric acid can be produced without producing a by-product containing cyanide. However, the above-mentioned conventional enzyme reacts with O-acetyl-L-homoserine. Low reactivity (assuming that the reactivity to L-homocysteine is 100%, that to O-acetyl-L-homoserine is 5%), and that γ-
It was not possible to produce cyano-α-aminobutyric acid.

【0005】また、従来酵素の場合には、30℃で3時
間安定であると記載されており(前記文献)、高温での
安定性が好ましいものではなかったため、γ−シアノ−
α−アミノ酪酸を合成する際の反応温度を制限しなけれ
ばならないという問題点も有していた。この発明は、以
上のとおりの事情に鑑みてなされたものであって、O−
アセチル−L−ホモセリンを基質としてγ−シアノ−α
−アミノ酪酸を生成することができ、しかも高い温度条
件下でも安定な新しい耐熱性γ−シアノ−α−アミノ酪
酸合成酵素を提供することを目的としている。
Further, in the case of a conventional enzyme, it is described that it is stable at 30 ° C. for 3 hours (the above-mentioned document), and the stability at high temperature was not preferable, so that γ-cyano-
There was also a problem that the reaction temperature for synthesizing α-aminobutyric acid had to be limited. The present invention has been made in view of the circumstances described above.
Γ-cyano-α using acetyl-L-homoserine as a substrate
-The object is to provide a new thermostable γ-cyano-α-aminobutyric acid synthase capable of producing aminobutyric acid and stable under high temperature conditions.

【0006】[0006]

【課題を解決するための手段】この発明は、上記の課題
を解決するものとして、次の性質、 (1)作用:O−アセチル−L−ホモセリンとシアン化
物からγ−シアノ−α−アミノ酪酸を生成する (2)至適pH:7.5〜8.5 (3)安定pH:6.0〜10.5 (4)至適温度:55〜65℃ (5)温度安定性:pH7.5において30分間保持し
た場合、60℃まで安定 (6)分子量:ゲル濾過にて約180kd を有する耐熱性γ−シアノ−α−アミノ酪酸合成酵素を
提供する。
In order to solve the above-mentioned problems, the present invention has the following properties (1) Action: γ-cyano-α-aminobutyric acid from O-acetyl-L-homoserine and cyanide (2) Optimum pH: 7.5 to 8.5 (3) Stable pH: 6.0 to 10.5 (4) Optimum temperature: 55 to 65 ° C (5) Temperature stability: pH 7. Stable up to 60 ° C. when kept at 5 ° C. for 30 minutes (6) A thermostable γ-cyano-α-aminobutyric acid synthase having a molecular weight of about 180 kd by gel filtration is provided.

【0007】また、この発明は、上記(1)〜(6)の
性質を有する耐熱性γ−シアノ−α−アミノ酪酸合成酵
素の産生能を有するバチルス(Bacillus)属に属する細
菌を、γ−シアノ−α−アミノ酪酸合成酵素生産培地で
培養し、この細菌の菌体からγ−シアノ−α−アミノ酪
酸合成酵素を単離することを特徴とする耐熱性γ−シア
ノ−α−アミノ酪酸合成酵素の製造法をも提供する。
Further, the present invention provides a bacterium which belongs to the genus Bacillus and has the ability to produce a thermostable γ-cyano-α-aminobutyric acid synthase having the above-mentioned properties (1) to (6). Thermostable γ-cyano-α-aminobutyric acid synthesis characterized by isolating γ-cyano-α-aminobutyric acid synthase from the bacterial cells of this bacterium by culturing in a cyano-α-aminobutyric acid synthase production medium A method for producing the enzyme is also provided.

【0008】[0008]

【発明の実施の形態】この発明によって提供される耐熱
性γ−シアノ−α−アミノ酪酸合成酵素は、O−アセチ
ル−L−ホモセリンに作用性が高く(O−アセチル−L
−ホモセリンに対する作用性を100%とした場合に、
L−ホモシスチンに対しては6.6%)、このO−アセ
チル−L−ホモセリンを基質としてシアン化物と反応さ
せると、副産物を生じることなく、効率的にγ−シアノ
−α−アミノ酪酸を生成することができる。また、前記
の従来酵素は、30℃で3時間安定であるのに対して、
この発明の合成酵素は、60℃まで安定であり、安定性
の点でも従来酵素に比べ、はるかに優れている。
BEST MODE FOR CARRYING OUT THE INVENTION The thermostable γ-cyano-α-aminobutyric acid synthase provided by the present invention has a high action on O-acetyl-L-homoserine (O-acetyl-L
-When the activity against homoserine is defined as 100%,
6.6% for L-homocystine), and when this O-acetyl-L-homoserine is used as a substrate for reaction with cyanide, γ-cyano-α-aminobutyric acid is efficiently produced without producing byproducts. can do. In addition, while the conventional enzyme is stable at 30 ° C. for 3 hours,
The synthetic enzyme of the present invention is stable up to 60 ° C., and is far superior to conventional enzymes in terms of stability.

【0009】そして、この発明の耐熱性γ−シアノ−α
−アミノ酪酸合成酵素は、補酵素としてピリドキサール
リン酸を必要とする。また、上記のO−アセチル−L−
ホモセリン以外にも、L−ホモシスチンを基質とするこ
ともできる。具体的には、この耐熱性γ−シアノ−α−
アミノ酪酸合成酵素は、バチルス(Bacillus)属に属す
る細菌、さらに具体的には、バチルス・ステアロサーモ
フィルス(B.stearothermophilus)に属する菌株から単
離して得ることができる。このようなバチルス・ステア
ロサーモフィルスに属する菌株としては、工業技術院生
命工学工業技術研究所に寄託されているバチルス・ステ
アロサーモフィルスCN3株(受託番号FERM BP
−4773)を好適なものとして例示することができ
る。
The heat-resistant γ-cyano-α of the present invention
-Aminobutyric acid synthase requires pyridoxal phosphate as a coenzyme. In addition, the above-mentioned O-acetyl-L-
In addition to homoserine, L-homocystin can be used as a substrate. Specifically, this heat-resistant γ-cyano-α-
Aminobutyric acid synthase, Bacillus (Bacillus) bacterium belonging to the genus, and more specifically, may be a strain belonging to Bacillus stearothermophilus (B. stearothermophilus) can be isolated. Such strains belonging to Bacillus stearothermophilus include Bacillus stearothermophilus CN3 strain (accession number FERM BP) deposited at the Institute of Biotechnology, Institute of Biotechnology, AIST.
-4773) can be illustrated as a suitable thing.

【0010】次に、この発明の耐熱性γ−シアノ−α−
アミノ酪酸合成酵素の製造方法について説明する。この
耐熱性γ−シアノ−α−アミノ酪酸合成酵素は、バチル
ス(Bacillus)属に属する細菌を、γ−シアノ−α−ア
ミノ酪酸合成酵素生産培地で培養し、この細菌の菌体か
らγ−シアノ−α−アミノ酪酸合成酵素を単離すること
によって得られる。バチルス属に属する細菌としては、
上記のバチルス・ステアロサーモフィルスに属する菌
株、好適にはバチルス・ステアロサーモフィルスCN3
株を用いることができる。また、このような細菌を培養
する場合のγ−シアノ−α−アミノ酪酸合成酵素生産培
地の成分としては、例えば、炭素源として、グルコー
ス、フラクトース、ラクトース、マルトース、シューク
ロース、デンプン、デキストリン等の糖類、グルタミン
酸、セリン等のアミノ酸類、あるいはフマル酸、リンゴ
酸、コハク酸等の有機酸、もしくはグリセロール、窒素
源として、ポリペプトン、トリプトン、酵母エキス、麦
芽エキス、肉エキス、コーンスティープリカー、大豆粉
加水分解物等の天然窒素源、無機塩として、NaCl、リン
酸水素二カリウム、硫酸マグネシウム等、また微量金属
成分としては、塩化カルシウム、ホウ酸、硫酸銅、ヨウ
化カリウム、硫酸第1鉄、硫酸マンガン、硫酸亜鉛等を
例示することができる。
Next, the heat-resistant γ-cyano-α-of the present invention
A method for producing aminobutyric acid synthase will be described. This thermostable γ-cyano-α-aminobutyric acid synthase is obtained by culturing a bacterium belonging to the genus Bacillus in a γ-cyano-α-aminobutyric acid synthase production medium, Obtained by isolating -α-aminobutyric acid synthase. As bacteria belonging to the genus Bacillus,
A strain belonging to the above Bacillus stearothermophilus, preferably Bacillus stearothermophilus CN3
A strain can be used. The components of the γ-cyano-α-aminobutyric acid synthase production medium for culturing such bacteria include, for example, glucose, fructose, lactose, maltose, sucrose, starch and dextrin as carbon sources. Sugars, glutamic acid, amino acids such as serine, or organic acids such as fumaric acid, malic acid, succinic acid, or glycerol, as a nitrogen source, polypeptone, tryptone, yeast extract, malt extract, meat extract, corn steep liquor, soy flour Natural nitrogen sources such as hydrolysates, inorganic salts such as NaCl, dipotassium hydrogen phosphate, magnesium sulfate, etc., and trace metal components such as calcium chloride, boric acid, copper sulfate, potassium iodide, ferrous sulfate, Examples thereof include manganese sulfate and zinc sulfate.

【0011】さらに、この培養細菌の菌体からγ−シア
ノ−α−アミノ酪酸合成酵素を単離するには、既知の精
製法を単独または併用して利用することができる。例え
ば、培養液を遠心分離して菌体を集め、これを超音波処
理またはダイノミル(Dyno-mill)処理により破砕した
のち、遠心分離により無細胞抽出液を得る。これを硫安
分画し、透析等による脱塩処理等を行い、次いで、イオ
ン交換クロマトグラフィー、疎水クロマトグラフィー、
ヒドロキシアパタイトクロマトグラフィー、ゲル濾過ク
ロマトグラフィー等を行ってこの発明の耐熱性γ−シア
ノ−α−アミノ酪酸合成酵素を単離することができる。
Further, in order to isolate γ-cyano-α-aminobutyric acid synthase from the cells of the cultured bacteria, known purification methods can be used alone or in combination. For example, the culture solution is centrifuged to collect the bacterial cells, which are sonicated or Dyno-mill treated to disrupt the cells, and then centrifuged to obtain a cell-free extract. This is subjected to ammonium sulfate fractionation, desalting treatment by dialysis, etc., followed by ion exchange chromatography, hydrophobic chromatography,
The thermostable γ-cyano-α-aminobutyric acid synthase of the present invention can be isolated by performing hydroxyapatite chromatography, gel filtration chromatography and the like.

【0012】以下、実施例を示してこの発明の耐熱性γ
−シアノ−α−アミノ酪酸合成酵素の製造法と、その性
質についてさらに詳しく説明するが、この発明は以下の
例に限定されるものではない。なお、以下の実施例にお
けるγ−シアノ−α−アミノ酪酸合成酵素の活性測定
は、次の参考例に示した方法に従って行った。参考例 酵素活性測定は、1Mリン酸カリウム緩衝液(pH7.
5)10μl(終濃度50mM) 、10mM O−アセ
チル−L−ホモセリン100μl(終濃度5mM)、1
00mMシアン化カリウム20μl(終濃度10m
M)、0.8mMピリドキサールリン酸20μl(終濃
度0.08mM)および酵素液50μlからなる反応液
(全量200μl)を45℃で10分間インキュベート
したのち、沸騰水浴中に2分間置いて反応を停止させ、
次いで、15,000rpm で5分間遠心分離した上澄液を高速
液体クロマトグラフィー(HPLC)にかけ、酵素反応
で生成したγ−シアノ−α−アミノ酪酸を定量すること
によって行った。
The heat resistance γ of the present invention will be described below with reference to examples.
The method for producing -cyano-α-aminobutyric acid synthase and its properties will be described in more detail, but the present invention is not limited to the following examples. The activity of γ-cyano-α-aminobutyric acid synthase in the following Examples was measured according to the method shown in the following Reference Example. Reference Example Enzyme activity was measured by 1M potassium phosphate buffer (pH 7.
5) 10 μl (final concentration 50 mM), 10 mM O-acetyl-L-homoserine 100 μl (final concentration 5 mM), 1
20 μl of 00 mM potassium cyanide (final concentration 10 m
M), 20 μl of 0.8 mM pyridoxal phosphate (final concentration 0.08 mM) and 50 μl of enzyme solution (total amount 200 μl) were incubated at 45 ° C. for 10 minutes and then placed in a boiling water bath for 2 minutes to stop the reaction. Let
Then, the supernatant obtained by centrifugation at 15,000 rpm for 5 minutes was subjected to high performance liquid chromatography (HPLC) to quantify γ-cyano-α-aminobutyric acid produced by the enzymatic reaction.

【0013】酵素活性の単位としては、上記の条件下
で、1分間に1μmolのγ−シアノ−α−アミノ酪酸
を生成する酵素活性を1ユニットと定義した。また、H
PLCの条件は、カラム:イナートシルODS−2(内
径4.6×250mm:ジーエルサイエンス社製)、溶
出液:20mMリン酸ナトリウム緩衝液(pH6.8)
/アセトニトリル(85:15)とした。
As the unit of enzyme activity, one unit was defined as the enzyme activity which produces 1 μmol of γ-cyano-α-aminobutyric acid per minute under the above-mentioned conditions. Also, H
The PLC conditions are: column: inert sils ODS-2 (inner diameter 4.6 × 250 mm: manufactured by GL Sciences), eluent: 20 mM sodium phosphate buffer (pH 6.8).
/ Acetonitrile (85:15).

【0014】[0014]

【実施例】【Example】

(1)バチルス・ステアロサーモフィルスCN3株の培
養 一般細菌用の乾燥ブイヨン培地「ニッスイ」(日水製薬
株式会社製)をそれぞれ試験管(直径2.2cm×長さ
19.5cm)4本に分注し、120℃で20分間殺菌
して冷却したのち、バチルス・ステアロサーモフィルス
CN3株を一白金耳ずつ接種し、58℃で18時間振と
う培養して、種培養液を調製した。
(1) Cultivation of Bacillus stearothermophilus CN3 strain Dried broth medium "Nissui" (manufactured by Nissui Pharmaceutical Co., Ltd.) for general bacteria was put into four test tubes (diameter 2.2 cm x length 19.5 cm). After dispensing, sterilizing at 120 ° C. for 20 minutes and cooling, Bacillus stearothermophilus CN3 strain was inoculated with one platinum loop each, and cultured at 58 ° C. for 18 hours with shaking to prepare a seed culture solution.

【0015】2リットル容量の培養フラスコ4本に、可
溶性でんぷん(1%)、酵母エキス(0.5%)、Mg
SO4 ・7H2 O(0.05%)、K2 HPO4 (0.
1%)、FeSO4 ・7H2 O(0.001%)、L−
グルタミン(0.1%)とからなる培地(pH7.2)
400mlをそれぞれ分注し、これを120℃で20分
間殺菌して冷却したのち、上記の種培養液16ml(試
験管4本分)を各フラスコに4mlずつ接種し、58℃
で18時間振とう培養して、前培養液とした。
Soluble starch (1%), yeast extract (0.5%), and Mg were placed in four 2-liter culture flasks.
SO 4 · 7H 2 O (0.05 %), K 2 HPO 4 (0.
1%), FeSO 4 · 7H 2 O (0.001%), L-
Medium consisting of glutamine (0.1%) (pH 7.2)
After 400 ml each was dispensed and sterilized at 120 ° C. for 20 minutes and cooled, 16 ml of the above seed culture solution (4 test tubes) was inoculated into each flask in an amount of 4 ml, and the temperature was adjusted to 58 ° C.
It was shake-cultured for 18 hours to prepare a preculture liquid.

【0016】次いで、上記と同様の組成からなる培地に
消泡剤「アデカノールLG126」(旭電化製)0.0
1%(W/V)を添加した培地160リットルを200
リットル容量のジャーファーメンターに入れ、120℃
で20分間殺菌して冷却したのち、上記の前培養液1.
6リットルを接種し、58℃で18時間、160リット
ル/分の通気量と200rpmの攪拌速度の条件で培養
した。培養終了後、シャープレスにより菌体を回収し
た。 (2)バチルス・ステアロサーモフィルスCN3株から
の耐熱性γ−シアノ−α−アミノ酪酸合成酵素の単離 以下のステップ1〜8により耐熱性γ−シアノ−α−ア
ミノ酪酸合成酵素を単離した。 1.無細胞抽出液の調製:上記培養で得られた菌体66
0gをリン酸カリウム緩衝液(20mM、pH7.5 、
0.1mMジチオスレイトール含有)に全量が2.5リ
ットルになるように懸濁したのち、磨砕装置「ダイノミ
ル」(WAB社製)で破砕した。破砕液を遠心分離して
菌体残渣を除き、無細胞抽出液2799mlを得た。 2.熱処理:無細胞抽出液を60℃で30分間放置し、
生じた沈殿物を遠心分離により除去して、上澄液を得
た。 3.硫安40〜90%処理:上澄液に硫酸アンモニウム
を40%飽和になるように添加し、一晩放置したのち、
析出した沈殿物を遠心分離により除き、得られた上澄液
に再度硫酸アンモニウムを90%飽和になるように添加
して一晩放置し、遠心分離により沈殿物を得た。 4.DEAE−セルロファインA−500による精製:
沈殿物を、0.1mMジチオスレイトールおよび0.0
1mMピリドキサールリン酸を含む20mMリン酸カリ
ウム緩衝液(pH7.5)に溶解し、透析膜を用いて同
緩衝液により脱塩した。この脱塩液を、予め同緩衝液で
平衡化したDEAE−セルロファインA−500カラム
(直径8cm×高さ22cm)に通液して酵素を吸着さ
せ、0.1mMジチオスレイトールおよび0.01mM
ピリドキサールリン酸を含む100mMリン酸カリウム
緩衝液(pH7.5)で洗浄したのち、同緩衝液から
0.1mMジチオスレイトールおよび0.01mMピリ
ドキサールリン酸、0.4MKClを含む100mMリ
ン酸カリウム緩衝液(pH7.5)へのグラジエント溶
出法で酵素を溶出させて活性画分を集めた。 5.硫安60〜75%処理:活性画分に硫酸アンモニウ
ムを60%飽和になるように添加し、一晩放置したの
ち、析出した沈殿物を遠心分離により除き、得られた上
澄液に再度硫酸アンモニウムを75%飽和になるように
添加して一晩放置し、遠心分離により沈殿物を得た。 6.フェニル−トヨパール650Sによる精製:沈殿物
を30%飽和硫酸アンモニウム、0.1mMジチオスレ
イトールおよび0.01mMピリドキサールリン酸を含
む20mMリン酸カリウム緩衝液(pH7.5)に溶解
し、予め同緩衝液で平衡化したフェニル−トヨパール6
50Sカラム(直径2.5×高さ8.5cm)に通液し
て酵素を吸着させ、同緩衝液で洗浄したのち、同緩衝液
から0.1mMジチオスレイトールおよび0.01mM
ピリドキサールリン酸を含む20mMリン酸カリウム緩
衝液(pH7.5)へのグラジエント溶出法で酵素を溶
出させて活性画分を集めた。 7.セファクリルS−200HRによる精製:活性画分
に硫酸アンモニウムを80%飽和になるように添加し、
一晩放置したのち、遠心分離により沈殿物を得た。この
沈殿物を0.1mMジチオスレイトールおよび0.2M
NaClを含む50mMリン酸ナトリウム緩衝液(pH
7.5)に溶解し、予め同緩衝液で平衡化したセファクリル
S−200HRカラム(直径2.0×高さ106cm)
にアプライし、同緩衝液で酵素を溶出させて活性画分を
集めた。 8.TSKゲル−G3000SWによる精製:活性画分
に硫酸アンモニウムを80%飽和になるように添加し、
一晩放置したのち、遠心分離により沈殿物を得た。この
沈殿物を0.2MNaClを含む100mMリン酸ナト
リウム緩衝液(pH7.0)に溶解し、HPLC用のTSK
ゲ ル−G3000SWカラム(直径0.75×高さ6
0cm)に、移動相として同緩衝液を流速0.7ml/
分の条件で注入し、活性画分を分取した。得られた酵素
は、電気泳動的に均一な標品であり、比活性は147U
/mgであった。なお、以上の1〜8の各ステップにお
ける酵素の総活性、総蛋白質、比活性、精製倍率および
収率は、表1に示したとおりであった。
Then, a defoaming agent "Adecanol LG126" (manufactured by Asahi Denka Co.) 0.0
200 liters of 160 liter medium supplemented with 1% (W / V)
Put in a jar fermenter of liter capacity, 120 ℃
After sterilizing for 20 minutes and cooling, the above preculture liquid 1.
6 liters were inoculated and cultured at 58 ° C. for 18 hours under the conditions of an aeration rate of 160 liters / minute and a stirring speed of 200 rpm. After the culture was completed, the bacterial cells were collected by Sharpless. (2) Isolation of thermostable γ-cyano-α-aminobutyric acid synthase from Bacillus stearothermophilus CN3 strain Isolation of thermostable γ-cyano-α-aminobutyric acid synthase by the following steps 1-8 did. 1. Preparation of cell-free extract: bacterial cell 66 obtained by the above culture
0 g of potassium phosphate buffer (20 mM, pH 7.5,
The mixture was suspended in 0.1 mM dithiothreitol (containing 0.1 mM dithiothreitol) so that the total amount became 2.5 liters, and then crushed with a grinding device "Dynomill" (manufactured by WAB). The disrupted liquid was centrifuged to remove the cell residue, and 2799 ml of a cell-free extract was obtained. 2. Heat treatment: leave the cell-free extract at 60 ° C. for 30 minutes,
The generated precipitate was removed by centrifugation to obtain a supernatant. 3. Ammonium sulfate 40-90% treatment: Ammonium sulfate was added to the supernatant liquid so as to be 40% saturated and left overnight, then
The deposited precipitate was removed by centrifugation, ammonium sulfate was again added to the obtained supernatant liquid so as to be 90% saturated, and the mixture was allowed to stand overnight, and the precipitate was obtained by centrifugation. 4. Purification by DEAE-Cellulofine A-500:
The precipitate was treated with 0.1 mM dithiothreitol and 0.0
It was dissolved in a 20 mM potassium phosphate buffer (pH 7.5) containing 1 mM pyridoxal phosphate and desalted with the same buffer using a dialysis membrane. This desalted solution was passed through a DEAE-Cellulofine A-500 column (8 cm in diameter x 22 cm in height) that had been equilibrated with the same buffer in advance to adsorb the enzyme, and 0.1 mM dithiothreitol and 0.01 mM were added.
After washing with 100 mM potassium phosphate buffer (pH 7.5) containing pyridoxal phosphate, 100 mM potassium phosphate buffer containing 0.1 mM dithiothreitol, 0.01 mM pyridoxal phosphate and 0.4 MKCl from the same buffer The enzyme was eluted by a gradient elution method to (pH 7.5) and the active fractions were collected. 5. Ammonium sulfate 60-75% treatment: Ammonium sulfate was added to the active fraction so as to be 60% saturated, and the mixture was allowed to stand overnight, the deposited precipitate was removed by centrifugation, and ammonium sulfate was added to the obtained supernatant again to 75%. The mixture was added so as to be% saturated and left overnight, and a precipitate was obtained by centrifugation. 6. Purification with phenyl-Toyopearl 650S: The precipitate was dissolved in 20 mM potassium phosphate buffer (pH 7.5) containing 30% saturated ammonium sulfate, 0.1 mM dithiothreitol and 0.01 mM pyridoxal phosphate, and the solution was previously dissolved in the same buffer. Equilibrated Phenyl-Toyopearl 6
After passing through a 50S column (diameter 2.5 × height 8.5 cm) to adsorb the enzyme and washing with the same buffer solution, 0.1 mM dithiothreitol and 0.01 mM were added from the same buffer solution.
The enzyme was eluted by a gradient elution method into 20 mM potassium phosphate buffer (pH 7.5) containing pyridoxal phosphate, and the active fractions were collected. 7. Purification by Sephacryl S-200HR: Ammonium sulfate was added to the active fraction to 80% saturation,
After standing overnight, a precipitate was obtained by centrifugation. This precipitate was added with 0.1 mM dithiothreitol and 0.2M.
50 mM sodium phosphate buffer containing NaCl (pH
Sephacryl S-200HR column (diameter 2.0 x height 106 cm) dissolved in 7.5) and equilibrated with the same buffer beforehand.
The enzyme was eluted with the same buffer and the active fractions were collected. 8. Purification by TSK gel-G3000SW: Ammonium sulfate was added to the active fraction to 80% saturation,
After standing overnight, a precipitate was obtained by centrifugation. This precipitate was dissolved in 100 mM sodium phosphate buffer (pH 7.0) containing 0.2 M NaCl, and TSK for HPLC was used.
Gel-G3000SW column (diameter 0.75 x height 6
0 cm) with the same buffer as the mobile phase at a flow rate of 0.7 ml /
It was injected under the condition of minute, and the active fraction was collected. The obtained enzyme is an electrophoretic uniform sample, and the specific activity is 147 U.
/ Mg. The total enzyme activity, total protein, specific activity, purification rate and yield in each of the above steps 1 to 8 were as shown in Table 1.

【0017】[0017]

【表1】 [Table 1]

【0018】(3)バチルス・ステアロサーモフィルス
CN3株から単離した耐熱性γ−シアノ−α−アミノ酪
酸合成酵素の性質試験 上記(2)によって単離したこの発明の耐熱性γ−シア
ノ−α−アミノ酪酸合成酵素について、至適pH、安定
pH、至適温度および温度安定性を試験した。また、そ
の吸収スペクトルを測定した。 1.至適pH:参考例に記載した酵素活性測定法におけ
る活性測定用反応液の緩衝液を、MES(pH6.0〜
7.0)、KPB(pH6.0〜8.0)、MOPS
(pH6.5〜7.5)、Tris−HCl(pH7.
5〜9.0)、またはNH4 Cl−NH4 OH(pH
8.5〜10.0)に代えて酵素活性を測定した。結果
は図1に示したとおりであり、この発明の耐熱性γ−シ
アノ−α−アミノ酪酸合成酵素の至適pHは、7.5〜
8.5であることが判明した。 2.安定pH:この発明の耐熱性γ−シアノ−α−アミ
ノ酪酸合成酵素を、20mM濃度の緩衝液、すなわちク
エン酸/クエン酸ナトリウム(pH3.5〜5.5)、
MES(pH6.0〜7.0)、KPB(pH6.0〜
8.0)、Tris−HCl(pH7.5〜9.0)、
またはNH4 Cl−NH4 OH(pH8.5〜10.
0)およびグリシン/KCl−KOH(pH10.0〜
10.5)の各々に溶解し、60℃で30分間保持した
後の残存活性を測定した。結果は図2に示したとおりで
あり、この発明の耐熱性γ−シアノ−α−アミノ酪酸合
成酵素の安定pHは、6.0〜10.5であることが判
明した。 3.至適温度:この発明の耐熱性γ−シアノ−α−アミ
ノ酪酸合成酵素を20mMリン酸カリウム緩衝液(pH
7.5)に溶解し、参考例の酵素活性測定法により30
℃から70℃までの範囲で酵素活性を測定した。結果は
図3に示したとおりであり、この発明の耐熱性γ−シア
ノ−α−アミノ酪酸合成酵素の至適温度は、55〜65
℃であることが判明した。 4.温度安定性:この発明の耐熱性γ−シアノ−α−ア
ミノ酪酸合成酵素を20mMリン酸カリウム緩衝液(p
H7.5)に溶解し、45℃から90℃までの各温度で
保持したのち、残存活性を測定した。結果は図4に示し
たとおりであり、この発明の耐熱性γ−シアノ−α−ア
ミノ酪酸合成酵素は熱安定性が極めて高く、60℃の温
度まで安定であることが判明した。 5.吸収スペクトル この発明の耐熱性γ−シアノ−α−アミノ酪酸合成酵素
を0.1mMジチオスレイトールおよび0.01mMピ
リドキサールリン酸を含む20mMリン酸カリウム緩衝
液(pH7.5)に溶解し、この溶液を対象としてU−
3200型分光光度計(日立製作所製)で吸収スペクト
ルを測定した。結果は、図5および表2に示したとおり
であり、この発明の耐熱性γ−シアノ−α−アミノ酪酸
合成酵素は、補酵素としてピリドキサールリン酸を含む
酵素に特有な410〜440nmの範囲に吸収が見られ
た。
(3) Property test of thermostable γ-cyano-α-aminobutyric acid synthase isolated from Bacillus stearothermophilus CN3 strain The thermostable γ-cyano- of the present invention isolated by the above (2) The α-aminobutyric acid synthase was tested for optimum pH, stable pH, optimum temperature and temperature stability. Moreover, the absorption spectrum was measured. 1. Optimum pH: The buffer solution of the reaction solution for activity measurement in the enzyme activity measuring method described in the reference example is MES (pH 6.0 to
7.0), KPB (pH 6.0 to 8.0), MOPS
(PH 6.5 to 7.5), Tris-HCl (pH 7.
5 to 9.0), or NH 4 Cl-NH 4 OH ( pH
The enzyme activity was measured instead of 8.5 to 10.0). The results are shown in FIG. 1, and the optimum pH of the thermostable γ-cyano-α-aminobutyric acid synthase of the present invention is 7.5 to 7.5.
It was found to be 8.5. 2. Stable pH: The thermostable γ-cyano-α-aminobutyric acid synthase of the present invention was added to a buffer solution having a concentration of 20 mM, namely citric acid / sodium citrate (pH 3.5 to 5.5),
MES (pH 6.0 to 7.0), KPB (pH 6.0 to
8.0), Tris-HCl (pH 7.5 to 9.0),
Or NH 4 Cl-NH 4 OH ( pH8.5~10.
0) and glycine / KCl-KOH (pH 10.0-
10.5), and the residual activity was measured after holding at 60 ° C. for 30 minutes. The results are shown in FIG. 2, and it was revealed that the stable pH of the thermostable γ-cyano-α-aminobutyric acid synthase of the present invention is 6.0 to 10.5. 3. Optimum temperature: The thermostable γ-cyano-α-aminobutyric acid synthase of the present invention is added to 20 mM potassium phosphate buffer (pH
It was dissolved in 7.5) and was added to 30 by the enzyme activity measuring method of Reference Example.
The enzyme activity was measured in the range from ℃ to 70 ℃. The results are shown in FIG. 3, and the optimum temperature of the thermostable γ-cyano-α-aminobutyric acid synthase of the present invention is 55 to 65.
It was found to be ° C. 4. Temperature stability: The thermostable γ-cyano-α-aminobutyric acid synthase of the present invention was added to 20 mM potassium phosphate buffer (p
It was dissolved in H7.5) and kept at each temperature from 45 ° C. to 90 ° C., after which the residual activity was measured. The results are shown in FIG. 4, and it was revealed that the thermostable γ-cyano-α-aminobutyric acid synthase of the present invention has extremely high thermal stability and is stable up to a temperature of 60 ° C. 5. Absorption spectrum The thermostable γ-cyano-α-aminobutyric acid synthase of the present invention is dissolved in a 20 mM potassium phosphate buffer (pH 7.5) containing 0.1 mM dithiothreitol and 0.01 mM pyridoxal phosphate, and this solution is prepared. Targeting U-
The absorption spectrum was measured with a Model 3200 spectrophotometer (manufactured by Hitachi, Ltd.). The results are shown in FIG. 5 and Table 2, and the thermostable γ-cyano-α-aminobutyric acid synthase of the present invention has a range of 410 to 440 nm, which is peculiar to an enzyme containing pyridoxal phosphate as a coenzyme. Absorption was seen.

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【発明の効果】以上詳しく説明したとおり、この発明に
よって、O−アセチル−L−ホモセリンを基質としてγ
−シアノ−α−アミノ酪酸を生成することのできる新し
い耐熱性のγ−シアノ−α−アミノ酪酸合成酵素が提供
される。これによって、γ−シアノ−α−アミノ酪酸を
効率よく生成することが可能となる。
INDUSTRIAL APPLICABILITY As described in detail above, according to the present invention, .gamma.
A new thermostable γ-cyano-α-aminobutyric acid synthase capable of producing -cyano-α-aminobutyric acid is provided. This makes it possible to efficiently produce γ-cyano-α-aminobutyric acid.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の耐熱性γ−シアノ−α−アミノ酪酸
合成酵素の至適pHを示す相対活性とpHとの相関図で
ある。
FIG. 1 is a correlation diagram between relative activity and pH indicating the optimum pH of the thermostable γ-cyano-α-aminobutyric acid synthase of the present invention.

【図2】この発明の耐熱性γ−シアノ−α−アミノ酪酸
合成酵素の安定pHを示す相対活性とpHとの相関図で
ある。
FIG. 2 is a correlation diagram of relative activity and pH showing stable pH of the thermostable γ-cyano-α-aminobutyric acid synthase of the present invention.

【図3】この発明の耐熱性γ−シアノ−α−アミノ酪酸
合成酵素の至適温度を示す相対活性と温度との相関図で
ある。
FIG. 3 is a correlation diagram between relative activity and temperature showing the optimum temperature of the thermostable γ-cyano-α-aminobutyric acid synthase of the present invention.

【図4】この発明の耐熱性γ−シアノ−α−アミノ酪酸
合成酵素の温度安定性を示す相対活性と温度との相関図
である。
FIG. 4 is a correlation diagram between relative activity and temperature showing the temperature stability of the thermostable γ-cyano-α-aminobutyric acid synthase of the present invention.

【図5】この発明の耐熱性γ−シアノ−α−アミノ酪酸
合成酵素の吸収スペクトルを示す波長と吸光度との相関
図である。
FIG. 5 is a correlation diagram between wavelength and absorbance showing an absorption spectrum of the thermostable γ-cyano-α-aminobutyric acid synthase of the present invention.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 (C12N 1/20 C12R 1:07) (72)発明者 古谷 祐治 広島県深安郡神辺町十三軒屋20−9 (72)発明者 小林 達彦 京都府京都市左京区浄土寺下馬場町97 ロ イヤルセンタービル307号 (72)発明者 清水 昌 京都府京都市中京区西ノ京伯楽町14Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technology display location (C12N 1/20 C12R 1:07) (72) Inventor Yuji Furuya Jusankenya, Kannabe Town, Fukaan District, Hiroshima Prefecture 20-9 (72) Inventor Tatsuhiko Kobayashi No. 307 Royal Center Building, 97 Shimobabacho, Jodo-ji, Sakyo-ku, Kyoto Prefecture (72) Inventor Masaru Shimizu 14 Nishinokyo-Hirakucho, Nakagyo-ku, Kyoto-shi, Kyoto Prefecture

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 次の性質、 (1)作用:O−アセチル−L−ホモセリンとシアン化
物からγ−シアノ−α−アミノ酪酸を生成する (2)至適pH:7.5〜8.5 (3)安定pH:6.0〜10.5 (4)至適温度:55〜65℃ (5)温度安定性:pH7.5において30分間保持し
た場合、60℃まで安定 (6)分子量:ゲル濾過にて約180kd を有する耐熱性γ−シアノ−α−アミノ酪酸合成酵素。
1. The following properties (1) Action: γ-cyano-α-aminobutyric acid is produced from O-acetyl-L-homoserine and cyanide (2) Optimum pH: 7.5-8.5 (3) Stable pH: 6.0 to 10.5 (4) Optimum temperature: 55 to 65 ° C (5) Temperature stability: Stable up to 60 ° C when kept at pH 7.5 for 30 minutes (6) Molecular weight: Thermostable γ-cyano-α-aminobutyric acid synthase having about 180 kd by gel filtration.
【請求項2】 ピリドキサールリン酸を補酵素として、
O−アセチル−L−ホモセリンまたはL−ホモシスチン
とシアン化物からγ−シアノ−α−アミノ酪酸を生成す
る請求項1の耐熱性γ−シアノ−α−アミノ酪酸合成酵
素。
2. Pyridoxal phosphate as a coenzyme,
The thermostable γ-cyano-α-aminobutyric acid synthase according to claim 1, which produces γ-cyano-α-aminobutyric acid from O-acetyl-L-homoserine or L-homocystin and cyanide.
【請求項3】 バチルス(Bacillus)属に属する細菌か
ら単離して得られる請求項1または2の耐熱性γ−シア
ノ−α−アミノ酪酸合成酵素。
3. The thermostable γ-cyano-α-aminobutyric acid synthase according to claim 1, obtained by isolation from a bacterium belonging to the genus Bacillus .
【請求項4】 細菌が、バチルス・ステアロサーモフィ
ルス(B.stearothermophilus)である請求項3の耐熱性
γ−シアノ−α−アミノ酪酸合成酵素。
4. A bacterium, Bacillus stearothermophilus (B. stearothermophilus) a thermostable γ- cyano -α- amino acid synthase according to claim 3.
【請求項5】 細菌が、工業技術院生命工学工業技術研
究所に寄託されているバチルス・ステアロサーモフィル
スCN3株(受託番号FERM BP−4773)であ
る請求項4の耐熱性γ−シアノ−α−アミノ酪酸合成酵
素。
5. The thermostable γ-cyano-according to claim 4, wherein the bacterium is Bacillus stearothermophilus CN3 strain (accession number FERM BP-4733) deposited at the Institute of Biotechnology, Institute of Biotechnology, Industrial Technology Institute. α-aminobutyric acid synthase.
【請求項6】 次の性質、 (1)作用:O−アセチル−L−ホモセリンとシアン化
物からγ−シアノ−α−アミノ酪酸を生成する (2)至適pH:7.5〜8.5 (3)安定pH:6.0〜10.5 (4)至適温度:55〜65℃ (5)温度安定性:pH7.5において30分間保持し
た場合、60℃まで安定 (6)分子量:ゲル濾過にて約180kd を有する耐熱性γ−シアノ−α−アミノ酪酸合成酵素の
産生能を有するバチルス(Bacillus)属に属する細菌
を、γ−シアノ−α−アミノ酪酸合成酵素生産培地で培
養し、この細菌の菌体からγ−シアノ−α−アミノ酪酸
合成酵素を単離することを特徴とする耐熱性γ−シアノ
−α−アミノ酪酸合成酵素の製造法。
6. The following properties, (1) action: producing γ-cyano-α-aminobutyric acid from O-acetyl-L-homoserine and cyanide (2) optimum pH: 7.5-8.5 (3) Stable pH: 6.0 to 10.5 (4) Optimum temperature: 55 to 65 ° C (5) Temperature stability: Stable up to 60 ° C when kept at pH 7.5 for 30 minutes (6) Molecular weight: Bacteria belonging to the genus Bacillus, which have a thermostable γ-cyano-α-aminobutyric acid synthase production capacity of about 180 kd by gel filtration, were cultured in a γ-cyano-α-aminobutyric acid synthase production medium. , A method for producing a thermostable γ-cyano-α-aminobutyric acid synthase, which comprises isolating the γ-cyano-α-aminobutyric acid synthase from the bacterial cells of this bacterium.
【請求項7】 細菌が、バチルス・ステアロサーモフィ
ルス(B.stearothermophilus)である請求項6の耐熱性
γ−シアノ−α−アミノ酪酸合成酵素の製造法。
7. bacterium, Bacillus stearothermophilus (B. stearothermophilus) preparation of heat-resistant γ- cyano -α- amino acid synthase of claim 6 which is.
【請求項8】 細菌が、工業技術院生命工学工業技術研
究所に寄託されているバチルス・ステアロサーモフィル
スCN3株(受託番号FERM BP−4773)であ
る請求項6の耐熱性γ−シアノ−α−アミノ酪酸合成酵
素の製造法。
8. The thermostable γ-cyano-according to claim 6, wherein the bacterium is Bacillus stearothermophilus CN3 strain (accession number FERM BP-4733) deposited at the Institute of Biotechnology, Institute of Biotechnology, Industrial Technology Institute. A method for producing α-aminobutyric acid synthase.
JP17117195A 1995-07-06 1995-07-06 Thermostable γ-cyano-α-aminobutyric acid synthase and method for producing the same Expired - Fee Related JP3827751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17117195A JP3827751B2 (en) 1995-07-06 1995-07-06 Thermostable γ-cyano-α-aminobutyric acid synthase and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17117195A JP3827751B2 (en) 1995-07-06 1995-07-06 Thermostable γ-cyano-α-aminobutyric acid synthase and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0919290A true JPH0919290A (en) 1997-01-21
JP3827751B2 JP3827751B2 (en) 2006-09-27

Family

ID=15918320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17117195A Expired - Fee Related JP3827751B2 (en) 1995-07-06 1995-07-06 Thermostable γ-cyano-α-aminobutyric acid synthase and method for producing the same

Country Status (1)

Country Link
JP (1) JP3827751B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0733374A2 (en) * 1995-03-24 1996-09-25 Research Development Corporation Of Japan Cyano-alpha-amino carboxylic acids, and their use in preparing labelled alpha-amino acids

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0733374A2 (en) * 1995-03-24 1996-09-25 Research Development Corporation Of Japan Cyano-alpha-amino carboxylic acids, and their use in preparing labelled alpha-amino acids
EP0733374A3 (en) * 1995-03-24 1999-06-02 Research Development Corporation Of Japan Cyano-alpha-amino carboxylic acids, and their use in preparing labelled alpha-amino acids

Also Published As

Publication number Publication date
JP3827751B2 (en) 2006-09-27

Similar Documents

Publication Publication Date Title
EP0348901A2 (en) Process for producing optically active alfa-substituted organic acid and microorganism and enzyme used therefor
JPS60251895A (en) Preparation of pyrroloquinoline quinone
JP2850515B2 (en) Glucose dehydrogenase and method for producing the same
JP4941990B2 (en) Nε-acyl-L-lysine specific aminoacylase
JPH0653069B2 (en) Method for producing thermostable bilirubin oxidase
JP4216719B2 (en) Halogen compound-resistant novel formate dehydrogenase and method for producing the same
JPS6126357B2 (en)
JPH04365491A (en) Production of 4-halo-3-hydroxybutylamide
JPH04320679A (en) Micro-organism producing l-carnitine amidase, l-carnitine-amidase produced microbiologically, acquiring process therefor, and process of enzymatically transforming dl-and/or carnitine amide to l-carnitine
JPH0919290A (en) Heat resistant and gamma-cyano-alpha-aminobutylic acid-synthetic enzyme and its production
EP0365158B1 (en) Process for production of l-alanine dehydrogenase and a microorganism strain of the genus sporolactobacillus
JP3694335B2 (en) Thermostable O-acetylserine sulfhydrylase and process for producing the same
JP2824508B2 (en) N-acetylglucosamine 6-phosphate deacetylase
NO319663B1 (en) Microorganisms capable of converting nitrile and enzyme extract with nitrile hydratase activity, as well as processes for the preparation of amides using them.
JPH0783711B2 (en) Novel method for producing D-aminoacylase
JP2004065105A (en) Method for producing theanine
JPH03277292A (en) Production of optically active 2-hydroxycarboxylic acid
JPS63251082A (en) Production of nadh oxidase
JP2698056B2 (en) L-glutamic acid / L-pyroglutamic acid interconverting enzyme
JP3040228B2 (en) L-fucose dehydrogenase, method for producing the same, and method for quantifying L-fucose
JP2680665B2 (en) Putrescine: Pyruvate transaminase
JPH1066566A (en) L-glutamic acid/l-pyroglutamic acid interconversion enzyme produced by streptomyces and its production
JP2801694B2 (en) New enzyme
JP2868905B2 (en) Diacetyl polyamine amide hydrolase
JPH09238680A (en) Heat resistant phenylserine aldolase and its production

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060705

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

LAPS Cancellation because of no payment of annual fees