JPH09189394A - Melting device for plastic pipe and plastic pipe melting method using the same - Google Patents
Melting device for plastic pipe and plastic pipe melting method using the sameInfo
- Publication number
- JPH09189394A JPH09189394A JP8001343A JP134396A JPH09189394A JP H09189394 A JPH09189394 A JP H09189394A JP 8001343 A JP8001343 A JP 8001343A JP 134396 A JP134396 A JP 134396A JP H09189394 A JPH09189394 A JP H09189394A
- Authority
- JP
- Japan
- Prior art keywords
- microwave
- plastic pipe
- fusion
- plastic
- sleeve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/14—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
- B29C65/1403—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the type of electromagnetic or particle radiation
- B29C65/1425—Microwave radiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/003—Protecting areas of the parts to be joined from overheating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/05—Particular design of joint configurations
- B29C66/10—Particular design of joint configurations particular design of the joint cross-sections
- B29C66/11—Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
- B29C66/112—Single lapped joints
- B29C66/1122—Single lap to lap joints, i.e. overlap joints
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/50—General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
- B29C66/51—Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
- B29C66/52—Joining tubular articles, bars or profiled elements
- B29C66/522—Joining tubular articles
- B29C66/5221—Joining tubular articles for forming coaxial connections, i.e. the tubular articles to be joined forming a zero angle relative to each other
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/73—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/739—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/7392—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
- B29C66/73921—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/14—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
- B29C65/1477—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation making use of an absorber or impact modifier
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Branch Pipes, Bends, And The Like (AREA)
- Constitution Of High-Frequency Heating (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はプラスチック管の融
着装置及びこれを用いたプラスチック管の融着方法に関
し、更に詳しくは、マイクロ波加熱によるプラスチック
管の融着装置及びこれを用いたプラスチック管の融着方
法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plastic pipe fusing device and a plastic pipe fusing method using the same, and more particularly to a plastic pipe fusing device using microwave heating and a plastic pipe using the same. The fusion method.
【0002】[0002]
【従来の技術】水道管、排水管、ガス管等の流体輸送管
として、ポリエチレン、ポリプロピレン、ポリフッ化ビ
ニリデン等の熱可塑性樹脂製の管が広く使用されてい
る。これらの熱可塑性樹脂製の管同士を接合する方法と
して、例えば、特開平5−278110号公報に記載さ
れているように、接合する管同士の管端面を溶融した
後、管軸方向に押圧して接合する「バット接合(突き合
わせ接合)法」が広く実施されている。2. Description of the Related Art Pipes made of thermoplastic resin such as polyethylene, polypropylene and polyvinylidene fluoride are widely used as fluid transport pipes such as water pipes, drain pipes and gas pipes. As a method of joining these thermoplastic resin tubes to each other, for example, as described in JP-A-5-278110, the tube end faces of the tubes to be joined are melted and then pressed in the tube axial direction. The "butt joining (butt joining) method" of joining by means of a joint is widely practiced.
【0003】又、特公昭45−20399号公報に記載
されているように、内部に電熱線を介在させた継手〔エ
レクトロ フュージョン(EF)継手〕により接合面を
融着して接合する方法「エレクトロ フュージョン(E
F)法」がある。Further, as disclosed in Japanese Patent Publication No. 45-20399, a method of fusion-bonding a joint surface by a joint [electro fusion (EF) joint] having a heating wire inside, "electro fusion" Fusion (E
F) Law ”.
【0004】しかしながら、バット接合法においては、
両管端面を加熱溶融するための熱板やヒーター等を必要
とするため、接合に必要とされる装置が大がかりにな
る。更に、接合に時間を要するだけでなく、接合時に、
管軸方向に押圧することにより溶融樹脂が接合された管
端面の内外縁に大きくはみ出したビードができるという
問題点を有する。However, in the butt joining method,
Since a hot plate, a heater, etc. for heating and melting both end faces of the tubes are required, the apparatus required for joining becomes large-scale. Furthermore, not only does it take time to bond,
There is a problem in that by pressing in the tube axis direction, beads that largely protrude from the inner and outer edges of the tube end surface where the molten resin is joined can be formed.
【0005】又、電気融着法は、継手に電熱機構を組み
込まねばならないので、その製造工程が複雑となり、コ
ストが高くつく。又、施工面でも電熱線が物流段階で傷
み、通電によって短絡し、電熱線の近傍の継手を構成す
る樹脂を熱劣化させるおそれがあり、更に又、融着に長
時間を要する等の煩わしさがある。Further, in the electrofusion method, since an electrothermal mechanism has to be incorporated in the joint, the manufacturing process is complicated and the cost is high. Also in terms of construction, the heating wire may be damaged in the distribution stage, short-circuited due to energization, and the resin forming the joint in the vicinity of the heating wire may be thermally deteriorated. There is.
【0006】上記バット接合法及び電気融着法における
問題点を解決する方策として、熱可塑性樹脂中に導電性
物質を含有せしめたマイクロ波融着用樹脂を用いたマイ
クロ波融着継手が提案されている。例えば、特開平3−
186690号公報には、プラスチック管の融着継手に
おいて、接続される熱可塑性プラスチック管の外面に接
して設けられ、マイクロ波を照射すると発熱する性質を
有する無機物、有機物等を含有し、被接続管体と同材質
高分子との混合物から成る円環状のコアと、その外周に
密接して嵌着する熱可塑性プラスチック製の管状体とを
具備した熱可塑性プラスチック管のマイクロ波加熱式融
着継手が開示されており、上記特開平3−186690
号公報の第1図(1)及び(2)にマイクロ波の線源
(図示せず)から導波管で加熱接合室に、周波数245
0MHz、600Wのマイクロ波を伝え、上記熱可塑性
プラスチック管(管直径50mmφ)のマイクロ波加熱
式融着継手を用いて熱可塑性プラスチック管を接続する
実施例が示されている。As a measure for solving the problems in the butt joining method and the electric fusion method, a microwave fusion joint using a microwave fusion resin in which a conductive material is contained in a thermoplastic resin has been proposed. There is. For example, JP-A-3-
Japanese Patent No. 186690 discloses a fusion-bonded joint for a plastic pipe, which is provided in contact with the outer surface of a thermoplastic pipe to be connected and contains an inorganic substance, an organic substance or the like having a property of generating heat when irradiated with microwaves, A microwave heating fusion-bonding joint for a thermoplastic pipe, which comprises an annular core made of a mixture of a body and a polymer of the same material, and a thermoplastic tubular body closely fitted to the outer periphery of the core. It has been disclosed and is disclosed in the above-mentioned JP-A-3-186690.
1 (1) and 1 (2) of the publication, a microwave radiation source (not shown) is introduced into a heating bonding chamber by a waveguide and a frequency of 245.
An example is shown in which microwaves of 0 MHz and 600 W are transmitted and the thermoplastic pipes are connected using the microwave heating fusion-bonding joint of the thermoplastic pipes (pipe diameter 50 mmφ).
【0007】しかし、上記特開平3−186690号公
報に記載されているマイクロ波加熱装置では、マイクロ
波の漏洩防止手段がなく、被接続熱可塑性プラスチック
管の外径、即ち、被接続熱可塑性プラスチック管の挿入
スリーブの内径がマイクロ波の波長の1/2付近の長さ
を超える場合には、上記スリーブはカットオフ導波管と
ならず、殆ど該スリーブ部分は漏洩防止機能を有しない
ので、人体に有害な影響がないとされるレベル以下に抑
えることは難しく、それのみならず、加熱効率が著しく
悪くなり、且つ、上記マイクロ波をスリーブ部分で吸収
しスリーブ自体が発熱してしまう等の問題点を有するも
のである。However, in the microwave heating device described in the above-mentioned Japanese Patent Laid-Open No. 3-186690, there is no means for preventing microwave leakage, and the outside diameter of the connected thermoplastics pipe, that is, the connected thermoplastics. When the inner diameter of the insertion sleeve of the tube exceeds the length of about 1/2 of the wavelength of the microwave, the sleeve does not serve as a cut-off waveguide, and the sleeve portion has almost no leak prevention function. It is difficult to keep the level below the level at which there is no harmful effect on the human body, and not only that, but the heating efficiency is significantly degraded, and the sleeve itself absorbs the microwaves and heats up in the sleeve itself. It has a problem.
【0008】[0008]
【発明が解決しようとする課題】本発明は、上記に鑑み
なされたものであって、その目的とするところは、マイ
クロ波加熱装置のスリーブ部分におけるマイクロ波の漏
洩を防止し、安全にして加熱効率の優れたプラスチック
管融着装置及びこれを用いたプラスチック管の融着方法
を提供することにある。SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to prevent microwave leakage in a sleeve portion of a microwave heating device and to perform heating safely. An object of the present invention is to provide a highly efficient plastic pipe fusion device and a plastic pipe fusion method using the same.
【0009】[0009]
【課題を解決するための手段】請求項1記載の本発明
は、マイクロ波照射室と該マイクロ波照射室側端に被接
続プラスチック管を支持するスリーブを有するプラスチ
ック管の融着装置であって、上記スリーブは、その開放
端と上記マイクロ波照射室に連なる端に設けられた被接
続プラスチック管外面把持部と上記被接続プラスチック
管両外面把持部間の拡径された内周壁にマイクロ波吸収
体が張設された空間を有するマイクロ波吸収室とからな
ることを特徴とするプラスチック管の融着装置をその要
旨とするものである。According to the present invention, there is provided a fusion device for a plastic pipe having a microwave irradiation chamber and a sleeve for supporting a plastic pipe to be connected at a side end of the microwave irradiation chamber. The sleeve has an open end and a plastic pipe outer surface gripping portion provided at an end connected to the microwave irradiation chamber and a diameter-increased inner peripheral wall between the plastic pipe outer surface gripping portions to absorb microwaves. A gist of a fusion bonding device for a plastic tube is a microwave absorbing chamber having a space in which a body is stretched.
【0010】請求項2記載の本発明は、マイクロ波電力
を吸収して発熱する材料を含有する管継手を用いてプラ
スチック管を接続し、上記管継手部分を請求項1記載の
プラスチック管の融着装置のマイクロ波照射室に収納
し、被接続プラスチック管を上記融着装置のスリーブ内
面に把持した状態でマイクロ波を照射することを特徴と
するプラスチック管の融着方法をその要旨とするもので
ある。According to a second aspect of the present invention, a plastic pipe is connected by using a pipe joint containing a material that absorbs microwave power to generate heat, and the pipe joint portion is melted with the plastic pipe according to the first aspect. A method for fusing a plastic pipe, characterized in that the plastic pipe is housed in a microwave irradiation chamber of the welding device, and the microwave is applied while the connected plastic pipe is held on the inner surface of the sleeve of the fusion device. Is.
【0011】上記プラスチック管を構成するプラスチッ
ク材料は、押出成形や射出成形が可能な熱可塑性樹脂で
あれば特に限定されるのではなく、例えば、エチレン、
プロピレン、ブテン等のモノオレフィンの重合体及び共
重合体を主成分とするもので、例えば、高密度ポリエチ
レン、中密度ポリエチレン、低密度ポリエチレン、線状
低密度ポリエチレン、ポリプロピレン、エチレン−プロ
ピレンブロック共重合体、エチレン−プロピレンランダ
ム共重合体、ポリブテン−1、ポリメチルペンテン−1
等のポリオレフィン系樹脂、塩化ビニル樹脂、ポリカー
ボネート、ポリエチレンテレフタレート、ポリブチレン
テレフタレート等のポリエステル系樹脂、ポリアミド、
アクリル系樹脂、ポリフェニレンサルファイド(PP
S)、ポリサルファイド、ポリエーテルサルホン、ポリ
エーテルエーテルケトン、ポリふっ化ビニリデン(PV
DF)、ポリ塩化ビニリデン(PVDC)、ペルフルオ
ロアルコキシフッ素樹脂(PFA)等が挙げられる。こ
れらは単独で用いても2種以上を用いてもよい。The plastic material forming the plastic pipe is not particularly limited as long as it is a thermoplastic resin that can be extruded or injection-molded. For example, ethylene,
Mainly composed of polymers and copolymers of mono-olefins such as propylene and butene, for example, high density polyethylene, medium density polyethylene, low density polyethylene, linear low density polyethylene, polypropylene, ethylene-propylene block copolymer Polymer, ethylene-propylene random copolymer, polybutene-1, polymethylpentene-1
Polyolefin resin such as, vinyl chloride resin, polycarbonate, polyethylene terephthalate, polyester resin such as polybutylene terephthalate, polyamide,
Acrylic resin, polyphenylene sulfide (PP
S), polysulfide, polyethersulfone, polyetheretherketone, polyvinylidene fluoride (PV
DF), polyvinylidene chloride (PVDC), perfluoroalkoxy fluororesin (PFA) and the like. These may be used alone or in combination of two or more.
【0012】上記マイクロ波融着継手は、マイクロ波電
力を吸収して発熱する導電性物質を上記プラスチック管
を構成するプラスチック材料に混合したマイクロ波融着
プラスチック組成物からなる発熱部分を被接続プラスチ
ック管と接合する内面もしくは外面の融着部分付近に設
けた継手である。In the microwave fusion splicing joint, a heating portion made of a microwave fusion plastic composition in which a conductive material that absorbs microwave power to generate heat is mixed with the plastic material forming the plastic pipe is a plastic to be connected. It is a joint provided near the fusion-bonded portion of the inner surface or the outer surface to be joined to the pipe.
【0013】上記導電性物質としては、導電性が0.1
S/cm近傍もしくはそれ以上であれば無機導電性物
質、有機導電性物質等特に限定されるものではないが、
例えば、無機導電性物質として、フェライト粉末等が挙
げられ、有機導電性物質として、カーボンブラック、ポ
リアニリン、ポリチオフェン、ポリピロール、ポリアセ
チレン、ポリフェニルアセチレン、ポリフェニレン、ポ
リフラン、ポリペリナフタレン及びこれらのアルキル
基、アルコキシ基等の置換体等の有機高分子物質が挙げ
られる。就中、アニリン系重合体微粒子が好適に使用さ
れる。The above-mentioned conductive substance has a conductivity of 0.1.
Inorganic conductive materials, organic conductive materials and the like are not particularly limited as long as they are in the vicinity of S / cm or higher,
For example, examples of the inorganic conductive substance include ferrite powder, and examples of the organic conductive substance include carbon black, polyaniline, polythiophene, polypyrrole, polyacetylene, polyphenylacetylene, polyphenylene, polyfuran, polyperinaphthalene, and alkyl groups and alkoxy groups thereof. Examples thereof include organic polymer substances such as substitution products of groups. Above all, aniline-based polymer fine particles are preferably used.
【0014】上記アニリン系重合体微粒子は、例えば、
アニリン誘導体モノマー及び酸を、水等の溶媒に溶解さ
せ、この溶液に酸化剤を加え攪拌することによって酸化
重合させる等の方法により製造することができる。The aniline-based polymer fine particles are, for example,
The aniline derivative monomer and the acid are dissolved in a solvent such as water, and an oxidant is added to this solution, and the mixture is stirred to carry out oxidative polymerization.
【0015】上記アニリン誘導体モノマーとしては、例
えば、アニリン、N−メチルアニリン、N−エチルアニ
リン、o−トルイジン、m−トルイジン、2−エチルア
ニリン、3−エチルアニリン、2,3−ジメチルアニリ
ン、2,5−ジメチルアニリン、2,6−ジメチルアニ
リン、2,6−ジエチルアニリン、2−メトキシアニリ
ン、3−メトキシアニリン、2,5−ジメトキシアニリ
ン、3,5−ジメトキシアニリン、o−フェニレンジア
ミン、m−フェニレンジアミン、2−アミノビフェニ
ル、N,N−ジフェニル−p−フェニレンジアミン等が
挙げられる。上記アニリン誘導体モノマーの上記溶媒に
対する濃度は、0.1〜1mol/lが好ましい。Examples of the aniline derivative monomer include aniline, N-methylaniline, N-ethylaniline, o-toluidine, m-toluidine, 2-ethylaniline, 3-ethylaniline, 2,3-dimethylaniline, 2 , 5-dimethylaniline, 2,6-dimethylaniline, 2,6-diethylaniline, 2-methoxyaniline, 3-methoxyaniline, 2,5-dimethoxyaniline, 3,5-dimethoxyaniline, o-phenylenediamine, m -Phenylenediamine, 2-aminobiphenyl, N, N-diphenyl-p-phenylenediamine and the like can be mentioned. The concentration of the aniline derivative monomer in the solvent is preferably 0.1 to 1 mol / l.
【0016】上記酸としては、例えば、塩酸、硫酸、硝
酸、リン酸等の無機プロトン酸;硫酸エステル、リン酸
エステル等の無機酸エステル;p−トルエンスルホン
酸、カルボン酸等の有機酸;ポリスチレンスルホン酸等
の高分子酸が挙げられる。上記酸の濃度は、0.1N〜
1Nが好ましい。Examples of the acid include inorganic protonic acids such as hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid; inorganic acid esters such as sulfuric acid ester and phosphoric acid ester; organic acids such as p-toluenesulfonic acid and carboxylic acid; polystyrene. Polymeric acids such as sulfonic acid may be mentioned. The concentration of the acid is 0.1 N
1N is preferred.
【0017】上記酸化剤としては、例えば、過硫酸塩、
過酸化水素、過マンガン酸塩、重クロム酸塩等の過酸化
物;二酸化鉛、二酸化マンガン、塩化鉄等のルイス酸等
が挙げられる。上記酸化剤の濃度は、上記溶媒に対して
0.1〜1mol/lが好ましい。Examples of the oxidizing agent include persulfate,
Examples thereof include peroxides such as hydrogen peroxide, permanganate, and dichromate; Lewis acids such as lead dioxide, manganese dioxide, and iron chloride. The concentration of the oxidizing agent is preferably 0.1 to 1 mol / l with respect to the solvent.
【0018】上記アニリン系重合体微粒子は、叙上の方
法で作製することができるが、アライド シグナル社
製、商品名「Versicon」等の市販されているも
のも使用できる。The aniline-based polymer fine particles can be prepared by the above method, but commercially available products such as "Versicon" manufactured by Allied Signal Co. can also be used.
【0019】上記導電性のアニリン系重合体微粒子は、
管体を構成するプラスチックに熱接着性を有するプラス
チック100重量部に対し5〜100重量部含有せしめ
られマイクロ波融着プラスチック組成物として使用され
る。上記含有量が5重量部未満では、管のバット接合に
際して充分な融着強度が得られず、100重量部を超え
て含有せしめた場合、マイクロ波融着プラスチック組成
物が脆弱な材質となるため、上記接合部の接合強度が低
下する。The above conductive aniline polymer fine particles are
It is used as a microwave fusion plastic composition by containing 5 to 100 parts by weight to 100 parts by weight of the plastic having thermal adhesiveness to the plastic constituting the tubular body. When the content is less than 5 parts by weight, sufficient fusion bonding strength cannot be obtained at the time of butt joining of pipes, and when the content is more than 100 parts by weight, the microwave fusion plastic composition becomes a brittle material. The joint strength of the joint is reduced.
【0020】上記プラスチックに上記導電性物質を混合
する場合、混合手段としては、充分な捏和が与えられ、
上記プラスチック中に導電性物質が均一に分散され得る
ものであれば特に限定されるものではないが、例えば、
一軸押出機、二軸押出機、バンバリーミキサー、ロー
ル、ブラベンダープラストグラフ、ニーダー等が使用で
きる。When the conductive material is mixed with the plastic, a sufficient kneading is given as a mixing means,
The conductive material is not particularly limited as long as it can be uniformly dispersed in the plastic, for example,
A single screw extruder, a twin screw extruder, a Banbury mixer, a roll, a Brabender plastograph, a kneader, etc. can be used.
【0021】上記熱可塑性樹脂中に分散される上記アニ
リン系重合体微粒子は、その粒子径が0.1〜100μ
mの範囲にあるものを使用することが望ましいが、上記
プラスチック組成物中で2次凝集を起こすおそれがあ
り、上記プラスチック組成物に十分な混練を与えねばな
らない。上記混練の度合いを、上記プラスチック組成物
中に分散している上記アニリン系重合体微粒子の粒子径
を測定し、これを分散粒径として管理することが望まし
い。The aniline polymer fine particles dispersed in the thermoplastic resin have a particle diameter of 0.1 to 100 μm.
Although it is desirable to use those in the range of m, secondary kneading may occur in the plastic composition, and sufficient kneading must be given to the plastic composition. It is desirable that the degree of kneading is measured by measuring the particle size of the aniline-based polymer particles dispersed in the plastic composition, and controlling this as the dispersed particle size.
【0022】上記アニリン系重合体微粒子の分散粒径の
測定は、粒径を正確に測定できる方法であれば特に限定
されるものではないが、例えば、予めRuO4 で染色し
たマイクロ波融着プラスチック組成物を走査型電子顕微
鏡の反射電子で測定すれば、比較的容易に測定すること
ができる。The dispersed particle size of the aniline polymer fine particles is not particularly limited as long as the particle size can be accurately measured. For example, the microwave fusion plastic dyed with RuO 4 in advance is used. When the composition is measured by backscattered electron of a scanning electron microscope, it can be measured relatively easily.
【0023】上記アニリン系重合体微粒子の分散粒径
が、0.1μm未満の状態に分散させるには、大きなエ
ネルギーを要し、分散のための装置が大がかりとなり、
コスト的にも好ましくない。又、分散粒径が、100μ
mを超えると、発熱量が小さくなり、上記プラスチック
100重量部に対し、100重量部を超えて配合しない
と必要発熱量が得られない。A large amount of energy is required to disperse the aniline-based polymer fine particles in a state where the dispersed particle size is less than 0.1 μm, and a device for dispersion becomes large,
It is not preferable in terms of cost. The dispersed particle size is 100μ
When it exceeds m, the calorific value becomes small, and the necessary calorific value cannot be obtained unless the content is more than 100 parts by weight with respect to 100 parts by weight of the plastic.
【0024】上記マイクロ波融着装置のマイクロ波照射
線源としては、例えば、発振周波数が商用周波数の2.
45GHzのマグネトロンを発振管として用い、発振管
で発生したマイクロ波電力は、導波管を通じてマイクロ
波照射室へ導かれる。尚、照射電力は、100〜2,0
00W等が好ましい。Examples of the microwave irradiation source of the microwave fusion device include, for example, 2.
A 45 GHz magnetron is used as an oscillation tube, and the microwave power generated in the oscillation tube is guided to the microwave irradiation chamber through the waveguide. The irradiation power is 100 to 2,0.
00W or the like is preferable.
【0025】上記マイクロ波照射線源のマグネトロンか
らマイクロ波照射室に至る導波管は、その端部を短絡端
とし、該導波管内のマイクロ波の1/4波長の長さとす
る。このように導波管の管長さを設定することによりマ
イクロ波の位相が揃い、ロスなくマイクロ波をマイクロ
波照射室に伝達することができるからである。The waveguide from the magnetron of the microwave irradiation source to the microwave irradiation chamber has a short-circuited end, and has a length of ¼ wavelength of the microwave in the waveguide. By setting the tube length of the waveguide in this way, the phases of the microwaves are aligned and the microwaves can be transmitted to the microwave irradiation chamber without loss.
【0026】上記マイクロ波照射線源のマグネトロンか
らマイクロ波照射室に至る導波管をマイクロ波融着装置
へ装着する方法は、特に限定されるものではないが、例
えば、バヨネット機構を用いた場合、複数種の管材の口
径毎に装置を準備したりする必要もなく、又、簡単な準
備作業でマイクロ波融着装置を最も効率的に利用するこ
とができる。The method of mounting the waveguide from the magnetron of the microwave irradiation source to the microwave irradiation chamber to the microwave fusion device is not particularly limited, but, for example, when a bayonet mechanism is used. It is not necessary to prepare an apparatus for each diameter of a plurality of types of pipe materials, and the microwave fusion bonding apparatus can be used most efficiently by a simple preparation work.
【0027】上記マイクロ波の照射時間は、接合される
管体のサイズや形状によっても異なるが、例えば、50
mmφもしくは75mmφのガス用中密度ポリエチレン
管同士を接合する場合、専用のマイクロ波照射機によっ
てマイクロ波を照射して融着が完了するまで120〜1
80秒、一般的には、10〜180秒である。The microwave irradiation time varies depending on the size and shape of the tubular body to be joined, but is, for example, 50.
When joining mmφ or 75 mmφ gas medium-density polyethylene pipes to each other, a microwave is irradiated by a dedicated microwave irradiator to 120 to 1 until fusion is completed.
It is 80 seconds, generally 10 to 180 seconds.
【0028】上記スリーブは、その開放端と上記マイク
ロ波照射室に連なる端に設けられた被接続プラスチック
管外面把持部と上記被接続プラスチック管両外面把持部
間の拡径された内周壁に電波吸収体が張設された空間を
有する電波吸収室とからなるものであるが、上記マイク
ロ波照射室の両側端に設けられ、上記マイクロ波融着継
手の接続両端に被接続プラスチック管を接続し、マイク
ロ波を照射して融着するものであってもよく、又、上記
マイクロ波融着継手がストッパーである場合には、上記
マイクロ波照射室の一面にのみ設けられればよい。又、
接続の方向が直線方向のみではなく、上記マイクロ波融
着継手が90°エルボである場合や3方向以上の分岐継
手やバルブ等の場合、被接続プラスチック管の接続方向
の壁面に必要数のスリーブが設けられればよい。The sleeve has an electromagnetic wave on an expanded inner peripheral wall between the outer surface gripping portion of the connected plastic tube and the outer surface gripping portions of the connected plastic tube provided at the open end and the end connected to the microwave irradiation chamber. The absorber is composed of a radio wave absorption chamber having a stretched space, and is provided at both ends of the microwave irradiation chamber, and a connected plastic pipe is connected to both connection ends of the microwave fusion joint. Alternatively, the microwave fusion may be performed by fusion, and when the microwave fusion joint is a stopper, it may be provided only on one surface of the microwave irradiation chamber. or,
If the microwave fusion splicing joint is a 90 ° elbow or a branch joint or valve having three or more directions, the required number of sleeves are provided on the wall surface in the connecting direction of the plastic pipe to be connected. Should be provided.
【0029】上記電波吸収室の内周壁に張設される電波
吸収体としては、例えば、フェライト、炭化珪素、カー
ボン等の電波吸収体を直接もしくは耐熱性を有する無機
セメントをバインダーとして結着した電波吸収体を使用
してもよい。又、被接続プラスチック管の管径と上記マ
イクロ波の波長の比が数倍以内の場合、上記電波吸収室
の内周壁に張設された電波吸収体に均一にマイクロ波が
吸収されるように上記電波吸収室の内周壁は円環状の壁
面を構成していることが好ましい。The radio wave absorber stretched on the inner peripheral wall of the radio wave absorbing chamber is, for example, a radio wave absorber obtained by binding a radio wave absorber such as ferrite, silicon carbide, or carbon directly or by using a heat-resistant inorganic cement as a binder. An absorber may be used. Further, when the ratio of the diameter of the connected plastic pipe to the wavelength of the microwave is within several times, the microwave absorber is stretched on the inner peripheral wall of the electromagnetic wave absorbing chamber so that the microwave is absorbed uniformly. It is preferable that the inner peripheral wall of the radio wave absorption chamber constitutes an annular wall surface.
【0030】上記被接続プラスチック管の管径と上記マ
イクロ波の波長の比が数倍のレベルを超え、管径が大き
くなる場合、上記上記電波吸収室の内周壁は円環状であ
る必要はなく、任意の形状で形成されてもプラスチック
管の融着作業に何らの支障もない。特に被接続プラスチ
ック管の管径が上記マイクロ波の波長を遙に超える場合
には、内面を角錐を密に配列した鋭い凹凸面とすると、
マイクロ波の吸収がより効果的に行われる。When the ratio of the pipe diameter of the connected plastic pipe to the wavelength of the microwave exceeds several times and the pipe diameter becomes large, the inner peripheral wall of the electromagnetic wave absorbing chamber does not need to be annular. Even if it is formed in any shape, it does not hinder the fusion work of the plastic pipe. Especially when the diameter of the plastic pipe to be connected is much larger than the wavelength of the microwave, if the inner surface is a sharp uneven surface in which pyramids are densely arranged,
The microwave absorption is performed more effectively.
【0031】電波吸収体が張設された上記電波吸収室の
内周壁の内径は、上記被接続プラスチック管外面把持部
の内径の2〜3倍であることが好ましく、該電波吸収室
の前後の上記被接続プラスチック管外面把持部に把持さ
れた被接続プラスチック管外面との間に充分な断熱層を
形成せしめられる。電波吸収体が張設された上記電波吸
収室の内周壁の内径が上記範囲を外れる場合、上記範囲
の上限を外れれば、融着装置全体が大きくなり、使い勝
手がわるくなり、上記範囲の下限を外れれば、被接続プ
ラスチック管の融着時の断熱が充分でなくなり接続後プ
ラスチック管が変形する等のおそれがある。The inner diameter of the inner peripheral wall of the electromagnetic wave absorbing chamber in which the electromagnetic wave absorber is stretched is preferably 2 to 3 times the inner diameter of the outer surface gripping portion of the plastic pipe to be connected. A sufficient heat insulating layer can be formed between the outer surface of the plastic tube to be connected and the outer surface of the plastic tube to be connected. When the inner diameter of the inner peripheral wall of the electromagnetic wave absorber in which the electromagnetic wave absorber is stretched is out of the above range, if the upper limit of the above range is not satisfied, the entire fusion bonding apparatus becomes large and the usability becomes poor, and the lower limit of the above range is set. If it comes off, the heat insulation during fusion of the plastic pipe to be connected may not be sufficient, and the plastic pipe may be deformed after the connection.
【0032】更に、上記電波吸収室の外周壁に、必要に
応じ、放熱フィンを設けることにより上記電波吸収室内
の温度をより低下させることができる。Further, if necessary, heat radiation fins may be provided on the outer peripheral wall of the electromagnetic wave absorbing chamber to further lower the temperature in the electromagnetic wave absorbing chamber.
【0033】上記マイクロ波融着装置のマイクロ波照射
室及びスリーブは、開閉のための構造を特に限定するも
のではないが、マイクロ波照射室の一面のみを開閉自在
とし、狭隘なマイクロ波照射室内で被接続プラスチック
管をマイクロ波融着継手に挿入する等の煩わしさを避け
るために、例えば、被接続プラスチック管及びマイクロ
波融着継手の差し口の中心線を含む平面で連続してもし
くは部分部分に分割して開閉自在の構造にすることが好
ましい。The microwave irradiation chamber and the sleeve of the above-mentioned microwave fusion device are not particularly limited in the structure for opening and closing, but only one surface of the microwave irradiation chamber can be opened and closed, and the narrow microwave irradiation chamber. In order to avoid the inconvenience of inserting the connected plastic pipe into the microwave fusion joint, for example, in a plane containing the center line of the connected plastic pipe and the outlet of the microwave fusion joint, or continuously It is preferable that the structure is divided into parts and can be opened and closed.
【0034】上記マイクロ波融着継手と被接続プラスチ
ック管の接続方法は、特に限定されるものではないが、
例えば、上記マイクロ波融着継手の差し口が次第に縮径
されているテーパースリーブ法、バット接合法、フラン
ジ接合法等従来よりプラスチック管の接合に用いられる
如何なる接合法であっても適用可能である。上記接合に
際し、被接続プラスチック管は、上記マイクロ波照射室
に連なる上記スリーブの被接続プラスチック管外面把持
部に把持され、上記上記マイクロ波融着継手の融着位置
に固定されるが、該融着位置の安定の為に被接続プラス
チック管と熱接着性の小さい素材からなる補助的な固定
具を必要に応じて使用してもよい。The method for connecting the microwave fusion splicing joint and the plastic tube to be connected is not particularly limited,
For example, any joining method conventionally used for joining plastic pipes such as a taper sleeve method, a butt joining method, and a flange joining method in which the opening of the microwave fusion joint is gradually reduced in diameter is applicable. . At the time of the joining, the plastic pipe to be connected is gripped by the plastic pipe outer surface gripping portion of the sleeve connected to the microwave irradiation chamber and is fixed at the fusion position of the microwave fusion joint. In order to stabilize the attachment position, an auxiliary fixing tool made of a material having a small thermal adhesive property with the plastic tube to be connected may be used as necessary.
【0035】請求項1記載の本発明のプラスチック管の
融着装置は、叙上の如く構成されているので、マイクロ
波を吸収する面積が充分に形成されており、単位当たり
の吸収電力が小さくなるので、スリーブ部分の温度の上
昇が少なく、マイクロ波照射による発熱によって発熱部
以外の被接続プラスチック管等に熱変形等の損傷を与え
ることなく、且つ、上記マイクロ波照射室からスリーブ
を通してマイクロ波の漏洩も少なく、作業者にマイクロ
波被爆による障害等の心配もなく安全に使用できるもの
である。Since the plastic pipe fusing device of the present invention according to claim 1 is constructed as described above, a sufficient area for absorbing microwaves is formed, and the absorbed power per unit is small. Therefore, the temperature of the sleeve part does not rise so much that the plastic pipe to be connected other than the heat generating portion is not damaged by thermal deformation due to the heat generated by the microwave irradiation, and the microwave is passed from the microwave irradiation chamber through the sleeve. There is little leakage, and the operator can use it safely without worrying about any damage due to microwave exposure.
【0036】請求項2記載の本発明のプラスチック管の
接続方法は、叙上の如く構成されているので、マイクロ
波照射による発熱によって発熱部以外の被接続プラスチ
ック管等に熱変形等の損傷を与えることなく、且つ、上
記マイクロ波照射室からスリーブを通してマイクロ波の
漏洩も少なく、作業者にマイクロ波被爆による障害等の
心配もなく安全に使用できるものである。Since the method for connecting plastic pipes according to the second aspect of the present invention is configured as described above, heat generated by microwave irradiation causes damage such as thermal deformation to the connected plastic pipes other than the heat generating portion. It is possible to use it safely without giving it, and since there is little leakage of microwaves from the microwave irradiation chamber through the sleeve, there is no fear of the operator being hindered by microwave exposure.
【0037】[0037]
【発明の実施の形態】以下に実施例を掲げて、本発明を
更に詳しく説明するが、本発明はこれら実施例のみに限
定されるものではない。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail with reference to examples below, but the present invention is not limited to these examples.
【0038】(実施例1)図1は、本発明のプラスチッ
ク管の融着装置を用いて、プラスチック管をマイクロ波
融着継手によって接続する状況を、斜視図で示すもので
あり、上記融着装置の外壁を透して内部のプラスチック
管及びマイクロ波融着継手を図示することによって、上
記融着装置と被接続プラスチック管及びマイクロ波融着
継手の位置関係を説明しようとするものである。1はマ
イクロ波照射線源であるマグネトロン、2は導波管であ
り、方形導波管21から方形円形変換器22によって円
形導波管に接続されマイクロ波照射室3に開放されてい
る。上記開放端は短絡端となっており、マイクロ波を効
率良く伝達し得る。23はバヨネットである。(Embodiment 1) FIG. 1 is a perspective view showing a situation in which a plastic pipe is fused by a microwave fusion joint using the plastic pipe fusion device of the present invention. By showing the internal plastic pipe and the microwave fusion joint through the outer wall of the device, the positional relationship between the fusion device and the connected plastic pipe and the microwave fusion joint will be described. Reference numeral 1 is a magnetron which is a microwave irradiation source, and 2 is a waveguide, which is connected to a circular waveguide from a rectangular waveguide 21 to a rectangular circular converter 22 and opened to the microwave irradiation chamber 3. The open end is a short-circuited end, and microwaves can be efficiently transmitted. 23 is a bayonet.
【0039】4はスリーブであり、41及び42は、該
スリーブの開放端及び上記マイクロ波照射室3に開口す
る端部の被接続プラスチック管5把持部であり、43は
マイクロ波吸収室であり、431は該マイクロ波吸収室
43内壁に張設されたマイクロ波吸収体である。上記マ
イクロ波吸収室43は、上記被接続プラスチック管5把
持部41及び42より拡径され、被接続プラスチック管
5外面と上記マイクロ波吸収体431との間に空間が形
成される。Reference numeral 4 is a sleeve, 41 and 42 are gripped portions of the connected plastic tube 5 at the open end of the sleeve and the end opening to the microwave irradiation chamber 3, and 43 is a microwave absorption chamber. Reference numerals 431 denote microwave absorbers stretched on the inner wall of the microwave absorption chamber 43. The microwave absorbing chamber 43 is expanded in diameter from the connected plastic pipe 5 gripping portions 41 and 42, and a space is formed between the external surface of the connected plastic pipe 5 and the microwave absorber 431.
【0040】上記マイクロ波照射室3及びこれに連なる
スリーブ4、4は、被接続プラスチック管5の中心を含
む面で二つ割りの構造とし、被接続プラスチック管5及
びマイクロ波融着継手6をマイクロ波吸収室43の所定
の位置にセットし、被接続プラスチック管5及びマイク
ロ波融着継手6とを接続し、融着後、上記被接続プラス
チック管5及びマイクロ波融着継手6の一体化した長尺
物を取り出し易くされる。図1に示される一実施例にお
いては、二つ割りされたマイクロ波照射室3上室31と
マイクロ波照射室3下室32は、ヒンジ33を軸として
回動自在に接続されている。34、34は、マイクロ波
照射室3開閉時の把手兼固定具である。The microwave irradiating chamber 3 and the sleeves 4 and 4 connected to the microwave irradiating chamber 3 are divided into two parts on the plane including the center of the plastic tube 5 to be connected, and the plastic tube 5 to be connected and the microwave fusion joint 6 are microwaved. It is set at a predetermined position in the absorption chamber 43, the connected plastic pipe 5 and the microwave fusion joint 6 are connected, and after fusion, the integrated plastic pipe 5 and the microwave fusion joint 6 have an integrated length. It is easy to take out the scale. In the embodiment shown in FIG. 1, the upper chamber 31 of the microwave irradiation chamber 3 and the lower chamber 32 of the microwave irradiation chamber 3 which are divided into two are connected rotatably about a hinge 33. Reference numerals 34 and 34 are grips and fixtures for opening and closing the microwave irradiation chamber 3.
【0041】図2は、上記マイクロ波照射室3の一部及
びこれに連なるスリーブ4の内面を示す一部切欠斜視図
であり、スリーブ4の開放端及び上記マイクロ波照射室
3に開口する端部被接続プラスチック管把持部41及び
42の内周と上記マイクロ波吸収室43の内面に張設さ
れたマイクロ波吸収体431が形成する内周の直径の比
が好ましくは2〜3程度採られ、上記被接続プラスチッ
ク管把持部41及び42間に把持された被接続プラスチ
ック管5の外周面と上記マイクロ波吸収体431内周面
との間に適度の空気断熱層が形成されることを示してい
る。FIG. 2 is a partially cutaway perspective view showing a part of the microwave irradiation chamber 3 and an inner surface of the sleeve 4 connected to the microwave irradiation chamber 3, and an open end of the sleeve 4 and an end opening to the microwave irradiation chamber 3. The ratio of the diameters of the inner circumferences of the part-to-be-connected plastic tube grips 41 and 42 and the inner circumference formed by the microwave absorber 431 stretched on the inner surface of the microwave absorption chamber 43 is preferably about 2 to 3. Shows that an appropriate heat insulating layer is formed between the outer peripheral surface of the connected plastic tube 5 held between the connected plastic tube holding parts 41 and 42 and the inner peripheral surface of the microwave absorber 431. ing.
【0042】(実施例2)次に、図1及び図2に示され
た装置を用い、呼び径75(外径89mmφ、厚さ8.
1mm)の都市ガス用ポリエチレン管をマイクロ波融着
継手によって接続した。接着層シートの作製 中密度ポリエチレン(三井石油化学社製、MFR=0.
2g/10min)を厚さ0.3mmのシートに成形し
た。発熱層シートの作製 中密度ポリエチレン(三井石油化学社製、MFR=0.
2g/10min)100重量部及びアニリン系重合体
微粒子(アライド・シグナル社製、商品名:Versi
con)30重量部を混合し、厚さ0.5mmのシート
に成形した。(Embodiment 2) Next, using the apparatus shown in FIGS. 1 and 2, a nominal diameter of 75 (outer diameter 89 mmφ, thickness 8.
1 mm) polyethylene pipe for city gas was connected by a microwave fusion joint. Preparation of adhesive layer sheet Medium density polyethylene (Mitsui Petrochemical Co., Ltd., MFR = 0.
2 g / 10 min) was formed into a sheet having a thickness of 0.3 mm. Preparation of heat generating layer sheet Medium density polyethylene (Mitsui Petrochemical Co., Ltd., MFR = 0.
2 g / 10 min) 100 parts by weight and aniline-based polymer particles (manufactured by Allied Signal Co., trade name: Versi
con) 30 parts by weight were mixed and molded into a sheet having a thickness of 0.5 mm.
【0043】上記接着層シート2枚の間に、上記発熱層
シートを熱ラミネーターにて挟着し、マイクロ波融着用
樹脂シートを作製した。The heat generating layer sheet was sandwiched between the two adhesive layer sheets by a heat laminator to prepare a resin sheet for microwave fusion.
【0044】得られたマイクロ波融着用樹脂シートを管
継手用インサート金型の一対のコア部に各々円筒状に長
さ45mm捲き付けて装着した後、射出成形にて中密度
ポリエチレン(上記接着層シートと同原料)製の呼び径
75のガス用HF(ヒートフュージョン)継手(チー
ズ)と同サイズのマイクロ波融着管継手(チーズ)を作
製した。The obtained resin sheet for microwave fusion is wound around a pair of core portions of an insert mold for pipe fitting by winding it into a cylindrical shape with a length of 45 mm. A microwave fusion tube fitting (cheese) having the same size as a gas HF (heat fusion) fitting (cheese) having a nominal diameter of 75 made of the same material as the sheet was produced.
【0045】上記マイクロ波融着管継手に該管継手に使
用したと同じ中密度ポリエチレン製の呼び径75のガス
用ポリエチレン管を接続し、マイクロ波(2.45GH
z、1kW)を120秒間照射し、管体をマイクロ波融
着管継手に融着した。The same microwave fusion pipe joint was connected to the same polyethylene pipe for gas with a nominal diameter of 75 as that used for the pipe joint, which was used for microwave (2.45 GHz).
(1 z kW, 1 kW) for 120 seconds to fuse the tube body to the microwave fusion tube joint.
【0046】融着した管体と管継手の融着強度を評価す
るため、上記管体と管継手の重なり合った融着部から試
験片を切り出し、T型剥離強度を測定した。試験結果
は、剥離強度40kg/cm以上であり、強固に融着し
ていることを示している。又、上記管体の接合部の引張
強度試験では、引張強度150kg/cm2 以上を示
し、接合部以外の部分で破断した。In order to evaluate the fusion strength between the fused pipe and the pipe joint, a test piece was cut out from the overlapping fusion portion of the pipe and the pipe joint, and the T-type peel strength was measured. The test results show that the peel strength is 40 kg / cm or more, and that they are firmly fused. Further, in the tensile strength test of the joint portion of the above-mentioned tubular body, the tensile strength was 150 kg / cm 2 or more, and the portion other than the joint portion was broken.
【0047】(実施例3)実施例2で準備したマイクロ
波融着用樹脂シートより、呼び径75(外径89mm
φ、厚さ8.1mm)のガス用ポリエチレン管の切断断
面形状に合わせて円環状のマイクロ波融着用樹脂シート
を切り出した。次いで、継手端部が管と同じ外径寸法を
もつ接合部形状でバット融着接合に使用するガス用スピ
ゴット継手の呼び径75のチーズを準備し、該スピゴッ
ト継手の端部と呼び径75のガス用ポリエチレン管の端
部の間に、上記円環状のマイクロ波融着用樹脂シートを
挟持させて衝合わせ、上記ガス用ポリエチレン管2本を
両方向から押圧した状態で、マイクロ波(2.45GH
z、1kW)を180秒間照射し、ガス用ポリエチレン
管を各々スピゴット継手に融着した。(Example 3) From the resin sheet for microwave fusion prepared in Example 2, a nominal diameter of 75 (outer diameter 89 mm) was obtained.
An annular resin sheet for microwave fusion was cut out in accordance with the cut sectional shape of a polyethylene pipe for gas (φ, thickness 8.1 mm). Next, a cheese having a nominal diameter of 75 for a spigot joint for gas to be used for butt fusion bonding is prepared in a joint shape in which the joint end has the same outer diameter dimension as the pipe, and the end of the spigot joint and the nominal diameter of 75 are prepared. Between the ends of the polyethylene pipe for gas, the annular resin sheet for microwave fusion is sandwiched and abutted against each other, and the two polyethylene pipes for gas are pressed from both directions, and the microwave (2.45 GHz) is used.
z, 1 kW) for 180 seconds to fuse the polyethylene pipes for gas to the spigot joints.
【0048】融着した管体と管継手の融着強度を評価す
るため、上記管体の接合部の引張強度試験を行った。試
験結果は、引張強度150kg/cm2 以上であり、接
合部以外の部分で破断した。In order to evaluate the fusion strength between the fused pipe and the pipe joint, a tensile strength test was conducted on the joint portion of the pipe. As a result of the test, the tensile strength was 150 kg / cm 2 or more, and the portion other than the joined portion was broken.
【0049】[0049]
【発明の効果】請求項1記載の本発明のプラスチック管
の融着装置は、叙上の如く構成されているので、マイク
ロ波を吸収する面積が充分に形成されており、単位当た
りの吸収電力が小さくなるので、スリーブ部分の温度の
上昇が少なく、マイクロ波照射による発熱によって発熱
部以外の被接続プラスチック管等に熱変形等の損傷を与
えることなく、且つ、上記マイクロ波照射室からスリー
ブを通してマイクロ波の漏洩も少なく、作業者にマイク
ロ波被爆による障害等の心配もなく安全に使用できるも
のである。Since the apparatus for fusing a plastic pipe of the present invention according to claim 1 is constructed as described above, a sufficient area for absorbing microwaves is formed, and the absorbed power per unit is absorbed. Since the temperature rise of the sleeve part is small, heat generated by microwave irradiation does not cause damage such as thermal deformation to the connected plastic pipes other than the heat generating part, and the sleeve is passed through the sleeve from the microwave irradiation chamber. There is little leakage of microwaves, and it can be used safely without any concern for workers due to microwave exposure.
【0050】請求項2記載の本発明のプラスチック管の
接続方法は、叙上の如く構成されているので、マイクロ
波照射による発熱によってマイクロ波エネルギーが効率
よく熱に変換され、同時に広い面積で加熱でき、発熱部
以外の被接続プラスチック管等に熱変形等の損傷を与え
ることなく、且つ、上記マイクロ波照射室からスリーブ
を通してマイクロ波の漏洩も少なく、作業者にマイクロ
波被爆による障害等の心配もなく安全に使用できるもの
である。Since the plastic pipe connecting method of the present invention according to claim 2 is constructed as described above, microwave energy is efficiently converted into heat by heat generation by microwave irradiation, and at the same time, heating in a large area. It does not cause damage such as thermal deformation to the connected plastic pipes other than the heat generating part, and there is little microwave leakage through the sleeve from the microwave irradiation chamber, so there is no concern for workers to be hindered by microwave exposure. It is safe to use.
【0051】[0051]
【図1】本発明のプラスチック管の融着装置を示す斜視
図でり、プラスチック管をマイクロ波融着継手によって
接続する状況を、上記融着装置の外壁を透して示してい
る。FIG. 1 is a perspective view showing a fusion bonding apparatus for plastic pipes of the present invention, showing a situation in which plastic pipes are connected by a microwave fusion joint, with an outer wall of the fusion bonding apparatus seen through.
【図2】図1に示すプラスチック管の融着装置のマイク
ロ波照射室3の一部及びこれに連なるスリーブ4の内面
を拡大して示す一部切欠斜視図である。FIG. 2 is a partially cutaway perspective view showing, in an enlarged manner, a part of a microwave irradiation chamber 3 and a sleeve 4 connected to the microwave irradiation chamber 3 of the fusion bonding apparatus for plastic pipes shown in FIG.
1 マグネトロン 2 導波管 21 方形導波管 22 方形円形変換器 23 バヨネット 3 マイクロ波照射室 31 マイクロ波照射室上室 32 マイクロ波照射室下室 33 ヒンジ 34 マイクロ波照射室開閉具 4 スリーブ 41、42 被接続プラスチック管把持部 43 マイクロ波吸収室 431 マイクロ波吸収体 5 被接続プラスチック管 6 マイクロ波融着継手 DESCRIPTION OF SYMBOLS 1 magnetron 2 waveguide 21 square waveguide 22 square circular converter 23 bayonet 3 microwave irradiation chamber 31 microwave irradiation chamber upper chamber 32 microwave irradiation chamber lower chamber 33 hinge 34 microwave irradiation chamber opening / closing tool 4 sleeve 41, 42 Connected Plastic Pipe Grip 43 Microwave Absorption Chamber 431 Microwave Absorber 5 Connected Plastic Pipe 6 Microwave Fusion Joint
Claims (2)
側端に被接続プラスチック管を支持するスリーブを有す
るプラスチック管の融着装置であって、上記スリーブ
は、その開放端と上記マイクロ波照射室に連なる端に設
けられた被接続プラスチック管外面把持部と上記被接続
プラスチック管両外面把持部間の拡径された内周壁にマ
イクロ波吸収体が張設された空間を有するマイクロ波吸
収室とからなることを特徴とするプラスチック管の融着
装置。1. A fusion device for a plastic pipe having a microwave irradiation chamber and a sleeve for supporting a plastic pipe to be connected at a side end of the microwave irradiation chamber, wherein the sleeve has an open end and the microwave irradiation. A microwave absorption chamber having a space in which a microwave absorber is stretched on an expanded inner peripheral wall between the connected plastic pipe outer surface grip portion provided at the end connected to the chamber and the connected plastic pipe outer surface grip portions. A fusion device for a plastic pipe, which comprises:
を含有する管継手を用いてプラスチック管を接続し、上
記管継手部分を請求項1記載のプラスチック管の融着装
置のマイクロ波照射室に収納し、被接続プラスチック管
を上記融着装置のスリーブ内面に把持した状態でマイク
ロ波を照射することを特徴とするプラスチック管の融着
方法。2. A microwave irradiation chamber of a fusion device for a plastic pipe according to claim 1, wherein a plastic pipe is connected using a pipe joint containing a material that absorbs microwave power and generates heat. And irradiating with microwaves in a state in which the plastic tube to be connected is gripped on the inner surface of the sleeve of the above-mentioned fusing device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8001343A JPH09189394A (en) | 1996-01-09 | 1996-01-09 | Melting device for plastic pipe and plastic pipe melting method using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8001343A JPH09189394A (en) | 1996-01-09 | 1996-01-09 | Melting device for plastic pipe and plastic pipe melting method using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09189394A true JPH09189394A (en) | 1997-07-22 |
Family
ID=11498861
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8001343A Pending JPH09189394A (en) | 1996-01-09 | 1996-01-09 | Melting device for plastic pipe and plastic pipe melting method using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09189394A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001250671A (en) * | 2000-03-06 | 2001-09-14 | Tanico Corp | Microwave heating device |
US6722708B2 (en) | 2001-08-09 | 2004-04-20 | Nissan Motor Co., Ltd. | Tubular resin connection structure |
-
1996
- 1996-01-09 JP JP8001343A patent/JPH09189394A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001250671A (en) * | 2000-03-06 | 2001-09-14 | Tanico Corp | Microwave heating device |
US6722708B2 (en) | 2001-08-09 | 2004-04-20 | Nissan Motor Co., Ltd. | Tubular resin connection structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2123690C (en) | Method and article for microwave bonding of polyethylene pipe | |
EP0615487B1 (en) | Method and article for microwave bonding of splice closure | |
JP3833715B2 (en) | Fittings and methods | |
ES2358346T3 (en) | ITEMS COVERED THAT INCLUDE METAL SUBSTRATES. | |
JPH09189394A (en) | Melting device for plastic pipe and plastic pipe melting method using the same | |
CA2807955A1 (en) | Internal electrofusion ring coupler | |
EP0743897B1 (en) | Method of joining elongate hollow members | |
JPH08239631A (en) | Resin sheet for microwave welding, resin composition for microwave welding, and method of welding therewith | |
JPH08336898A (en) | Method for connecting thermoplastic resin tube | |
JPH09239844A (en) | Bonding of polymeric material and adhesive composition | |
EP2926978B1 (en) | Intermediate welding device | |
KR20120135014A (en) | Heat shrinkable sleeve for coupling pipes | |
JP2008249090A (en) | Laser welding joint and pipe-shaped product connecting method using the same | |
MX2012014403A (en) | Shrink sleeve for joining insulated pipes. | |
JPH07117132A (en) | Corrugated pipe connecting tube and connecting method of corrugated pipe using the tube | |
JPH09187876A (en) | Resin joint for microwave fusion and fusing method | |
JPH08178167A (en) | Microwave fusion joint and manufacture thereof | |
JP2020070366A (en) | High-frequency dielectric heating adhesive sheet, method of joining pipe and pipeline connection body | |
JPH0873753A (en) | Resin composition for fusion with microwave and joint fused with microwave | |
KR100417032B1 (en) | Union Method for Polyethylen Pipe | |
JPH0921494A (en) | Resin composition for thermal fusion, joint for thermal fusion, and its junction method | |
JPH09208755A (en) | Resin composition for melt adhesion | |
JPH08270872A (en) | Electric fusion connection member with cold zone | |
JPH091668A (en) | Method for fusing plastic pipes | |
JPH09241507A (en) | Microwave-weldable resin composition |