JPH09239844A - Bonding of polymeric material and adhesive composition - Google Patents

Bonding of polymeric material and adhesive composition

Info

Publication number
JPH09239844A
JPH09239844A JP8085877A JP8587796A JPH09239844A JP H09239844 A JPH09239844 A JP H09239844A JP 8085877 A JP8085877 A JP 8085877A JP 8587796 A JP8587796 A JP 8587796A JP H09239844 A JPH09239844 A JP H09239844A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
bonding
powder
microwave
bonding method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8085877A
Other languages
Japanese (ja)
Inventor
Yukio Suyama
幸生 須山
Hikari Tanaka
光 田中
Koji Hayashi
耕司 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MITSUBOSHI KK
Original Assignee
MITSUBOSHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MITSUBOSHI KK filed Critical MITSUBOSHI KK
Priority to JP8085877A priority Critical patent/JPH09239844A/en
Publication of JPH09239844A publication Critical patent/JPH09239844A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1403Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the type of electromagnetic or particle radiation
    • B29C65/1425Microwave radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1429Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface
    • B29C65/1435Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1429Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface
    • B29C65/1435Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. transmission welding
    • B29C65/1441Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. transmission welding making use of a reflector on the opposite side, e.g. a polished mandrel or a mirror
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1429Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface
    • B29C65/1454Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface scanning at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1477Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation making use of an absorber or impact modifier
    • B29C65/148Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation making use of an absorber or impact modifier placed at the interface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1477Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation making use of an absorber or impact modifier
    • B29C65/1483Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation making use of an absorber or impact modifier coated on the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1487Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation making use of light guides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4865Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding containing additives
    • B29C65/487Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding containing additives characterised by their shape, e.g. being fibres or being spherical
    • B29C65/4875Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding containing additives characterised by their shape, e.g. being fibres or being spherical being spherical, e.g. particles or powders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4865Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding containing additives
    • B29C65/4885Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding containing additives characterised by their composition being non-plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/50Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like
    • B29C65/5057Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like positioned between the surfaces to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • B29C66/1142Single butt to butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/122Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section
    • B29C66/1222Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section comprising at least a lapped joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/122Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section
    • B29C66/1224Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section comprising at least a butt joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/128Stepped joint cross-sections
    • B29C66/1282Stepped joint cross-sections comprising at least one overlap joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/128Stepped joint cross-sections
    • B29C66/1284Stepped joint cross-sections comprising at least one butt joint-segment
    • B29C66/12841Stepped joint cross-sections comprising at least one butt joint-segment comprising at least two butt joint-segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/45Joining of substantially the whole surface of the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5221Joining tubular articles for forming coaxial connections, i.e. the tubular articles to be joined forming a zero angle relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5229Joining tubular articles involving the use of a socket
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/65General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles with a relative motion between the article and the welding tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/486Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by their physical form being non-liquid, e.g. in the form of granules or powders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To relatively easily bond a polymeric material difficult to bond by an adhesive and difficult to bond by high frequency welding. SOLUTION: Adhesive sheets 4 composed of a thermoplastic resin having 0.5-20wt.% of a carbon fine powder uniformly dispersed therein are interposed between pipes 1, 2 made of a thermoplastic resin to be bonded and a joint 3 and irradiated with microwaves of 0.9-6GHz for a specified time and subsequently radiated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は高分子材料の接着方
法およびそれに用いる接着用組成物に関する。さらに詳
しくは、ポリエチレン(PE)、ポリブテン(PB)な
どのような接着剤による接着が困難な高分子材料の接着
に好適で、さらにガス用または液体用のパイプ同士を気
密状態および液密状態で高強度で溶着接合する方法、接
着用組成物、接着シートおよび接着用パイプ継ぎ手に関
する。
TECHNICAL FIELD The present invention relates to a method for adhering a polymer material and an adhesive composition used for the same. More specifically, it is suitable for adhering polymer materials such as polyethylene (PE), polybutene (PB), etc., which are difficult to adhere with adhesives, and further, gas or liquid pipes in an airtight state and a liquidtight state. TECHNICAL FIELD The present invention relates to a method for fusion bonding with high strength, an adhesive composition, an adhesive sheet, and an adhesive pipe joint.

【0002】[0002]

【従来の技術】従来より、ポリ塩化ビニル材料、とくに
軟質のポリ塩化ビニルフィルム同士を熱接着する方法と
して、フィルムまたはシートを重ねて電極で押圧し、電
極間にメガヘルツ帯、とくに短波ないし極短波域の高周
波(たとえば19MHz、40MHz)の電圧をかける方法
が知られている。この接着方法は短時間で溶着すること
ができるので、古くから高周波ミシンや高周波ウエルダ
として工業的に広く採用されている。
2. Description of the Related Art Conventionally, as a method of thermally adhering polyvinyl chloride materials, particularly soft polyvinyl chloride films, films or sheets are stacked and pressed by electrodes, and a megahertz band, particularly short wave or very short wave, is applied between the electrodes. A method of applying a high frequency (for example, 19 MHz, 40 MHz) voltage in a range is known. Since this bonding method enables welding in a short time, it has been industrially widely used as a high-frequency sewing machine and a high-frequency welder since ancient times.

【0003】この方法はポリ塩化ビニルのほか、誘電
率、誘電正接の大きい他の熱可塑性樹脂材料にも適用が
可能である。しかしポリエチレン(PE)やポリブテン
(PB)などの誘電率、誘電正接が小さい材料では、誘
電損失係数が小さいので、溶着が可能な程度まで温度上
昇しない。そのため充分な強度および気密性をもって接
着することができない。しかもこれらの合成樹脂材料に
は、高強度で気密状態で接着し得る適切な接着剤もな
い。
This method is applicable to not only polyvinyl chloride but also other thermoplastic resin materials having a large dielectric constant and dielectric loss tangent. However, materials such as polyethylene (PE) and polybutene (PB) having a low dielectric constant and a low dielectric loss tangent have a low dielectric loss coefficient, so that the temperature does not rise to the extent that welding is possible. Therefore, they cannot be bonded with sufficient strength and airtightness. Moreover, these synthetic resin materials do not have suitable adhesives that can bond in a high strength and airtight state.

【0004】またシート状の物など、特定の形態の素材
に対しては、溶融温度まで上げたヒートバーを押し当て
たり、超音波溶着などの方法で接着することもできる
が、接着しようとする素材の形態によっては困難であ
る。すなわち入れ子状に嵌合したパイプのように、接合
すべき部位が隠れている場合、とくに接合する素材同士
を充分に加圧できない場合は接着強度が低い。しかも接
着装置が大がかりとなり、作業現場で簡単に使用するこ
とができない。
Further, for a material having a specific shape such as a sheet-like material, it is possible to press a heat bar heated to a melting temperature or adhere by a method such as ultrasonic welding. It is difficult depending on the form of. That is, the adhesive strength is low when the parts to be joined are hidden, as in the case of pipes fitted in a nesting manner, especially when the materials to be joined cannot be sufficiently pressurized. Moreover, the adhesion device becomes large-scale and cannot be easily used at the work site.

【0005】他方、水道管やガス管に多く用いられてい
るポリエチレンやポリブテンのパイプは、シール材を介
在させた上で、ネジなどの機械的なジョイント手段で連
結している。また近時、そのようなパイプ同士を溶融接
着する方法として、エレクトロフュージョン法が提案さ
れている。この方法では、パイプ状の継ぎ手の内面近く
にコイル状のヒーターを埋め込んでおき、その継ぎ手の
両側から接合すべきパイプを挿入し、ヒータに通電して
そのときに発生するジュール熱で加熱し、継ぎ手とパイ
プとを溶着することにより、パイプ同士を連結してい
る。
On the other hand, polyethylene and polybutene pipes, which are often used for water pipes and gas pipes, are connected with a mechanical joint means such as a screw after interposing a sealing material. Recently, an electrofusion method has been proposed as a method for melting and adhering such pipes. In this method, a coil-shaped heater is embedded near the inner surface of the pipe-shaped joint, the pipes to be joined are inserted from both sides of the joint, and the heater is energized to heat it with Joule heat generated at that time, The pipes are connected to each other by welding the joint and the pipe.

【0006】前記ネジなどの機械的なジョイント手段を
採用する場合は、接合部の強度、とくに地震などの振動
に対する強度が低く、ガスや液のシール漏れが生じやす
い。また、エレクトロフュージョン法は、継ぎ手内にコ
イル状のヒータを埋め込んだまま接合するので、継ぎ手
の構造が複雑で、取り扱いも煩雑になり、接合部の1箇
所当たりの費用が高価になる。
When a mechanical joint means such as the above-mentioned screw is used, the strength of the joint portion, particularly the strength against vibration such as an earthquake is low, and gas or liquid seal leakage easily occurs. In addition, in the electrofusion method, the coil-shaped heater is embedded in the joint while the joint is made. Therefore, the structure of the joint is complicated, the handling becomes complicated, and the cost per joint is high.

【0007】[0007]

【発明が解決しようとする課題】本発明は、ポリエチレ
ン(PE)、ポリブテン(PB)のような、接着剤での
接着が困難で、高周波溶着も困難な高分子材料でも比較
的容易に接着することができる接着方法を提供すること
を技術課題としている。さらに本発明は、接着する素材
の形態に関わりなく、しかも接合すべき部位が隠れてい
る場合でも、他の部分にできるだけ影響を与えずに、そ
の部位のみを部分的に熱溶着することができる比較的安
価な接着方法を提供することを課題としている。
SUMMARY OF THE INVENTION According to the present invention, a polymer material such as polyethylene (PE) or polybutene (PB) which is difficult to be bonded with an adhesive and is also difficult to be welded at a high frequency is relatively easily bonded. It is a technical subject to provide a bonding method that can be used. Further, according to the present invention, regardless of the form of the material to be adhered, and even when the part to be joined is hidden, only the part can be partially heat-welded while not affecting other parts as much as possible. It is an object to provide a relatively inexpensive bonding method.

【0008】さらに本発明は、ポリエチレン製、ポリブ
テン製などのガス用または液体用のパイプを現場で配管
するに当たり、簡単かつ容易に溶着接合することができ
る接着方法、接着シートおよび接着用継ぎ手パイプを提
供することを技術課題としている。
Further, the present invention provides a bonding method, a bonding sheet and a bonding joint pipe which can be simply and easily welded and bonded when a gas or liquid pipe made of polyethylene, polybutene or the like is laid on site. It is a technical issue to provide.

【0009】[0009]

【課題を解決するための手段】本発明の接着方法は、接
着しようとする高分子材料製の素材の間に、マイクロ波
を吸収する無機質の粉末を分散させた熱可塑性樹脂から
なる接着層を介在させ、所定時間だけマイクロ波を照射
し、ついで放熱することを特徴としている。接着しよう
とする素材の内、少なくとも一方は熱可塑性樹脂である
のが好ましい。その場合、接着層を構成する熱可塑性樹
脂が、前記素材を構成する熱可塑性樹脂と相溶性がある
熱可塑性樹脂であるのが一層好ましい。さらにマイクロ
波を照射する前に、接着層を予熱しておくこともでき
る。
According to the bonding method of the present invention, an adhesive layer made of a thermoplastic resin in which an inorganic powder that absorbs microwaves is dispersed between materials made of a polymer material to be bonded. It is characterized in that it is interposed, microwaves are radiated for a predetermined time, and then heat is radiated. At least one of the materials to be bonded is preferably a thermoplastic resin. In that case, it is more preferable that the thermoplastic resin forming the adhesive layer is a thermoplastic resin compatible with the thermoplastic resin forming the material. Further, the adhesive layer can be preheated before irradiation with microwaves.

【0010】前記マイクロ波の周波数は、ギガヘルツ
帯、とくに0.9〜6GHz とするのが好ましい。また
前記カーボン微粉末は、カーボンブラックおよび結晶性
のグラファイトよりなる群より選ばれたものであるのが
好ましい。そのカーボンブラックは、アセチレンブラッ
ク、中空シェル構造を有するカーボンブラックよりなる
群より選ばれたものであるのが好ましい。
The frequency of the microwave is preferably in the gigahertz band, particularly 0.9 to 6 GHz. The fine carbon powder is preferably selected from the group consisting of carbon black and crystalline graphite. The carbon black is preferably selected from the group consisting of acetylene black and carbon black having a hollow shell structure.

【0011】本発明の接着方法は、入れ子状に互いに嵌
合するパイプ同士を接着する場合に好適に採用しうる。
The bonding method of the present invention can be suitably used when bonding pipes that are fitted together in a nested manner.

【0012】本発明のマイクロ波接着に用いる接着用組
成物は、熱可塑性樹脂99.5〜80重量%と、その中
に均一に分散させた無機質の粉末0.5〜20重量%と
から構成されている。無機質の粉末は、カーボン微粉末
が好ましい。このような接着用組成物は、シート状に成
形した接着シートとして用いるのが使い勝手がよく、ま
たシール作用が向上する。
The bonding composition used for microwave bonding according to the present invention comprises 99.5 to 80% by weight of a thermoplastic resin and 0.5 to 20% by weight of an inorganic powder uniformly dispersed therein. Has been done. The inorganic powder is preferably carbon fine powder. It is convenient to use such an adhesive composition as an adhesive sheet formed into a sheet, and the sealing action is improved.

【0013】本発明のマイクロ波接着用の継ぎ手パイプ
は、高分子材料製のパイプと、その内面または外面に設
けた接着層とからなり、その接着層が、マイクロ波を吸
収する無機質の粉末を分散させた熱可塑性樹脂からなる
ことを特徴としている。
The microwave-bonding joint pipe of the present invention comprises a pipe made of a polymer material and an adhesive layer provided on the inner or outer surface thereof, and the adhesive layer is made of an inorganic powder capable of absorbing microwaves. It is characterized by comprising a dispersed thermoplastic resin.

【0014】[0014]

【作用】接着しようとする高分子材料の素材の間に所定
の無機質の粉末が分散された熱可塑性樹脂からなる接着
層を介在させ、マイクロ波を照射すると、マイクロ波が
素材を通して無機質の粉末に達する。そして無機質の粉
末がマイクロ波を吸収し、発熱する。そのためその熱で
接着層が溶融し、素材同士を接着する。
[Function] When a microwave is irradiated with an adhesive layer made of a thermoplastic resin in which a predetermined inorganic powder is dispersed between the materials of the polymer material to be adhered and the microwave is irradiated, the microwave is converted into the inorganic powder through the material. Reach Then, the inorganic powder absorbs the microwave and generates heat. Therefore, the heat melts the adhesive layer and bonds the materials together.

【0015】本発明の接着方法は、ポリエチレンやポリ
ブテンなどのような、誘電率および誘電正接が低い熱可
塑性樹脂に好適に適用することができる。このような熱
可塑性樹脂は、誘電率および誘電正接が低く、そのため
高周波溶着が困難であるが、本発明の方法によれば上記
の接着層と素材とが一体に溶着され、強度が高く気密
性、液密性が高い接着が得られる。さらに素材と同系統
の熱可塑性樹脂層を採用すると、相溶性が高く、しかも
溶融温度が同じであるので、一層一体的に接着すること
ができる。
The bonding method of the present invention can be suitably applied to a thermoplastic resin having a low dielectric constant and a low dielectric loss tangent, such as polyethylene and polybutene. Such a thermoplastic resin has a low dielectric constant and a low dielectric loss tangent, which makes it difficult to perform high-frequency welding. However, according to the method of the present invention, the above-mentioned adhesive layer and material are welded together, and the strength and airtightness are high. Adhesion with high liquid tightness can be obtained. Further, if a thermoplastic resin layer of the same type as the material is adopted, since the compatibility is high and the melting temperature is the same, it is possible to further integrally bond them.

【0016】無機質の粉末としては、カーボン微粉末、
とくにカーボンブラック、結晶性のグラファイト、アセ
チレンブラック、シェル構造を有するカーボンブラック
が、マイクロ波の吸収性が高いので好適に用いられる。
粉末の含有量は、0.5〜80重量%が好ましく、その
範囲より少ない場合はマイクロ波の吸収が少ないので温
度が上がりにくく、それを超えるとランナウエイが生じ
易い。
As the inorganic powder, fine carbon powder,
In particular, carbon black, crystalline graphite, acetylene black, and carbon black having a shell structure are preferably used because they have high microwave absorption.
The content of the powder is preferably 0.5 to 80% by weight, and when it is less than the range, the temperature is hard to rise because the microwave absorption is small, and when it exceeds the range, runaway is likely to occur.

【0017】本発明の接着方法を入れ子状に嵌合したパ
イプ同士の連結に採用すると、接着層の膨張により適度
な加圧力が得られる。そのため、外部から加圧しなくて
も、充分に高い接着強度およびシール性が得られる。
When the bonding method of the present invention is adopted for connecting pipes fitted in a nest, a suitable pressure can be obtained due to expansion of the bonding layer. Therefore, sufficiently high adhesive strength and sealability can be obtained without applying pressure from the outside.

【0018】本発明の接着用組成物は、前述の接着方法
に好適に使用できる。適用方法としては、素材の表面に
直接塗布して接着層を形成することもできるが、シート
状に加工した物を用いると、厚さの管理が容易で、しか
も使い勝手がよく、保管や持ち運びが便利である。さら
にあらかじめ高分子材料製のパイプと、その内面または
外面に設ける接着層とからなるパイプ継ぎ手を用いる
と、接着作業が簡単になる。その場合のパイプと接着層
は、2重層押し出しなどにより一体に成形しうる。
The adhesive composition of the present invention can be suitably used in the above-mentioned adhesion method. As an application method, the adhesive layer can be formed by directly applying it on the surface of the material, but if a sheet-shaped product is used, it is easy to control the thickness and easy to use, and it is easy to store and carry. It is convenient. Furthermore, if a pipe joint consisting of a pipe made of a polymer material and an adhesive layer provided on the inner surface or the outer surface of the pipe is used in advance, the bonding work becomes simple. In that case, the pipe and the adhesive layer can be integrally formed by double-layer extrusion or the like.

【0019】[0019]

【発明の実施の形態】つぎに図面を参照しながら本発明
の接着方法、接着用組成物、接着シートおよび接着用パ
イプ継ぎ手の好ましい実施の形態を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the bonding method, the bonding composition, the bonding sheet and the bonding pipe joint of the present invention will be described below with reference to the drawings.

【0020】図1は本発明の接着方法の基本的な手順を
示す工程図である。図1において、符号1および2は接
着しようとする2本のパイプである。この実施形態では
同一径のガス配管用のポリエチレンパイプであり、これ
を一回り大径のポリエチレンパイプからなる継ぎ手(ソ
ケット)3により連結する。
FIG. 1 is a process diagram showing the basic procedure of the bonding method of the present invention. In FIG. 1, reference numerals 1 and 2 are two pipes to be bonded. In this embodiment, it is a polyethylene pipe for gas pipes of the same diameter, which is connected by a joint (socket) 3 made of a polyethylene pipe having a larger diameter.

【0021】最初に2本のパイプ1、2のそれそれの端
部に接着シート4を巻き付ける。ついでそれらを継ぎ手
3内に両側から挿入する。それによりそれぞれ接着すべ
きパイプ1、2の外周面と継ぎ手3の内周面とが接着シ
ート4を挟むように配置される。このときは未だ緩い嵌
合でよい。接着シート4は後述するように、ポリエチレ
ンにカーボン微粉末を分散させた組成物をシート状に成
形した物である。
First, the adhesive sheet 4 is wound around the ends of the two pipes 1 and 2. Then they are inserted into the joint 3 from both sides. As a result, the outer peripheral surfaces of the pipes 1 and 2 to be bonded and the inner peripheral surface of the joint 3 are arranged so as to sandwich the adhesive sheet 4. At this time, loose fitting is still sufficient. As will be described later, the adhesive sheet 4 is a sheet-shaped product obtained by dispersing a carbon fine powder in polyethylene.

【0022】さらに図2に詳細に示すように、継ぎ手3
の外周に、誘電損失係数が低いシールド材または断熱材
5を巻き付けると共に、接着すべき部位以外を金属板6
で覆う。断熱材5は、溶着部分に加わるマイクロ波を緩
和して、できるだけ均一にマイクロ波が当たるようにす
るものである。
Further, as shown in detail in FIG. 2, the joint 3
A shield material or a heat insulating material 5 having a low dielectric loss coefficient is wound around the outer periphery of the metal plate 6 and the metal plate 6 is provided except for the portion to be bonded.
Cover with. The heat insulating material 5 relaxes the microwave applied to the welded portion so that the microwave is applied as uniformly as possible.

【0023】この状態で接着装置7を継ぎ手3の周囲に
配置する。接着装置7は、溶着部分に向けて配置される
マイクロ波の発振器8、その発振器から溶着部分に向か
って延びる導波管9、さらに溶着部分の反対側に延びる
導波管10およびその導波管内に軸方向移動自在に設け
られるマイクロ波の反射用プランジャー11から構成さ
れている。ついで発振器8から、たとえば出力500W
で、2.45MHzのマイクロ波を発生させる。
In this state, the bonding device 7 is arranged around the joint 3. The bonding device 7 includes a microwave oscillator 8 arranged toward the welded portion, a waveguide 9 extending from the oscillator toward the welded portion, a waveguide 10 extending opposite to the welded portion, and the inside of the waveguide. A microwave reflecting plunger 11 is provided so as to be movable in the axial direction. Then, from the oscillator 8, for example, output 500W
Then, a microwave of 2.45 MHz is generated.

【0024】マイクロ波は導波管9を通って接着部に到
達し、後方の導波管10まで貫通したマイクロ波はプラ
ンジャー11で反射され、再度溶着部に入る。そしてプ
ランジャー11は、入射するマイクロ波と反射するマイ
クロ波との間で干渉を生じさせて、溶着部に吸収される
マイクロ波の強さを調節するようにする。またマルチモ
ードのマイクロ波を使用することもできるが、同一方向
から、同一の周期で加わるシングルモードで照射するこ
とが好ましい。マイクロ波は融着部で吸収され、接着シ
ート4は溶融温度以上の温度に上昇する。なおマイクロ
波の照射中、パイプ1、2を回転させて均一に照射する
ようにしてもよい。
The microwave passes through the waveguide 9 to reach the adhesive portion, and the microwave penetrating to the rear waveguide 10 is reflected by the plunger 11 and enters the welded portion again. Then, the plunger 11 causes interference between the incident microwave and the reflected microwave to adjust the intensity of the microwave absorbed by the welded portion. Further, although multi-mode microwaves can be used, it is preferable to irradiate in a single mode applied in the same cycle from the same direction. The microwave is absorbed by the fusion-bonded portion, and the adhesive sheet 4 rises to a temperature equal to or higher than the melting temperature. During the microwave irradiation, the pipes 1 and 2 may be rotated so that the microwaves are uniformly irradiated.

【0025】それにより接着シート4およびそれに接し
ている第1および第2パイプ1、2の表面、継ぎ手3の
内面が溶融し、膨張する。その膨張による圧力で、第1
および第2パイプ1、2と継ぎ手3とが接着シート4を
介して強固に接着される。その後、温度が下がるまで放
置し、温度が下がった後、金属板6や断熱材5などを外
す。もし溶融樹脂が継ぎ手3の端から出てきている場合
は、取り除いて接着作業が完了する。
As a result, the adhesive sheet 4, the surfaces of the first and second pipes 1 and 2 in contact with the adhesive sheet 4, and the inner surface of the joint 3 are melted and expanded. With the pressure due to its expansion,
And the second pipes 1 and 2 and the joint 3 are firmly bonded to each other via the adhesive sheet 4. After that, the temperature is lowered, and after the temperature is lowered, the metal plate 6 and the heat insulating material 5 are removed. If the molten resin comes out from the end of the joint 3, it is removed and the bonding work is completed.

【0026】なお図1で継ぎ手3として、後述するカー
ボン微粉末を混入した内層とカーボン微粉末を含まない
通常の外層の2重構造のパイプからなるものを用いれ
ば、接着シート4は不要である(図3参照)。
If the joint 3 shown in FIG. 1 is composed of a pipe having a double structure of an inner layer mixed with carbon fine powder, which will be described later, and an ordinary outer layer not containing carbon fine powder, the adhesive sheet 4 is not necessary. (See Figure 3).

【0027】上記の方法において適用できるパイプ1、
2および継ぎ手3の径および厚さはとくに制限はない
が、通常、内径5〜200mm、厚さ2〜20mm程度のも
のが適用できる。またその材質は、高分子材料であれば
とくに制限はないが、熱可塑性樹脂を用いると、パイプ
自体も溶融するので、強固な接着が得られる。しかも直
接高周波融着ができない誘電損失係数が低いものでもよ
い。したがってこの方法に好ましく適用できる材質とし
ては、ポリエチレン(PE)、ポリブテン(PB)、ポ
リスチレン(PS)、ポリプロピレン(PP)、ポリメ
チルペンテン-1(PMP)、ポリアミド(ナイロン樹
脂)、ポリカーボネート(PC)、ポリエチレンテレフ
タレート(PET)などのポリエステル樹脂、ポリビニ
リデンフルオライド(PVDF)、エチレン−テトラフ
ルオロエチレン共重合体(ETFE)、テトラフルオロ
エチレン−ヘキサフルオロプロピレン共重合体(FE
P)、テトラフルオロエチレン−パーフルオロビニルエ
ーテル共重合体(PFA)などがあげられる。
A pipe 1 applicable in the above method,
The diameter and the thickness of the joint 2 and the joint 3 are not particularly limited, but those having an inner diameter of 5 to 200 mm and a thickness of 2 to 20 mm are usually applicable. The material is not particularly limited as long as it is a polymer material, but when a thermoplastic resin is used, the pipe itself also melts, so that strong adhesion can be obtained. Moreover, a material having a low dielectric loss coefficient that cannot be directly subjected to high frequency fusion may be used. Therefore, as a material preferably applicable to this method, polyethylene (PE), polybutene (PB), polystyrene (PS), polypropylene (PP), polymethylpentene-1 (PMP), polyamide (nylon resin), polycarbonate (PC) , Polyester resins such as polyethylene terephthalate (PET), polyvinylidene fluoride (PVDF), ethylene-tetrafluoroethylene copolymer (ETFE), tetrafluoroethylene-hexafluoropropylene copolymer (FE
P), tetrafluoroethylene-perfluorovinyl ether copolymer (PFA) and the like.

【0028】カーボン微粉末としては、カーボンブラッ
ク、結晶性のグラファイト、アセチレンブラックなどの
微粉末が採用しうる。とくに、オランダのアクゾ社で開
発された、微細な中空シェル構造を有する導電性付与カ
ーボンブラックであるケッチェンブラックEC、ケッチ
ェンブラックEC600JDは、マイクロ波をよく吸収
するので好ましい。しかしアセチレンブラック等の他の
導電性付与カーボンも使用しうる。導電性付与カーボン
は、合成樹脂やゴムなどの絶縁性の高分子化合物に混入
して導電性を付与するものである。
As the carbon fine powder, fine powder of carbon black, crystalline graphite, acetylene black or the like can be adopted. In particular, Ketjen Black EC and Ketjen Black EC600JD, which are carbon blacks with conductivity and have a fine hollow shell structure, developed by Akzo Co., Ltd. in the Netherlands are preferable because they absorb microwaves well. However, other conductivity-imparting carbons such as acetylene black can also be used. The conductivity-imparting carbon is mixed with an insulating polymer compound such as synthetic resin or rubber to impart conductivity.

【0029】さらにカーボンに代えて、酸化アルミニウ
ム、酸化鉄、酸化マグネシウム等の金属酸化物の粉末な
ど、マイクロ波を吸収して自己発熱する、樹脂に混練り
できる無機質の微粉末を混入するようにしてもよい。さ
らにそのようなマイクロ波を吸収して自己発熱し、樹脂
材料に容易に混練りできる向き材料としては、アルミニ
ウム粉末、銅粉末、ニッケル粉末、鉄粉、銀粉、タング
ステン粉末、モリブデン粉末などの金属系の良導電性粉
末の他、窒化チタン、炭化チタンなどの非酸化物系セラ
ミックなどがあり、本発明の接着方法および組成物に、
単独ないし混合物として好適に用いられる。上記いずれ
の無機質も、熱可塑性樹脂の溶融温度で誘電率、誘電正
接があまり変化しないもの、すなわち温度依存性が少な
いものが好ましい。
Further, instead of carbon, fine powder of metal oxide such as aluminum oxide, iron oxide, magnesium oxide, etc., which is capable of kneading with resin and which self-heats by absorbing microwaves, is mixed. May be. Further, as a material suitable for being easily kneaded with a resin material by absorbing such microwave and self-heating, a metal-based material such as aluminum powder, copper powder, nickel powder, iron powder, silver powder, tungsten powder, molybdenum powder, etc. In addition to the good conductive powder of, there are non-oxide ceramics such as titanium nitride and titanium carbide, and the bonding method and composition of the present invention include
It is preferably used alone or as a mixture. It is preferable that any of the above-mentioned inorganic substances has a dielectric constant and a dielectric loss tangent that do not significantly change at the melting temperature of the thermoplastic resin, that is, that has little temperature dependence.

【0030】これらのカーボン微粉末などの無機質粉末
は、前述の熱可塑性樹脂に入れて均一に分散されるよう
に混練し、プレス成形などでシート状に成形して用いる
のが好ましい。しかしパイプの表面に層状に塗布したも
のを用いることもできる。カーボン微粉末の割合は、接
着シート4の厚さによっても異なるが、全体の0.5〜
20重量%、より好ましくは1〜10重量%程度混入す
る。カーボン微粉末が20重量%を超えると、後述する
ランナウエイが生じ易くなる傾向があり、0.5重量%
未満であれば充分に温度が上昇しない。接着シート4の
厚さは、前述のパイプの範囲では、0.1〜7mm程度が
好ましく、とくに厚さ0.2〜5mmのシートが好まし
い。
It is preferable that the inorganic powder such as carbon fine powder is put into the above-mentioned thermoplastic resin, kneaded so as to be uniformly dispersed, and molded into a sheet by press molding or the like. However, it is also possible to use a pipe coated on the surface in layers. The ratio of the fine carbon powder varies depending on the thickness of the adhesive sheet 4, but is 0.5 to 0.5% of the total.
20% by weight, more preferably about 1 to 10% by weight. If the carbon fine powder exceeds 20% by weight, runners described later tend to occur, and 0.5% by weight
If it is less than this, the temperature does not rise sufficiently. The thickness of the adhesive sheet 4 is preferably about 0.1 to 7 mm, particularly preferably 0.2 to 5 mm in the range of the above-mentioned pipe.

【0031】パイプ溶着に関する他の形態として、図3
に示すように継ぎ手3自体をカーボン微粉末を混入した
内層(接着層)3aとパイプ微粉末を含まない通常の外
層(接着すべき素材)3bの2重構造とすることもでき
る。その場合、前述の接着シート4を準備する必要がな
いので、接着作業が一層効率的になる。なお外層をカー
ボン微粉末を混入した接着層とすることもできる。
As another mode for pipe welding, FIG.
As shown in FIG. 3, the joint 3 itself may have a double structure of an inner layer (adhesive layer) 3a mixed with carbon fine powder and a normal outer layer (material to be adhered) 3b containing no pipe fine powder. In that case, since it is not necessary to prepare the above-mentioned adhesive sheet 4, the bonding work becomes more efficient. The outer layer may be an adhesive layer containing carbon fine powder.

【0032】このような2重構造の継ぎ手3は、プラス
チックの押し出し機を2機用いて2重層押し出しで押し
出したパイプを切断し、若干の機械加工を施すことによ
り容易に製作することができ、また射出成形で製作する
こともできる。この場合の接着層3aの厚さは、前述の
接着シート4と同じ程度でよい。しかしさらに薄くする
こともできる。
Such a double-structured joint 3 can be easily manufactured by cutting the pipe extruded by double-layer extrusion using two plastic extruders and subjecting it to some machining. It can also be manufactured by injection molding. In this case, the thickness of the adhesive layer 3a may be the same as that of the adhesive sheet 4 described above. However, it can be made even thinner.

【0033】カーボン微粉末の誘電率は、図4に示すよ
うに、その温度に依存し、温度が高いほど誘電率が上昇
する傾向がある。そのためマイクロ波を照射し過ぎる
と、温度の上昇と共に誘電率が上昇し、いわば正のフィ
ードバックがかかって、いわゆるランナウエイ(run
away)の状態となる。そのためマイクロ波の強さ
を緩和するために前述の断熱材8を巻いたり、マイクロ
波の強度を調節したり、接着すべき部位をあらかじめ予
熱するなどの方法により、ランナウエイを予防すること
が好ましい。さらにマイクロ波の出力および照射時間
も、パイプ1、2、継ぎ手3および接着シート4の温度
が高くなりすぎないように、またランナウエイが生じな
いように、それらの厚さや誘電率に応じて、適切にコン
トロールするのが好ましい。
As shown in FIG. 4, the permittivity of carbon fine powder depends on its temperature, and the permittivity tends to increase as the temperature rises. Therefore, if microwaves are radiated too much, the dielectric constant rises as the temperature rises, so to speak, positive feedback is applied, and the so-called runaway
Away). Therefore, it is preferable to prevent the runaway by winding the above-mentioned heat insulating material 8 in order to reduce the strength of the microwave, adjusting the strength of the microwave, or preheating the portion to be bonded in advance. Further, the microwave output and irradiation time are also appropriate according to their thickness and dielectric constant so that the temperatures of the pipes 1, 2, the joint 3 and the adhesive sheet 4 do not become too high and runaway does not occur. It is preferable to control

【0034】マイクロ波の照射する時間は使用する無機
質の微粉末の誘電損失率、熱可塑性樹脂と微粉末の混合
割合、接着層(接着シート)の厚さ、外気温、マイクロ
波の強度などにより決まるが、通常は、大略数十分以内
で溶着が完了するようにシステム全体を設計する。
The microwave irradiation time depends on the dielectric loss rate of the inorganic fine powder used, the mixing ratio of the thermoplastic resin and the fine powder, the thickness of the adhesive layer (adhesive sheet), the ambient temperature, the microwave intensity, etc. Usually, the entire system is designed so that welding is completed within about tens of minutes.

【0035】前記断熱材8としては、電磁波を吸収しな
い耐熱性のある材料が用いられ、石英、ガラス繊維など
の無機材料が好適に用いられる。
As the heat insulating material 8, a heat resistant material that does not absorb electromagnetic waves is used, and an inorganic material such as quartz or glass fiber is preferably used.

【0036】図5は本発明の接着方法の他の実施形態を
示している。図5においては、接着すべき素材はポリブ
テンのシート12、12である。この実施形態では、そ
れらの間にポリブテンを基材とするカーボン微粉末を含
有する接着シート13を挟み込み、反射材で内面を覆っ
た箱体14内に収容する。箱体14の後方にはマイクロ
波の発振器8が設けられている。さらに箱体14内に
は、素材に均一にマイクロ波が当たるように、ターンテ
ーブル15を設けている。
FIG. 5 shows another embodiment of the bonding method of the present invention. In FIG. 5, the material to be bonded is the polybutene sheets 12, 12. In this embodiment, an adhesive sheet 13 containing carbon fine powder containing polybutene as a base material is sandwiched between them and housed in a box body 14 whose inner surface is covered with a reflective material. A microwave oscillator 8 is provided behind the box body 14. Further, in the box body 14, a turntable 15 is provided so that the material is uniformly irradiated with microwaves.

【0037】上記のサンドイッチ状の素材はターンテー
ブル15上に載置し、所定時間、発振器8からマイクロ
波を照射する。この場合はマイクロ波が反射板に反射し
てマルチモードとなる。接着シート13はカーボンがマ
イクロ波を吸収するので温度が上昇し、ポリブテンのシ
ート12、12同士をしっかりと融着することができ
る。
The above sandwich-shaped material is placed on the turntable 15 and irradiated with microwaves from the oscillator 8 for a predetermined time. In this case, the microwaves are reflected by the reflection plate and become multimode. Since the carbon of the adhesive sheet 13 absorbs microwaves, the temperature of the adhesive sheet 13 rises, and the polybutene sheets 12, 12 can be firmly fused to each other.

【0038】上記の実施形態では、接着シートをそのま
ま素材表面に被着して素材間に介在させているが、たと
えば細いテープ状に裁断したものを巻つけるなど、他の
形態で介在させるようにしてもよい。その場合は温度の
上昇が緩やかになり、ランナウエイが生じにくくなる。
In the above-mentioned embodiment, the adhesive sheet is directly adhered to the surface of the material and is interposed between the materials. However, the adhesive sheet may be interposed in other forms such as winding a thin tape. May be. In that case, the temperature rises slowly, and runaway is less likely to occur.

【0039】前記のパイプの接着の実施形態では、同一
径の直管の継ぎ手について説明したが、本発明のパイプ
継ぎ手はこれに限定されるものではない。すなわちガス
用、液体用のパイプの配管の場合には、継ぎ手としてT
字形(チーズ)やL字形(エルボ)、あるいは異なる径
のパイプを継ぐための異径ジョイントなどがあり、本発
明の方法、パイプ継ぎ手はこれらの場合にも適用でき
る。T字形やL字形、あるいは異径ジョイントによる接
続においても、それぞれ専用の継ぎ手を用意し、専用の
マイクロ波溶着機を用いることにより、一層容易に接続
するようにすることができる。
In the above-mentioned embodiment for adhering pipes, the pipe joint of the same diameter has been described, but the pipe joint of the present invention is not limited to this. That is, in the case of pipes for gas and liquid, T is used as a joint.
There are letter-shaped (cheese), L-shaped (elbow), and different diameter joints for joining pipes of different diameters, and the method and pipe joint of the present invention can be applied to these cases. Even in the case of T-shaped connection, L-shaped connection, or connection with different diameter joints, the connection can be made easier by preparing a dedicated joint and using a dedicated microwave welding machine.

【0040】[0040]

【実施例】つぎに具体的な実施例を上げて、本発明のマ
イクロ波照射による接着方法を説明する。
EXAMPLES Next, the bonding method by microwave irradiation of the present invention will be described with reference to specific examples.

【0041】[実施例1] 接着すべき素材として、内
径20mm、厚さ3mm、長さ70mmの2本のポリブテン製
のパイプを準備し、継ぎ手として、外径18mm、厚さ3
mm、長さ50mmのポリブテン製のパイプを準備した。す
なわち本実施例では、図6に示すように、接続しようと
する2本のパイプ1、2の内側に継ぎ手3が挿入され
る。また接着シート4を介在させない状態では、パイプ
1、2と継ぎ手3の間に片側で約1mmの隙間がある。
[Example 1] Two polybutene pipes having an inner diameter of 20 mm, a thickness of 3 mm and a length of 70 mm were prepared as materials to be bonded, and an outer diameter of 18 mm and a thickness of 3 were used as joints.
A pipe made of polybutene having a length of 50 mm and a length of 50 mm was prepared. That is, in this embodiment, as shown in FIG. 6, the joint 3 is inserted inside the two pipes 1 and 2 to be connected. Further, in the state where the adhesive sheet 4 is not interposed, there is a gap of about 1 mm on one side between the pipes 1 and 2 and the joint 3.

【0042】三井石油化学工業(株)製のビューロンP
5050(ポリブテンの商標)、95重量%と、ライオ
ン株式会社が販売するケッチェンブラックEC、5重量
%とを混練機で充分に溶融混合し、プレス成形により厚
さ0.2mmのシートに成形して接着シート4とした。
Bureau B manufactured by Mitsui Petrochemical Industry Co., Ltd.
95% by weight of 5050 (trademark of polybutene) and 5% by weight of Ketjen Black EC sold by Lion Co., Ltd. are sufficiently melt-mixed by a kneader and formed into a sheet having a thickness of 0.2 mm by press molding. To obtain an adhesive sheet 4.

【0043】図6に示すように、上記の継ぎ手3の周囲
に接着シート4を巻き付け、2本のパイプ1、2の端部
に挿入し、シャープ(株)製の電子レンジRE-1035 (定
格出力:500W、周波数:2450MHz )のターンテ
ーブルの中央に配置し、1分間マイクロ波を照射した。
As shown in FIG. 6, an adhesive sheet 4 was wrapped around the joint 3 and inserted into the ends of the two pipes 1 and 2, and a microwave oven RE-1035 (rated by Sharp Corporation) (rated It was placed in the center of a turntable with an output of 500 W and a frequency of 2450 MHz, and was irradiated with microwaves for 1 minute.

【0044】[実施例2〜3] マイクロ波の照射時間
を2分および1.5分としたほかは実施例1と同じ条件
でマイクロ波を照射して、実施例2〜3の接着方法を実
施した。
[Examples 2 to 3] Microwave irradiation was performed under the same conditions as in Example 1 except that the microwave irradiation time was set to 2 minutes and 1.5 minutes, and the bonding method of Examples 2 to 3 was applied. Carried out.

【0045】[実施例4〜5] 接着シート4の厚さを
0.5mmとし、マイクロ波の照射時間を0.45分およ
び1.00分とし、ターンテーブルの中央に立てて配置
したほかは実施例1と同じ条件として、実施例4、実施
例5の接着方法とした。
[Examples 4 to 5] The thickness of the adhesive sheet 4 was 0.5 mm, the microwave irradiation time was 0.45 minutes and 1.00 minutes, and the adhesive sheet 4 was placed upright in the center of the turntable. Under the same conditions as in Example 1, the bonding methods of Examples 4 and 5 were used.

【0046】[比較例] 実施例1の接着シートに代え
て、ケッチェンブラックECを含まないポリブテン製
の、厚さ0.5mmのフィルムを用いた以外は同一条件で
実験を行った。
[Comparative Example] An experiment was conducted under the same conditions except that a 0.5 mm thick film made of polybutene containing no Ketjen Black EC was used in place of the adhesive sheet of Example 1.

【0047】上記の実施例1〜5の条件、およびそれら
により得られたパイプ接合体の接着強度および熱変形の
状態を観察した結果を表1に示す。
Table 1 shows the results obtained by observing the conditions of Examples 1 to 5 and the bonding strength and the state of thermal deformation of the pipe joined body obtained thereby.

【表1】 [Table 1]

【0048】表1からわかるように、ケッチェンブラッ
クECを混入したポリブテンシートを用いた実施例1〜
5の場合は、いずれも充分な溶着強度が得られ、熱変形
も少なかった。しかし比較例の場合は、温度が上がら
ず、そのためまったく溶着しなかった。
As can be seen from Table 1, Examples 1 to 10 using polybutene sheets mixed with Ketjen Black EC
In the case of No. 5, sufficient welding strength was obtained and thermal deformation was small in all cases. However, in the case of the comparative example, the temperature did not rise, and therefore, no welding occurred.

【0049】[実施例6〜7] 長さ70mmの(株)ク
ボタ製のポリエチレンパイプ(内径30mm、厚さ3.9
mm)を用い、一方のポリエチレンパイプの内面を深さ
2.1mm、長さ30mmに渡って機械加工で削り、他方の
ポリエチレンパイプの外面を同じく深さ2.1mm、長さ
30mmにわたって削り込んみ、削り込んだ部分同士を嵌
合させるようにした。接着シートとしてポリエチレンに
5重量%のケッチェンブラックを混練したシートを用い
た。
[Examples 6 to 7] A polyethylene pipe of 70 mm in length manufactured by Kubota Corporation (inner diameter: 30 mm, thickness: 3.9).
mm), the inner surface of one polyethylene pipe is machined to a depth of 2.1 mm and a length of 30 mm, and the outer surface of the other polyethylene pipe is also machined to a depth of 2.1 mm and a length of 30 mm. , The trimmed parts are fitted together. A sheet obtained by kneading polyethylene with 5% by weight of Ketjenblack was used as an adhesive sheet.

【0050】つぎに図7に示すように、これら2本のポ
リエチレンパイプ1、2の嵌合部分21、22に接着シ
ート4を挟み込み、マイクロ波を照射して溶着を行っ
た。その結果を表2に示す。
Next, as shown in FIG. 7, the adhesive sheet 4 was sandwiched between the fitting portions 21 and 22 of these two polyethylene pipes 1 and 2, and microwave irradiation was performed to perform welding. Table 2 shows the results.

【0051】[0051]

【表2】 表2によれば、実施例6〜7の場合も、接着強度が充分
で、熱変形が生じないことがわかる。
[Table 2] From Table 2, it can be seen that also in the cases of Examples 6 to 7, the adhesive strength is sufficient and thermal deformation does not occur.

【0052】[0052]

【発明の効果】本発明の接着法によれば、接着層の無機
質の粉末がマイクロ波を吸収して温度が上がるので、接
着剤による接着が困難で、かつ高周波溶着ができない材
質の素材同士の溶着を行うことができる。またマイクロ
波は高分子材料を透過して無機質の粉末により吸収され
るので、余分に素材を溶融することなく、必要な部分の
みを溶着することができる。また外部から加熱すること
が困難な部位同士の接着も可能である。
According to the bonding method of the present invention, since the inorganic powder in the bonding layer absorbs microwaves to raise the temperature, it is difficult to bond the materials with an adhesive and to prevent the high frequency welding. Welding can be performed. Further, since the microwave penetrates the polymer material and is absorbed by the inorganic powder, it is possible to weld only the necessary portion without excessively melting the material. It is also possible to bond parts that are difficult to heat from the outside.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の接着方法の一実施形態を示す工程図
である。
FIG. 1 is a process drawing showing an embodiment of a bonding method of the present invention.

【図2】 図1の接着方法の主要な工程を示す拡大図で
ある。
FIG. 2 is an enlarged view showing main steps of the bonding method of FIG.

【図3】 本発明のパイプ継ぎ手の一実施形態を示す断
面図である。
FIG. 3 is a cross-sectional view showing an embodiment of the pipe joint of the present invention.

【図4】 本発明に関わるカーボン微粉末における誘電
損失係数の温度依存性の傾向を概略的に示す概念図であ
る。
FIG. 4 is a conceptual diagram schematically showing the tendency of the temperature dependence of the dielectric loss coefficient in the carbon fine powder according to the present invention.

【図5】 本発明の接着方法の他の実施形態を示す概略
図である。
FIG. 5 is a schematic view showing another embodiment of the bonding method of the present invention.

【図6】 本発明の接着方法の一実施例に用いたパイプ
接続構造を示す斜視図である。
FIG. 6 is a perspective view showing a pipe connection structure used in an example of the bonding method of the present invention.

【図7】 本発明の接着方法の他の実施例に用いたパイ
プ接続構造を示す斜視図である。
FIG. 7 is a perspective view showing a pipe connection structure used in another embodiment of the bonding method of the present invention.

【符号の説明】[Explanation of symbols]

1 パイプ 2 パイプ 3 継ぎ手 4 接着シート 5 断熱材 7 接着装置 8 発振器 9 導波管 10 導波管 1 Pipe 2 Pipe 3 Joint 4 Adhesive Sheet 5 Heat Insulating Material 7 Adhesive Device 8 Oscillator 9 Waveguide 10 Waveguide

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // B29K 23:00 B29L 23:00 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location // B29K 23:00 B29L 23:00

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 接着しようとする高分子材料製の素材の
間に、マイクロ波を吸収する無機質の粉末を分散させた
熱可塑性樹脂からなる接着層を介在させ、所定時間だけ
マイクロ波を照射し、ついで放熱する、高分子材料の接
着方法。
1. An adhesive layer made of a thermoplastic resin in which an inorganic powder that absorbs microwaves is dispersed is interposed between raw materials made of a polymer material to be adhered, and microwaves are irradiated for a predetermined time. Then, the method of adhering polymer material, which radiates heat.
【請求項2】 前記接着しようとする素材の内、少なく
とも一方が熱可塑性樹脂からなる請求項1記載の接着方
法。
2. The bonding method according to claim 1, wherein at least one of the materials to be bonded is made of a thermoplastic resin.
【請求項3】 前記接着層を構成する熱可塑性樹脂が、
前記素材を構成する熱可塑性樹脂製と相溶性がある熱可
塑性樹脂である請求項2記載の接着方法。
3. The thermoplastic resin forming the adhesive layer,
The bonding method according to claim 2, wherein the thermoplastic resin is compatible with the thermoplastic resin that constitutes the material.
【請求項4】 前記素材を構成する熱可塑性樹脂が、ポ
リエチレンおよびポリブテンよりなる群より選ばれたも
のである請求項2または3記載の接着方法。
4. The bonding method according to claim 2, wherein the thermoplastic resin forming the material is selected from the group consisting of polyethylene and polybutene.
【請求項5】 前記無機質の粉末がカーボン微粉末であ
る請求項1記載の接着方法。
5. The bonding method according to claim 1, wherein the inorganic powder is fine carbon powder.
【請求項6】 前記カーボン微粉末が、カーボンブラッ
クおよび結晶性のグラファイトよりなる群より選ばれた
ものである請求項5記載の接着方法。
6. The bonding method according to claim 5, wherein the carbon fine powder is selected from the group consisting of carbon black and crystalline graphite.
【請求項7】 前記カーボンブラックが、アセチレンブ
ラックおよび中空シェル構造を有するカーボンブラック
よりなる群より選ばれたものである請求項6記載の接着
方法。
7. The bonding method according to claim 6, wherein the carbon black is selected from the group consisting of acetylene black and carbon black having a hollow shell structure.
【請求項8】 前記マイクロ波の周波数が、0.9〜6
GHz である請求項7記載の接着方法。
8. The microwave has a frequency of 0.9 to 6
The bonding method according to claim 7, which is GHz.
【請求項9】 熱可塑性樹脂99.5〜80重量%と、
その中に均一に分散された、無機質の微粉末0.5〜2
0重量%とからなる、マイクロ波接着に用いる接着用組
成物。
9. A thermoplastic resin of 99.5 to 80% by weight,
Inorganic fine powder 0.5 to 2 uniformly dispersed therein
A bonding composition used for microwave bonding, which comprises 0% by weight.
【請求項10】 前記無機質の粉末がカーボン微粉末で
ある請求項11記載の接着用組成物。
10. The adhesive composition according to claim 11, wherein the inorganic powder is fine carbon powder.
【請求項11】 請求項9または10記載の接着用組成
物をシート状に成形した接着シート。
11. An adhesive sheet obtained by molding the adhesive composition according to claim 9 or 10 into a sheet shape.
【請求項12】 高分子材料製のパイプと、その内面ま
たは外面に設けた接着層とからなり、その接着層が、無
機質の粉末を分散させた熱可塑性樹脂からなる、マイク
ロ波接着用のパイプ継ぎ手。
12. A pipe for microwave bonding, comprising a pipe made of a polymer material and an adhesive layer provided on an inner surface or an outer surface thereof, the adhesive layer being made of a thermoplastic resin in which an inorganic powder is dispersed. Fitting.
【請求項13】 前記熱可塑性樹脂がポリエチレンおよ
びポリブテンより成る群より選ばれたものである請求項
12記載のパイプ継ぎ手。
13. The pipe joint of claim 12, wherein the thermoplastic resin is selected from the group consisting of polyethylene and polybutene.
【請求項14】 前記無機質の粉末がカーボン微粉末で
ある請求項12記載のパイプ継ぎ手。
14. The pipe joint according to claim 12, wherein the inorganic powder is fine carbon powder.
JP8085877A 1996-03-13 1996-03-13 Bonding of polymeric material and adhesive composition Pending JPH09239844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8085877A JPH09239844A (en) 1996-03-13 1996-03-13 Bonding of polymeric material and adhesive composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8085877A JPH09239844A (en) 1996-03-13 1996-03-13 Bonding of polymeric material and adhesive composition

Publications (1)

Publication Number Publication Date
JPH09239844A true JPH09239844A (en) 1997-09-16

Family

ID=13871138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8085877A Pending JPH09239844A (en) 1996-03-13 1996-03-13 Bonding of polymeric material and adhesive composition

Country Status (1)

Country Link
JP (1) JPH09239844A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001171007A (en) * 1999-12-20 2001-06-26 Solar Giken:Kk Heat-fusion joining method for small-bore pipe of thermoplastic resin
JP2012084438A (en) * 2010-10-13 2012-04-26 Aisin Chemical Co Ltd Microwave heating element and welding method thereby
WO2016129610A1 (en) * 2015-02-09 2016-08-18 三菱重工業株式会社 Adhesive and structure, and bonding method
JP2017528583A (en) * 2014-07-11 2017-09-28 デルケン−クンストシュトッフフェアアルバイトゥング・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Edge strip
JP2020070366A (en) * 2018-10-31 2020-05-07 リンテック株式会社 High-frequency dielectric heating adhesive sheet, method of joining pipe and pipeline connection body
GB2585085A (en) * 2019-06-28 2020-12-30 Henkel IP & Holding GmbH A method of bonding polyolefin substrates

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001171007A (en) * 1999-12-20 2001-06-26 Solar Giken:Kk Heat-fusion joining method for small-bore pipe of thermoplastic resin
JP2012084438A (en) * 2010-10-13 2012-04-26 Aisin Chemical Co Ltd Microwave heating element and welding method thereby
JP2017528583A (en) * 2014-07-11 2017-09-28 デルケン−クンストシュトッフフェアアルバイトゥング・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Edge strip
WO2016129610A1 (en) * 2015-02-09 2016-08-18 三菱重工業株式会社 Adhesive and structure, and bonding method
JPWO2016129610A1 (en) * 2015-02-09 2017-11-09 三菱重工業株式会社 Adhesive and structure, and adhesion method
US10647892B2 (en) 2015-02-09 2020-05-12 Mitsubishi Heavy Industries, Ltd. Adhesive and structure, and adhesion method
JP2020070366A (en) * 2018-10-31 2020-05-07 リンテック株式会社 High-frequency dielectric heating adhesive sheet, method of joining pipe and pipeline connection body
GB2585085A (en) * 2019-06-28 2020-12-30 Henkel IP & Holding GmbH A method of bonding polyolefin substrates
GB2585085B (en) * 2019-06-28 2022-11-09 Henkel Ag & Co Kgaa A method of bonding polyolefin substrates

Similar Documents

Publication Publication Date Title
EP0615488B1 (en) Method and article for microwave bonding of polyethylene pipe
US5993593A (en) High-temperature, heat-sealed products and methods and means for their manufacture
US4836691A (en) Medical bag and method for preparing the same
Grimm Welding processes for plastics
WO1993010960A1 (en) Method and article for microwave bonding of splice closure
JP2880226B2 (en) Bonding method between FRP material and vulcanized rubber
JPH09239844A (en) Bonding of polymeric material and adhesive composition
JP2582886B2 (en) Article joining method
GB2061814A (en) A method of fusion bonding thermoplastic members with a block structure elastomeric bonding element interposed at the bonding interface
FI70849B (en) ORGANIC CONTAINER FOR ORGANIZATION OF MATERIALS ORGANIZATION OF ORGANIC MATERIALS
GB2266825A (en) Apparatus for microwave heating a non-metallic material or a discrete layer thereof
JP2000128166A (en) Manufacture of container, and container
JPH08239631A (en) Resin sheet for microwave welding, resin composition for microwave welding, and method of welding therewith
JPS5976218A (en) Ultrasonic welding method
JPH0724917A (en) Thermoplastic synthetic resin tube for joining by high frequency induction heating fusion welding
JPH07145898A (en) Thermoplastic synthetic resin pipe for high frequency induction heating fusion joining
KR20180096967A (en) Film for fusion-bonding a weatherstrip and method for manufacturing weatherstrips using the film
JPH0970867A (en) Microwave fusing joint, production thereof and pipe connection method using fusing joint
JP6501702B2 (en) Microwave dielectric heating weldment and welding method thereby
JPH0134141B2 (en)
JPS6250122A (en) Method for welding thermoplastic resin
Yeh Overview of welding methods for medical plastics
JPH07171896A (en) Joining method between synthetic resin pipe for bending work having high frequency dielectric heating element and another synthetic resin molded article and device therefor
JPH06341588A (en) Tube joint having high-frequency inductive heating element
JPH07178817A (en) Fusion bonding method for thermoplastic resin molding

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050412

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051101