JPH09191586A - Power conversion storage method - Google Patents

Power conversion storage method

Info

Publication number
JPH09191586A
JPH09191586A JP8000463A JP46396A JPH09191586A JP H09191586 A JPH09191586 A JP H09191586A JP 8000463 A JP8000463 A JP 8000463A JP 46396 A JP46396 A JP 46396A JP H09191586 A JPH09191586 A JP H09191586A
Authority
JP
Japan
Prior art keywords
air
power
liquid air
electric power
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8000463A
Other languages
Japanese (ja)
Inventor
Tomijiro Ikeda
富治郎 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP8000463A priority Critical patent/JPH09191586A/en
Publication of JPH09191586A publication Critical patent/JPH09191586A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Landscapes

  • Separation By Low-Temperature Treatments (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power conversion storage method by which surplus electric power related to the waste of energy can be effectively utilized and which is safe and easy to handle. SOLUTION: In the process of liquefying air, when there is surplus electric power, the compressor of an air liquefying device 1 is driven by using the surplus electric power to compress raw-material air. The air is cooled by a cooler 13 and the air is cooled by low-temperature air sent from a receiving tank 16 in a heat exchanger 14 and after that, the temperature of the air is dropped by adiabatic expansion caused by an expansion valve and the air becomes liquid air L and is stored into the receiving tank 16. In the process of storing liquid air, the liquid air L is stored into a storage tank 2. In the process of vaporizing liquid air, the liquid air L of the storage tank 2 is heated by a vaporizer 3 to make a high pressure. In the process of driving a generator device, the high-pressure air from the vaporizer 3 is injected into steam, and the output of a turbine 23 is increased, so that the generated energy of a generator 25 is increased by the increment of the output.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば電力を別の
エネルギー形態に変換して貯蔵し必要な場合に電力に戻
して利用する電力変換貯蔵方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power conversion and storage method for converting electric power into another energy form, storing the electric power, and returning the electric power to the electric power for use when necessary.

【0002】[0002]

【従来の技術】一般に、消費側の電力使用量(以下、電
力負荷と称する)は季節的にあるいは昼夜で変動する。
特に、夏場の日中はクーラーの稼動率が高く、電力負荷
はピークに達している。このピーク時の電力負荷を見込
んで、発電所の最大発電能力が設定されている。
2. Description of the Related Art Generally, the power consumption on the consumer side (hereinafter referred to as power load) fluctuates seasonally or day and night.
In particular, the cooler has a high operating rate during the daytime in summer, and the electric load has reached its peak. The maximum power generation capacity of the power plant is set in consideration of the power load at this peak.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、夏場の
ピーク時以外には最大発電能力の全てが活用されること
はなく、一年の大半において使用されない余剰の発電能
力が生じている。このような余剰の発電能力は有効に活
用されていないのが実情である。一方、火力発電所や原
子力発電所においては、ボイラー設備や発電設備に、運
転を継続するための最低能力が設定されている。そのた
め、例えば電力負荷が前記の最低能力を下回る場合であ
っても、最低能力以下では運転できず、無駄な運転を回
避することはできなかった。更に、夏場ピーク時の電力
負荷が最大発電能力を超えると予測される場合は、前も
って新たな発電設備を増強する必要があった。
However, all of the maximum power generation capacity is not utilized except during peak times in summer, resulting in excess power generation capacity that is not used for most of the year. The fact is that such surplus power generation capacity is not effectively utilized. On the other hand, in thermal power plants and nuclear power plants, boiler facilities and power generation facilities have minimum capacities for continuing operation. Therefore, for example, even when the electric power load is below the above-mentioned minimum capacity, operation cannot be performed below the minimum capacity, and useless operation cannot be avoided. Furthermore, when it is predicted that the power load at the peak of summer will exceed the maximum power generation capacity, it was necessary to upgrade new power generation facilities in advance.

【0004】他方、揚水発電においては、ダムに貯水し
ていたとしても川が増水すると、折角の貯水を放流しな
ければならない。ところが、そのときの電力負荷が少な
い場合は、ダムの貯水を発電に利用することなくそのま
ま放流せざるを得ず、エネルギーの浪費につながってい
た。
On the other hand, in pumped storage power generation, even if water is stored in a dam, if the river rises, it is necessary to discharge the stored water at the right angle. However, when the power load at that time was small, the dam water had to be discharged as it was without using it for power generation, leading to a waste of energy.

【0005】本発明は、上記した従来の問題点に鑑みて
なされたものであって、エネルギーの浪費につながる余
剰電力を有効に活用することができ、しかも安全で取り
扱いやすい電力変換貯蔵方法の提供を目的とするもので
ある。
The present invention has been made in view of the above-mentioned conventional problems, and provides a power conversion and storage method capable of effectively utilizing surplus power leading to waste of energy and being safe and easy to handle. The purpose is.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る電力変換貯蔵方法は、余剰電力を用い
て空気を液化し、この液体空気を貯蔵するとともに、必
要に応じ前記液体空気の気化によって得られた高圧空気
により発電装置のタービンを駆動して発電する構成にし
てある。
In order to achieve the above object, a power conversion and storage method according to the present invention uses an excess power to liquefy air to store the liquid air and, if necessary, the liquid. The high-pressure air obtained by vaporizing the air drives the turbine of the power generator to generate electric power.

【0007】[0007]

【発明の実施の形態】以下、本発明方法の一実施形態に
つき図面に基づいて説明する。図1は本発明に用いられ
る空気液化装置,貯蔵タンク,気化器,発電装置を示す
概略構成図である。図において、空気液化装置1は、公
知のリンデ型装置を模したものであって、原料空気を圧
縮する圧縮機11、圧縮機11を駆動するモータ12、
圧縮された原料空気を冷却する冷却器13、冷却器13
からの原料空気を更に冷却する熱交換器14、原料空気
を断熱膨張により液化させる膨張弁15、液化した液体
空気Lを一時的に貯留する受槽16、および受槽16を
開閉自在に封止する開閉弁17を備えている。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the method of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic configuration diagram showing an air liquefier, a storage tank, a vaporizer, and a power generator used in the present invention. In the figure, an air liquefaction device 1 is a model of a known Linde type device, and includes a compressor 11 for compressing raw material air, a motor 12 for driving the compressor 11,
Cooler 13 for cooling compressed raw material air, cooler 13
A heat exchanger 14 for further cooling the raw material air from the, an expansion valve 15 for liquefying the raw material air by adiabatic expansion, a receiving tank 16 for temporarily storing the liquefied liquid air L, and an opening / closing for opening and closing the receiving tank 16 freely. A valve 17 is provided.

【0008】また、貯蔵タンク2は、液体空気Lを貯留
する高圧密封容器であって、前記の開閉弁17と配管接
続されている。気化器3は、開閉弁20と発電装置4と
の間に配置されており、例えば火力発電所や原子力発電
所のボイラー余熱を利用して貯蔵タンク2からの液体空
気Lを加熱して高圧にするものである。そして、発電装
置4は、主に発電所ボイラーの高圧蒸気によって駆動さ
れるタービン23と、タービン23の駆動により発電す
る発電機25とからなっている。
The storage tank 2 is a high-pressure sealed container that stores the liquid air L, and is connected to the on-off valve 17 by piping. The vaporizer 3 is arranged between the on-off valve 20 and the power generation device 4, and heats the liquid air L from the storage tank 2 to a high pressure by utilizing the residual heat of the boiler of a thermal power plant or a nuclear power plant, for example. To do. The power generator 4 mainly includes a turbine 23 driven by high-pressure steam of a power station boiler, and a generator 25 that generates power by driving the turbine 23.

【0009】タービン23は、発電所ボイラーからの高
圧蒸気の流量を調整する給気加減弁26と、高圧空気の
注入量を調整する注気調整弁22と、動翼を有するロー
タ24とを備えており、ロータ24は発電機25の駆動
軸と同軸に連結されている。尚、タービン23の高圧蒸
気入側配管には、注気調整弁22が配管接続されてい
る。また、わかりやすくするため、図1では単段のロー
タを示したが、実用上は多段のロータを用いるのが好ま
しい。
The turbine 23 is equipped with a supply air control valve 26 for adjusting the flow rate of high-pressure steam from the power plant boiler, an air-injection control valve 22 for adjusting the injection amount of high-pressure air, and a rotor 24 having moving blades. The rotor 24 is connected coaxially with the drive shaft of the generator 25. An injection control valve 22 is connected to the high pressure steam inlet side pipe of the turbine 23. Further, although a single-stage rotor is shown in FIG. 1 for the sake of clarity, it is preferable to use a multi-stage rotor in practical use.

【0010】引続き、この実施形態による電力変換貯蔵
方法につき、図1および図2を用いて説明する。 空気液化工程A まず、原料空気は固体の水酸化ナトリウム等で予め水分
や炭酸ガス等を除去されている。そこで、電力負荷が最
大発電能力よりも小さい場合、すなわち余剰電力がある
場合は、この余剰電力を用いて空気液化装置1のモータ
12が起動され圧縮機11を駆動する。それにより、原
料空気が、例えば50気圧程度に圧縮される。圧縮され
て昇温した空気は冷却器13で例えば冷却水との熱交換
により冷却される。更に、冷却器13からの空気は熱交
換器14へ導かれ、受槽16からの低温空気との熱交換
により−160℃程度まで冷却された後、膨張弁15へ
導かれる。膨張弁15を通過する際に、空気は断熱膨張
(ジュール・トムソン効果)により温度降下を生じて液
体空気L(沸点=−194.3℃(1気圧換算))とな
り、受槽16に貯留される。
Next, the power conversion and storage method according to this embodiment will be described with reference to FIGS. 1 and 2. Air Liquefaction Step A First, the raw material air has been previously removed of water, carbon dioxide gas and the like with solid sodium hydroxide or the like. Therefore, if the power load is smaller than the maximum power generation capacity, that is, if there is surplus power, the motor 12 of the air liquefaction device 1 is started using this surplus power to drive the compressor 11. Thereby, the raw material air is compressed to, for example, about 50 atm. The compressed and heated air is cooled in the cooler 13 by heat exchange with, for example, cooling water. Further, the air from the cooler 13 is guided to the heat exchanger 14, is cooled to about −160 ° C. by heat exchange with the low temperature air from the receiving tank 16, and is then guided to the expansion valve 15. When passing through the expansion valve 15, the air undergoes a temperature drop due to adiabatic expansion (Joule-Thomson effect) to become liquid air L (boiling point = -194.3 ° C. (1 atmospheric pressure conversion)) and is stored in the receiving tank 16. .

【0011】 液体空気貯蔵工程B つぎに、空気液化装置1で液化された液体空気Lが受槽
16から移送されて貯蔵タンク2に貯蔵される。
Liquid Air Storing Step B Next, the liquid air L liquefied by the air liquefying apparatus 1 is transferred from the receiving tank 16 and stored in the storage tank 2.

【0012】そうして、電力負荷が最大発電能力に逼迫
し、補充電力を必要とする場合は、次の各工程が実行さ
れる。 液体空気気化工程C まず、貯蔵タンク2の開閉弁20が開けられて、液体空
気Lが気化器3に導かれる。この液体空気Lは、気化器
3で加熱されて高圧になる。
Then, when the power load is close to the maximum power generation capacity and the supplementary power is required, the following steps are executed. Liquid air vaporization step C First, the opening / closing valve 20 of the storage tank 2 is opened, and the liquid air L is guided to the vaporizer 3. The liquid air L is heated by the vaporizer 3 to have a high pressure.

【0013】 発電装置駆動工程D そして、気化器3によって得られた高圧空気は、注気調
整弁22の開度調整により、適量がタービン23入側の
蒸気配管へ導かれて蒸気に注入される。これにより、タ
ービン23の出力が増強され、出力増強分、発電機25
の発電量を増加させることができる。このように増えた
電力は補充電力として充当される。
Power Generation Device Driving Step D Then, an appropriate amount of the high pressure air obtained by the vaporizer 3 is introduced into the steam pipe on the inlet side of the turbine 23 and injected into the steam by adjusting the opening degree of the air injection adjusting valve 22. . As a result, the output of the turbine 23 is increased, and the increased output is generated by the generator 25.
The power generation amount of can be increased. The power thus increased is used as supplementary power.

【0014】因みに、図3に示すように、実線で示した
1日の電力負荷曲線Mに対し、深夜の低負荷時に余剰電
力量の一部(図中の破線N1 と曲線Mとに囲まれた斜線
部n 1 に相当)を用いて液体空気を製造し貯蔵してお
き、日中のピーク負荷時には液体空気を用いて発電し、
これを補充電力量(図中の破線N2 と曲線Mとに囲まれ
た斜線部n2 に相当)として供給する。これにより、ピ
ーク負荷時における発電所からの電力供給量は、少なく
とも破線N2 で示した電力レベルですみ、昼夜の電力供
給量の平準化を図ることができる。但し、貯蔵した液体
空気は、必ずしも当日または近日中に使用しなければな
らないものではなく、例えば春季に製造したものを夏季
に使用するといったことが可能であり、季節間あるいは
年間で電力供給量の平準化を図ることもできるのであ
る。
Incidentally, as shown in FIG. 3, it is shown by a solid line.
The surplus power is supplied to the daily power load curve M when the load is low at midnight.
Part of power (broken line N in the figure1Diagonal line surrounded by and curve M
Part n 1Is used to produce and store liquid air.
During peak load during the day, power is generated using liquid air,
This is the supplementary electric energy (broken line N in the figureTwoSurrounded by and the curve M
The shaded part nTwoEquivalent to). This allows
The amount of power supplied from the power plant during peak load is small
Both broken lines NTwoThe power level indicated in
The salary can be leveled. However, the stored liquid
Air must always be used on or near the day of arrival
It is not something that doesn't exist, for example, what is manufactured in spring is used in summer.
It can be used for different seasons or
It is also possible to plan the leveling of the electric power supply in a year.
You.

【0015】尚、貯蔵した液体空気を利用するにあた
り、発電所の蒸気タービン入側で高圧空気を蒸気に注入
する実施形態を示したが、例えば液体空気専用のタービ
ンを配備し、気化器3からの高圧空気のみで専用タービ
ンを駆動して発電するようにしてもよい。
Incidentally, in utilizing the stored liquid air, an embodiment in which high-pressure air is injected into the steam at the steam turbine inlet side of the power plant has been shown. For example, a turbine dedicated to the liquid air is provided, and the carburetor 3 is used. Alternatively, the dedicated turbine may be driven only by the high pressure air to generate electric power.

【0016】また、タービン23や発電機25の軸受部
分は、故障を少なくし寿命を延ばすために冷却される
が、貯蔵タンク2に貯留した液体空気Lの一部を利用し
て冷却することができる。例えば、液体空気Lの一部を
前記軸受部分の近傍に導いて軸受部分を冷却し、そのと
きの受熱により液体空気Lを気化させた後、気化器3の
出側に戻すのである。
The bearings of the turbine 23 and the generator 25 are cooled in order to reduce malfunctions and extend their life. However, a part of the liquid air L stored in the storage tank 2 may be used for cooling. it can. For example, a part of the liquid air L is guided to the vicinity of the bearing part to cool the bearing part, and the liquid air L is vaporized by the heat received at that time and then returned to the outlet side of the carburetor 3.

【0017】また、冷却器13に用いられる圧縮空気冷
却媒体としては、上述の実施形態で示した冷却水に代え
て、例えば貯蔵タンク2の液体空気Lの一部を利用する
こともできる。すなわち、液体空気Lの一部を冷却器1
3に通して圧縮空気を冷却し、そのときの受熱により液
体空気Lを気化させて気化器3の出側に戻すようにすれ
ばよい。それにより、全体システムとしてのエネルギー
利用効率の向上化や空気液化装置の所要能力低減化を図
ることができる。
Further, as the compressed air cooling medium used in the cooler 13, for example, a part of the liquid air L in the storage tank 2 can be used instead of the cooling water shown in the above embodiment. That is, part of the liquid air L is cooled by the cooler 1.
It suffices that the compressed air is cooled by passing it through the air passage 3, and the liquid air L is vaporized by the heat received at that time and returned to the outlet side of the vaporizer 3. As a result, it is possible to improve the energy utilization efficiency of the entire system and reduce the required capacity of the air liquefaction device.

【0018】更に、この発明における空気液化装置とし
ては、上述のリンデ型に限らず、例えば膨張タービンを
有するクロード型、あるいはその他の型式の装置を用い
ることも可能である。
Further, the air liquefaction device in the present invention is not limited to the Linde type device described above, but it is also possible to use, for example, a Claude type device having an expansion turbine or another type of device.

【0019】[0019]

【発明の効果】以上述べたように、本発明に係る電力変
換貯蔵方法によれば、余剰電力を用いて空気を液化し貯
蔵するとともに、ピーク負荷時のように補充電力を必要
とする場合には液体空気を用いて発電するようにしたの
で、余剰電力を有効に活用することができ、以て電力供
給量の平準化を図ることができる。また、夏季ピーク時
用発電所の新設数や新設発電所の発電能力を縮小化する
ことも可能である。
As described above, according to the power conversion and storage method of the present invention, excess power is used to liquefy and store air, and supplementary power is required as in the case of peak load. Since the electric power is generated using liquid air, the surplus electric power can be effectively used, and the electric power supply amount can be leveled. It is also possible to reduce the number of new peak power plants in summer and the power generation capacity of new power plants.

【0020】しかも、例えばアンモニア,水素等は洩れ
たとき周囲に危険を及ぼす虞があるのに対し、液体空気
は設備の損傷等により漏洩したり、あるいは貯蔵量が多
過ぎて自発的に大気中へ放出する場合でも、公害面で何
ら支障を生じない。更に、アンモニア,水素等は専用の
原料タンク設備を必要とするが、本発明では原料が空気
であるので、大気をそのまま用いることができ、原料タ
ンク設備等は不要である。すなわち、本発明方法は安全
であり、取扱いも極めて容易である。
Moreover, for example, when ammonia, hydrogen, etc. leak, it may pose a danger to the surroundings, whereas liquid air leaks due to equipment damage, etc., or the amount of storage is too large to spontaneously enter the atmosphere. Even if it is released to, there is no problem in terms of pollution. Further, ammonia, hydrogen and the like require a dedicated raw material tank facility, but in the present invention, since the raw material is air, the atmosphere can be used as it is, and the raw material tank facility and the like are unnecessary. That is, the method of the present invention is safe and extremely easy to handle.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に用いられる空気液化装置,貯蔵タン
ク,気化器,発電装置を示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing an air liquefier, a storage tank, a carburetor, and a power generator used in the present invention.

【図2】本発明方法を説明するためのブロック図であ
る。
FIG. 2 is a block diagram for explaining the method of the present invention.

【図3】本発明方法を利用した場合の電力需給状態を示
すグラフである。
FIG. 3 is a graph showing a power supply and demand state when the method of the present invention is used.

【符号の説明】[Explanation of symbols]

1 空気液化装置 2 貯蔵タンク 3 気化器 4 発電装置 23 タービン A 空気液化工程 B 液体空気貯蔵工程 C 液体空気気化工程 D 発電装置駆動工程 1 Air Liquefaction Device 2 Storage Tank 3 Vaporizer 4 Power Generation Device 23 Turbine A Air Liquefaction Process B Liquid Air Storage Process C Liquid Air Vaporization Process D Power Generation Device Driving Process

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 余剰電力を用いて空気を液化し、この液
体空気を貯蔵するとともに、必要に応じ前記液体空気の
気化によって得られた高圧空気により発電装置のタービ
ンを駆動して発電することを特徴とする電力変換貯蔵方
法。
1. A method of liquefying air using surplus power, storing this liquid air, and driving a turbine of a power generator by high pressure air obtained by vaporization of the liquid air to generate electricity, if necessary. Characterized power conversion storage method.
JP8000463A 1996-01-08 1996-01-08 Power conversion storage method Pending JPH09191586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8000463A JPH09191586A (en) 1996-01-08 1996-01-08 Power conversion storage method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8000463A JPH09191586A (en) 1996-01-08 1996-01-08 Power conversion storage method

Publications (1)

Publication Number Publication Date
JPH09191586A true JPH09191586A (en) 1997-07-22

Family

ID=11474499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8000463A Pending JPH09191586A (en) 1996-01-08 1996-01-08 Power conversion storage method

Country Status (1)

Country Link
JP (1) JPH09191586A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018198756A1 (en) * 2017-04-26 2018-11-01 株式会社神戸製鋼所 Compressed air energy storage generator
US10876433B2 (en) 2016-02-02 2020-12-29 Highview Enterprises Limited Power recovery
JP2021099054A (en) * 2019-12-20 2021-07-01 東京瓦斯株式会社 Power generator, charger, power generation method, charging method, power charging/generating system, and heat engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10876433B2 (en) 2016-02-02 2020-12-29 Highview Enterprises Limited Power recovery
WO2018198756A1 (en) * 2017-04-26 2018-11-01 株式会社神戸製鋼所 Compressed air energy storage generator
JP2018186657A (en) * 2017-04-26 2018-11-22 株式会社神戸製鋼所 Compressed-air storage power generator
US10868440B2 (en) 2017-04-26 2020-12-15 Kobe Steel, Ltd. Compressed air energy storage generator
JP2021099054A (en) * 2019-12-20 2021-07-01 東京瓦斯株式会社 Power generator, charger, power generation method, charging method, power charging/generating system, and heat engine

Similar Documents

Publication Publication Date Title
EP2500565B1 (en) Supercritical air energy storage system
EP2753861B1 (en) Method and apparatus for power storage
WO2022027844A1 (en) Liquefied air energy storage peak regulation system and method based on intermediate suction of compressor
US5457951A (en) Improved liquefied natural gas fueled combined cycle power plant
EP2663757B1 (en) Electricity generation device and method
EP0828925A1 (en) A liquefied natural gas (lng) fueled combined cycle power plant and an lng fueled gas turbine plant
US20120255312A1 (en) Method and System to Produce Electric Power
CN104169542A (en) Electricity generation device and method
CA2743195A1 (en) Method and system for periodic cooling, storing, and heating of atmospheric gas
JPH10238366A (en) Energy storage type gas turbine power generation system
JPH10238367A (en) Energy storage type gas turbine power generating system
JP2005090636A (en) Transportation system for liquefied hydrogen
JPH09191586A (en) Power conversion storage method
JP3777875B2 (en) Gas turbine power generation system and operation method thereof
CN114109547B (en) Coal-fired power plant peak shaving system based on supercritical carbon dioxide energy storage and operation method
JPH0333890B2 (en)
CA3217767A1 (en) Heat transfer systems for critical power applications
JPH0797933A (en) Intake air cooling device of gas turbine
JP2000146359A (en) Cogeneration system
JP2003082370A (en) Natural gas storage system
CN111928525A (en) Liquefied air energy storage peak regulation system and method based on waste heat refrigeration
JPH08246899A (en) Gas turbine inlet air cooling device
JPH11159342A (en) Energy storage type gas turbine generation system
RU2783246C2 (en) Method for accumulating and generating energy and apparatus for implementation thereof
CN221527447U (en) Closed liquid air energy storage system