JPH09184986A - Focusing method for binoculars and binoculars with focusing means - Google Patents

Focusing method for binoculars and binoculars with focusing means

Info

Publication number
JPH09184986A
JPH09184986A JP1717496A JP1717496A JPH09184986A JP H09184986 A JPH09184986 A JP H09184986A JP 1717496 A JP1717496 A JP 1717496A JP 1717496 A JP1717496 A JP 1717496A JP H09184986 A JPH09184986 A JP H09184986A
Authority
JP
Japan
Prior art keywords
sight
line
binoculars
angle
focusing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1717496A
Other languages
Japanese (ja)
Other versions
JP3548313B2 (en
Inventor
Hiromichi Shibatani
弘道 柴谷
Takashi Arai
崇 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1717496A priority Critical patent/JP3548313B2/en
Publication of JPH09184986A publication Critical patent/JPH09184986A/en
Application granted granted Critical
Publication of JP3548313B2 publication Critical patent/JP3548313B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable automatic focusing so that the intention of a user is reflected in a body and composition by finding the angle at which the body is viewed with both the eyes from line of sight information from two line of sight detecting means, obtaining body distance information by using the view angle, and performing focusing operation based on the body distance information. SOLUTION: When a body is viewed through the binoculars, since the angle at which the body is viewed with both the eyes varies with the position of a virtual image with parallax, so the angle of rotation of both the eyeballs are detected to judge whether the body is near or far. Through a combination of CCD image pickup elements 26a and 26b and a line of sight angle detecting circuit 31, a focus range determining circuit 32 finds whether the user tries to see the near or far body from Φa A and Φb A or Φa B and Φb B in which an image A" or B" is viewed by the left and right eyes 21a and 21b and ocular interval data from an eye width data generator 38, and sends information on that to an arithmetic control part, which places an automatic focus mechanism 37 in respective ranges to perform focusing operation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は双眼鏡の合焦方法及
び合焦手段を有した双眼鏡に関し、特に従来の方法では
合焦が困難である観察物体を視る際に好適なものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a focusing method for binoculars and a binocular having a focusing means, and is particularly suitable for viewing an observation object which is difficult to focus by a conventional method.

【0002】[0002]

【従来の技術】従来のオートフォーカス機構は、(社)
テレビジョン学会編:テレビジョン・画像情報工学ハン
ドブック,'90.11.30 第1版第1刷発行、p.194 に記載
されているように、例えば図6に示すように構成されて
いる。すなわち、ピント検出部で被写体までの距離ある
いはピントの状態を検出し、次に信号処理部で増幅・検
波・A-D 変換などの信号処理をした後、演算制御部にお
いて必要によりズームレンズの焦点距離や露出などの付
加情報とを組合せて演算処理を行い、フォーカス制御に
必要なピント情報を算出し、レンズ駆動部によってフォ
ーカスレンズを駆動する。このとき用いるピント検出法
としては図7に示すような各種の方法がある。
2. Description of the Related Art A conventional autofocus mechanism is available from
The Institute of Television Engineers: Handbook of Television and Image Information Engineering, '90 .11.30, 1st edition, 1st edition, p.194, for example, it is constructed as shown in FIG. That is, the focus detection unit detects the distance to the subject or the state of focus, and then the signal processing unit performs signal processing such as amplification, detection, and AD conversion, and then the calculation control unit needs the focal length of the zoom lens and The focus information necessary for focus control is calculated by combining the additional information such as exposure and the like, and the focus lens is driven by the lens driving unit. As the focus detection method used at this time, there are various methods as shown in FIG.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、オート
フォーカス機能を有する双眼鏡を構成するに際して図7
に示す各種のピント検出方法の内、測距方式を採用すれ
ば赤外線や超音波の反射をピント検出に利用するように
なり、又焦点検出方式を採用すれば特定空間周波数領域
でのコントラストやマイクロレンズによる結像位置ずれ
をピント検出に利用するようになる。この為例えば図5
に示すような風景等において赤外線や超音波に対する反
射率が同等で、特定空間周波数領域でのコントラストも
同等な対象物が遠近共に存在する際には、図6に示す構
成のオートフォーカス装置を用いると使用者の意志にか
かわらずピント検出部の初期設定によって遠近いずれか
一方の対象物に焦点が合う、或は両方の対象物に交互に
焦点が移動するという問題があった。
However, when the binoculars having the autofocus function are constructed, as shown in FIG.
Among the various focus detection methods shown in Figure 1, if the distance measurement method is adopted, the reflection of infrared rays and ultrasonic waves will be used for focus detection, and if the focus detection method is adopted, the contrast and micro in the specific spatial frequency region will be used. The shift of the image forming position by the lens is used for focus detection. Therefore, for example, in FIG.
When an object having the same reflectance with respect to infrared rays and ultrasonic waves and the same contrast in a specific spatial frequency region exists in the near and far in a landscape as shown in Fig. 6, the autofocus device having the configuration shown in Fig. 6 is used. However, regardless of the user's intention, there is a problem that either the far object or the near object is focused or the both objects are alternately moved by the initial setting of the focus detection unit.

【0004】本発明の目的は、観察者の視線検出を両眼
について実行し、それより観察者が物体像を見込む角度
を得ることにより、従来ピント合わせが困難であった物
体や構図に対しても利用者の意志を反映したオートフォ
ーカスを可能とする双眼鏡の合焦方法及び合焦手段を有
した双眼鏡の提供である。
An object of the present invention is to detect an eye-gaze of an observer for both eyes and obtain an angle at which the observer looks at an object image from the eyes, thereby making it possible to detect an object or a composition which is conventionally difficult to focus. Also provides a binoculars having a focusing method and focusing means for binoculars that enables auto-focusing reflecting the user's intention.

【0005】[0005]

【課題を解決するための手段】本発明の双眼鏡の合焦方
法は、 (1−1−1) 2つの視線検出手段からの視線情報よ
り両眼が見込む角度を求め、該見込む角度を用いて物体
距離情報を得て、該物体距離情報に基づいて合焦操作を
行っている。 (1−1−2) 双眼鏡を構成する左右の望遠鏡に夫々
視線検出手段を設け、各望遠鏡によって形成される虚像
を観察する観察者の右眼及び左眼の視線を左右の該視線
検出手段で検出し、該視線の方向と左右の該望遠鏡の接
眼レンズ間の間隔より該観察者が注視する虚像までの距
離を判定手段により求め、その結果に基づいて該双眼鏡
の合焦状態を制御する。こと等を特徴としている。
The focusing method of binoculars according to the present invention is as follows: (1-1-1) The angle of view of both eyes is obtained from the line-of-sight information from the two line-of-sight detecting means, and the angle of view is used. The object distance information is obtained, and the focusing operation is performed based on the object distance information. (1-1-2) The left and right telescopes forming the binoculars are respectively provided with line-of-sight detection means, and the right and left line-of-sight detection means of the right and left eyes of an observer observing a virtual image formed by each telescope The distance between the direction of the line of sight and the distance between the eyepieces of the left and right telescopes is detected and the distance to the virtual image gazed by the observer is obtained by the determining means, and the focusing state of the binoculars is controlled based on the result. It is characterized by

【0006】又、本発明の合焦手段を有した双眼鏡は、 (1−2−1) 2つの視線検出手段からの視線情報よ
り視線角度検出回路で両眼が見込む角度を求め、該見込
む角度を用いてフォーカス範囲決定回路で物体距離情報
を得て、該物体距離情報に基づいて演算制御部で合焦操
作を行っている。 (1−2−2) 双眼鏡を構成する左右の望遠鏡に夫々
視線検出手段を設け、各望遠鏡によって形成される虚像
を観察する観察者の右眼及び左眼の視線を左右の該視線
検出手段で検出し、該視線の方向と眼幅調整手段からの
接眼レンズ間隔データより該観察者が注視する虚像まで
の距離を判定手段により求め、この結果をオートフォー
カス機構に伝達して、該オートフォーカス機構により該
双眼鏡の合焦距離を制御する。こと等を特徴としてい
る。
Further, the binoculars having the focusing means of the present invention are as follows: (1-2-1) The viewing angle is detected by the viewing angle detecting circuit from the viewing information from the two viewing detecting means, and the viewing angle is calculated. The object range information is obtained by the focus range determination circuit using, and the calculation control unit performs the focusing operation based on the object distance information. (1-2-2) The left and right telescopes forming the binoculars are respectively provided with line-of-sight detection means, and the left and right line-of-sight detection means detect the lines of sight of the right and left eyes of the observer observing the virtual image formed by each telescope. The distance to the virtual image gazed at by the observer is determined by the determination means based on the direction of the line of sight and the eyepiece distance data from the interpupillary adjustment means, and the result is transmitted to the autofocus mechanism, and the autofocus mechanism is detected. Controls the focusing distance of the binoculars. It is characterized by

【0007】[0007]

【発明の実施の形態】図1は本発明の双眼鏡の実施形態
1の要部概略図である。本実施形態はオートフォーカス
双眼鏡であり図1(A) はその上面図、図1(B) はその側
面図である。図1中の各要素について説明する。尚、要
素番号にa が付いているものは、夫々右側の望遠鏡又は
右眼の要素、要素番号にb が付いているものは、夫々左
側の望遠鏡又は左眼の要素を示す。
1 is a schematic view of the essential portions of Embodiment 1 of the binoculars of the present invention. This embodiment is an autofocus binocular, and FIG. 1 (A) is its top view and FIG. 1 (B) is its side view. Each element in FIG. 1 will be described. Elements with a in the element number indicate the element on the right side of the telescope or right eye, and elements with the element number b indicate the element on the left side in the telescope or left eye, respectively.

【0008】図1中、11(11a ,11b )は対物側鏡筒、
12(12a ,12b )は接眼側鏡筒、13(13a,13b) は対物レ
ンズ、14(14a,14b) は接眼レンズ、16は手動によるピン
ト合わせのための回転ノブ、17は回転ノブ16とかみ合う
歯車、18は歯車17と直結したウォームギアで前記対物側
鏡筒11と接眼側鏡筒12の相対位置を変える。19は眼幅調
整手段で 2つの望遠鏡間の距離 Dを変える。
In FIG. 1, 11 (11a, 11b) is an objective lens barrel,
12 (12a, 12b) is an eyepiece lens barrel, 13 (13a, 13b) is an objective lens, 14 (14a, 14b) is an eyepiece, 16 is a rotary knob for manual focusing, and 17 is a rotary knob 16. The meshing gear, 18 is a worm gear directly connected to the gear 17, and changes the relative position of the objective side lens barrel 11 and the eyepiece side lens barrel 12. Numeral 19 is an interpupillary adjustment means that changes the distance D between the two telescopes.

【0009】21a は観察者の右眼球、21b は同じく左眼
球である。23は赤外線光源(赤外線発光ダイオード)で
あり、右眼球21a を照明する2つの赤外線光源23a1,23a
2 と、左眼球21b を照明する2つの赤外線光源23b1,23b
2 から構成している。24(24a,24b) は赤外光反射ミラ
ー、25(25a,25b) はオートフォーカス用結像レンズ、26
(26a,26b) はCCD 撮像素子、27(27a,27b) は角膜、28(2
8a,28b) は中心窩、31は視線角度検出回路、32はフォー
カス範囲決定回路(判定手段)、33は演算制御部、34(3
4a,34b) はモータ、35(35a,35b) はモータ34に直結した
ウォームギア、36(36a,36b) は対物レンズ13を固定して
いる移動台,38は眼幅データ発生器である。41は電気系
全体を駆動する電源である。
Reference numeral 21a is the right eyeball of the observer, and 21b is the left eyeball. Reference numeral 23 is an infrared light source (infrared light emitting diode), and two infrared light sources 23a 1 and 23a for illuminating the right eyeball 21a.
2 and two infrared light sources 23b 1 and 23b for illuminating the left eyeball 21b
It consists of two . 24 (24a, 24b) is an infrared reflecting mirror, 25 (25a, 25b) is an imaging lens for autofocus, 26
(26a, 26b) are CCD image sensors, 27 (27a, 27b) are corneas, 28 (2
8a, 28b) is a fovea centralis, 31 is a line-of-sight angle detection circuit, 32 is a focus range determination circuit (determination means), 33 is an arithmetic control unit, and 34 (3
Reference numeral 4a, 34b) is a motor, 35 (35a, 35b) is a worm gear directly connected to the motor 34, 36 (36a, 36b) is a moving table that fixes the objective lens 13, and 38 is a pupil distance data generator. 41 is a power supply for driving the entire electric system.

【0010】又、D は左右の望遠鏡の接眼レンズ間の間
隔であり、この間隔D は眼幅調整手段19によって調整で
きる。そして眼幅調整手段からは眼幅データ発生器38を
介してその時々の接眼レンズ間隔データをフォーカス範
囲決定回路32へ出力する。
D is the distance between the eyepieces of the left and right telescopes, and this distance D can be adjusted by the interpupillary distance adjusting means 19. Then, the eye distance adjusting means outputs the eyepiece lens interval data at that time to the focus range determination circuit 32 via the eye distance data generator 38.

【0011】以上の各要素のうち、赤外線光源23、接眼
レンズ14、赤外光反射ミラー24、オトフォーカス用結像
レンズ25、CCD 撮像素子26、視線角度検出回路31等は視
線検出手段の一要素を構成している。
Among the above-mentioned elements, the infrared light source 23, the eyepiece lens 14, the infrared light reflecting mirror 24, the otofocus imaging lens 25, the CCD image pickup device 26, the line-of-sight angle detecting circuit 31, etc. are one of the line-of-sight detecting means. Consists of elements.

【0012】又、演算制御部33、モータ34、ウォームギ
ア35、移動台36等はオートフォーカス機構37の一要素を
構成している。
Further, the arithmetic control unit 33, the motor 34, the worm gear 35, the moving base 36, etc. constitute one element of the autofocus mechanism 37.

【0013】図2は本実施形態の結像光路図である。こ
れによって望遠鏡の結像作用を説明する。図2に示すよ
うに望遠鏡は焦点距離の長い対物レンズLoと焦点距離の
短い接眼レンズLeとで構成している。そして、遠方にあ
る観察物体A は対物レンズLoによって実像A'が形成さ
れ、これが接眼レンズLeにより拡大されて虚像A"を形成
し、観察者はこの虚像A"を観察する。なお、通常虚像A'
を正立させる為に2個の直角プリズムを使うのが普通で
あるが、ここではこれらプリズムを省略して考察する。
FIG. 2 is an image forming optical path diagram of this embodiment. This will explain the imaging action of the telescope. As shown in FIG. 2, the telescope is composed of an objective lens Lo having a long focal length and an eyepiece lens Le having a short focal length. Then, a distant observation object A has a real image A'formed by the objective lens Lo, which is magnified by the eyepiece Le to form a virtual image A ", and the observer observes this virtual image A". The virtual image A '
It is usual to use two right-angle prisms in order to make erect, but here, these prisms are omitted for consideration.

【0014】近距離にある観察物体B は対物レンズLoに
よって実像B'が形成され、これが接眼レンズLeにより拡
大されて虚像B"を形成し、観察者はこの虚像B"を観察す
る。
An object B at a short distance has a real image B'formed by an objective lens Lo, which is magnified by an eyepiece Le to form a virtual image B ", which an observer observes.

【0015】観察物体B がA よりも近くにあれば、望遠
鏡により形成される虚像領域においても虚像B"が虚像A"
よりも近くに形成される。
If the observation object B is closer than A, the virtual image B "is the virtual image A" even in the virtual image area formed by the telescope.
Formed closer than.

【0016】そして、同一の小型望遠鏡を2台平行に並
べて両眼で観察する双眼鏡では、右側の望遠鏡で得られ
る虚像と左側の望遠鏡で得られる虚像では、夫々視差の
有る虚像を形成している。
In binoculars in which two identical small telescopes are arranged in parallel and observed with both eyes, a virtual image obtained by the right telescope and a virtual image obtained by the left telescope form a virtual image with parallax. .

【0017】なお、近距離による観察物体の虚像B"が観
察者の明視の範囲を外れているときは、接眼レンズLeを
図示するように観察者側に移動すれば虚像B"が明視の範
囲に形成されることになる。
When the virtual image B "of the observed object at a short distance is out of the range of the clear vision of the observer, the virtual image B" is clearly visible if the eyepiece lens Le is moved to the observer side as shown in the figure. Will be formed in the range of.

【0018】一方、接眼レンズLeにより形成される虚像
を視る眼球は網膜上に中心窩と呼ばれる最も高い視力を
もつ狭い領域を有している。人間は特定の物体を注視し
ようとするときには、この中心窩に対象物体が結像され
るように眼球の方向を回転制御する性質がある。双眼鏡
によって観察物体を視る場合、前記視差の有る虚像の位
置によって両眼が見込む角度が変わるので、両眼球の回
転角を検出できれば観察物体の遠近の判別が可能とな
る。
On the other hand, the eyeball that sees the virtual image formed by the eyepiece lens Le has a narrow area with the highest visual acuity called the fovea on the retina. When a human tries to gaze at a specific object, he or she has the property of controlling the rotation of the direction of the eyeball so that the target object is imaged in this fovea. When viewing an observation object with binoculars, the angles viewed by both eyes change depending on the position of the virtual image having the parallax. Therefore, if the rotation angle of both eyes can be detected, it is possible to determine the perspective of the observation object.

【0019】図3は本発明による視距離検出の原理説明
図である。図3において55a,55b はCCD 撮像素子の撮像
画枠(撮像範囲)、56a,56b は観察者の眼、57a,57b は
瞳孔、58a,58b は夫々2個の赤外線光源23a1、23a2 又は
23b1、23b2 の角膜面反射による像である。
FIG. 3 is a diagram for explaining the principle of visual distance detection according to the present invention. In FIG. 3, 55a and 55b are image pickup image frames (imaging range) of the CCD image pickup device, 56a and 56b are eyes of an observer, 57a and 57b are pupils, and 58a and 58b are two infrared light sources 23a 1 and 23a 2 respectively.
23b 1 and 23b 2 are images of corneal surface reflection.

【0020】本実施形態の作用を説明する。図1の構成
において、観察者が眼球21a ,21bを接眼側鏡筒12a ,1
2b に近づけて対象物(図2のA あるいはB )を観察す
る際、電源41を入れると赤外線光源23a1,23a2の出力が
右眼球21a を照射し、又赤外線光源23b1,23b2の出力が
左眼球21b を照射し、角膜27a ,27b によるその像が、
接眼レンズ14a ,14b を通って赤外光反射ミラー24a ,
24b で反射し、結像レンズ25a ,25b によってCCD 撮像
素子26a ,26b へ投影される。
The operation of this embodiment will be described. In the configuration shown in FIG. 1, the observer inserts the eyeballs 21a and 21b into the eyepiece lens barrels 12a and 1b.
When observing the object (A or B in FIG. 2) close to 2b, the power of the power source 41 is turned on, the outputs of the infrared light sources 23a 1 and 23a 2 illuminate the right eyeball 21a, and the infrared light sources 23b 1 and 23b 2 emit light. The output illuminates the left eye 21b, and the image of the cornea 27a, 27b is
Infrared light reflecting mirror 24a, passing through eyepieces 14a, 14b
It is reflected by 24b and projected onto CCD image pickup devices 26a, 26b by imaging lenses 25a, 25b.

【0021】CCD 撮像素子26a ,26b の出力画像は図3
の破線による枠55a ,55b の中のようになり、観察者の
右眼56a と左眼56b が写し出される。ハッチングの施し
てある瞳孔57a ,57b の中の2個の小さな白い点58a ,
58b はそれぞれ2個の赤外線光源23a1、23a2 又は23b1、2
3b2 の角膜面27a 又は27b の反射による虚像(プルキニ
エ像)である。瞳孔中心59a ,59b とプルキニエ像との
相対位置は眼球の回転角φa ,φb と一定の関係にある
ため、これから画像処理により右眼、左眼の注視方向が
得られる。この視線検出方法としては本出願人が特開平
3-109029号公報において開示した技術を用いる。
Output images of the CCD image pickup devices 26a and 26b are shown in FIG.
It becomes like the inside of the frames 55a and 55b by the broken line of, and the observer's right eye 56a and left eye 56b are projected. Two small white dots 58a in the hatched pupils 57a, 57b,
58b is two infrared light sources 23a 1 , 23a 2 or 23b 1 , 2
It is a virtual image (Purkinje image) due to the reflection of the corneal surface 27a or 27b of 3b 2 . Pupil center 59a, the relative position between 59b and Purkinje image rotation angle phi a of the eye, because it is in fixed relationship with phi b, the right eye, the gaze direction of the left eye obtained by the future image processing. This gaze detection method is disclosed by
The technique disclosed in Japanese Patent Laid-Open No. 3-109029 is used.

【0022】そして図3に示すように両眼間隔、即ち眼
幅調整手段19で調整した接眼レンズ間隔D と左右両眼の
注視方向φa 、φb より次式: E =D/(tanφa+ tanφb) (ただしφa 、φb は左右の望遠鏡の光軸を含む面内の
角度) によって注視している虚像の視距離E を求めることが可
能となる。
[0022] and Figure binocular interval, as shown in 3, i.e. the eye width adjusting means 19 gaze direction phi a of the right and left eyes and ocular distance D adjusted, the following equation from φ b: E = D / ( tanφ a + tanφ b ) (where φ a and φ b are the angles within the plane including the optical axes of the left and right telescopes), it is possible to obtain the viewing distance E of the virtual image being gazed.

【0023】したがって、図4に示すようにCCD 撮像素
子26a ,26b と視線角度検出回路31の組合せにより、左
右の眼21a ,21b から像A"あるいはB"を見込む視線方向
φaA、φbAあるいはφaB、φbBと眼幅データ発生器38か
らの接眼レンズ間隔データとから、利用者が遠い物体A
を視ようとしているのか近い物体B を視ようとしている
のかをフォーカス範囲決定回路32で求めることが出来
る。フォーカス範囲決定回路32は注視しようとしている
物体が例えば至近距離〜5m、 5〜20m 、20m 〜無限の三
段階のどの範囲にあるかの情報を次の演算制御部33に伝
達し、演算制御部33は各々の範囲内でオートフォーカス
機構37を動作させる。
Therefore, as shown in FIG. 4, by combining the CCD image pickup devices 26a, 26b and the line-of-sight angle detection circuit 31, the line-of-sight directions φaA , φbA or φbA for seeing the image A "or B" from the left and right eyes 21a, 21b or Based on φ aB and φ bB and the eyepiece distance data from the pupil distance data generator 38, the object A
The focus range determination circuit 32 can determine whether the user is trying to view the object B or the near object B. The focus range determination circuit 32 transmits to the next arithmetic control unit 33 the information on which range of the three stages of the close range to 5 m, 5 to 20 m, 20 m to infinity the object to be focused is transmitted to the arithmetic control unit 33. 33 operates the autofocus mechanism 37 within each range.

【0024】本実施形態によれば、赤外線や超音波に対
する反射率が同等であり、特定空間周波数領域でのコン
トラストも同等である遠近の複数の対象物が共に存在
し、従来のオートフォーカス方式ではピント合わせが困
難であった条件においても、視線方向の検出を両眼につ
いて実行して、両視線の方向と接眼レンズ間隔データか
らフォーカス範囲を求め、この結果に従ってオートフォ
ーカス動作を行うことにより、遠近の対象物の中から利
用者の意志によって任意の距離にある観察物体に選択的
に自動的にピント合わせが可能となる効果が得られる。
According to the present embodiment, there are a plurality of near and far objects having the same reflectance with respect to infrared rays and ultrasonic waves and the same contrast in a specific spatial frequency region. Even when it is difficult to focus, the gaze direction is detected for both eyes, the focus range is calculated from the binocular direction and the eyepiece lens interval data, and the autofocus operation is performed according to this result to obtain perspective. It is possible to selectively and automatically focus an observation object at an arbitrary distance from the target objects according to the user's intention.

【0025】[0025]

【発明の効果】本発明は以上の構成により、観察者の視
線検出を両眼について実行し、それより観察者が物体像
を見込む角度を得ることにより、従来ピント合わせが困
難であった物体や構図に対しても利用者の意志を反映し
たオートフォーカスを可能とする双眼鏡の合焦方法及び
合焦手段を有した双眼鏡を達成する。
According to the present invention, with the above configuration, the line-of-sight of the observer is detected for both eyes, and the angle at which the observer looks at the object image is obtained to obtain an object which has been difficult to focus on. (EN) A binoculars having a focusing method and focusing means for binoculars that enables auto-focusing in which the user's intention is reflected in the composition.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の双眼鏡の実施形態の要部概略図FIG. 1 is a schematic view of a main part of an embodiment of binoculars of the present invention.

【図2】 望遠鏡の結像光路[Fig. 2] Imaging optical path of the telescope

【図3】 本発明による視距離検出の原理FIG. 3 Principle of visual distance detection according to the present invention

【図4】 本発明によるフォーカス範囲決定方法の説明
FIG. 4 is an explanatory diagram of a focus range determination method according to the present invention.

【図5】 遠近の対象物が同時に視野に入った構図[Fig. 5] Composition with perspective objects at the same time in the field of view

【図6】 従来のオートフォーカス機構の概念図FIG. 6 is a conceptual diagram of a conventional autofocus mechanism.

【図7】 オートフォーカス方式の分類[Fig. 7] Classification of autofocus methods

【符号の説明】[Explanation of symbols]

11 対物側鏡筒 12 接眼側鏡筒 13 対物レンズ 14 接眼レンズ 19 眼幅調整手段 23 赤外線発光ダイオード 24 赤外光反射ミラー 25 オートフォーカス用結像レンズ 26 CCD 撮像素子 27 角膜 28 中心窩 31 視線角度検出回路 32 フォーカス範囲決定回路 33 演算制御部 34 モータ 35 ウォームギア 36 移動台 37 オートフォーカス機構 38 眼幅データ発生器 41 電源 11 Objective-side lens barrel 12 Eyepiece-side lens barrel 13 Objective lens 14 Eyepiece lens 19 Interpupillary adjustment means 23 Infrared light emitting diode 24 Infrared light reflecting mirror 25 Autofocus imaging lens 26 CCD image sensor 27 Cornea 28 Fovea 31 Gaze angle Detection circuit 32 Focus range determination circuit 33 Arithmetic control unit 34 Motor 35 Worm gear 36 Moving stand 37 Autofocus mechanism 38 Eye width data generator 41 Power supply

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 2つの視線検出手段からの視線情報より
両眼が見込む角度を求め、該見込む角度を用いて物体距
離情報を得て、該物体距離情報に基づいて合焦操作を行
っていることを特徴とする双眼鏡の合焦方法。
1. An angle to be seen by both eyes is obtained from line-of-sight information from two line-of-sight detecting means, object distance information is obtained using the angle of sight, and a focusing operation is performed based on the object distance information. A method for focusing binoculars, which is characterized in that
【請求項2】 双眼鏡を構成する左右の望遠鏡に夫々視
線検出手段を設け、各望遠鏡によって形成される虚像を
観察する観察者の右眼及び左眼の視線を左右の該視線検
出手段で検出し、該視線の方向と左右の該望遠鏡の接眼
レンズ間の間隔より該観察者が注視する虚像までの距離
を判定手段により求め、その結果に基づいて該双眼鏡の
合焦状態を制御することを特徴とする双眼鏡の合焦方
法。
2. The left and right telescopes forming the binoculars are respectively provided with line-of-sight detection means, and the left and right line-of-sight detection means detect the lines of sight of the right and left eyes of an observer observing a virtual image formed by each telescope. A distance to a virtual image gazed at by the observer is determined from the distance between the direction of the line of sight and the left and right eyepieces of the telescope by the determination means, and the focusing state of the binoculars is controlled based on the result. How to focus binoculars.
【請求項3】 2つの視線検出手段からの視線情報より
視線角度検出回路で両眼が見込む角度を求め、該見込む
角度を用いてフォーカス範囲決定回路で物体距離情報を
得て、該物体距離情報に基づいて演算制御部で合焦操作
を行っていることを特徴とする合焦手段を有した双眼
鏡。
3. The angle of sight of both eyes is obtained by the line-of-sight angle detection circuit from the line-of-sight information from the two line-of-sight detection means, the object range information is obtained by the focus range determination circuit using the line-of-sight angle, and the object distance information is obtained. Binoculars having a focusing means characterized in that a focusing operation is performed by a calculation control section based on the above.
【請求項4】 双眼鏡を構成する左右の望遠鏡に夫々視
線検出手段を設け、各望遠鏡によって形成される虚像を
観察する観察者の右眼及び左眼の視線を左右の該視線検
出手段で検出し、該視線の方向と眼幅調整手段からの接
眼レンズ間隔データより該観察者が注視する虚像までの
距離を判定手段により求め、この結果をオートフォーカ
ス機構に伝達して、該オートフォーカス機構により該双
眼鏡の合焦距離を制御することを特徴とする合焦手段を
有した双眼鏡。
4. The left and right telescopes constituting the binoculars are respectively provided with line-of-sight detection means, and the left and right line-of-sight detection means detect the lines of sight of the right and left eyes of an observer observing a virtual image formed by each telescope. , The distance to the virtual image gazed at by the observer is determined by the determination means from the direction of the line of sight and the eyepiece distance data from the interpupillary adjustment means, the result is transmitted to the autofocus mechanism, and the autofocus mechanism detects the distance. Binoculars having a focusing means characterized by controlling a focusing distance of the binoculars.
JP1717496A 1996-01-05 1996-01-05 Binocular focusing method and binoculars having focusing means Expired - Fee Related JP3548313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1717496A JP3548313B2 (en) 1996-01-05 1996-01-05 Binocular focusing method and binoculars having focusing means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1717496A JP3548313B2 (en) 1996-01-05 1996-01-05 Binocular focusing method and binoculars having focusing means

Publications (2)

Publication Number Publication Date
JPH09184986A true JPH09184986A (en) 1997-07-15
JP3548313B2 JP3548313B2 (en) 2004-07-28

Family

ID=11936602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1717496A Expired - Fee Related JP3548313B2 (en) 1996-01-05 1996-01-05 Binocular focusing method and binoculars having focusing means

Country Status (1)

Country Link
JP (1) JP3548313B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5652973B1 (en) * 2013-08-01 2015-01-14 中村 正一 How to make a binocular loupe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5652973B1 (en) * 2013-08-01 2015-01-14 中村 正一 How to make a binocular loupe

Also Published As

Publication number Publication date
JP3548313B2 (en) 2004-07-28

Similar Documents

Publication Publication Date Title
JP3309615B2 (en) Image observation apparatus and binocular image observation apparatus using the same
TWI569040B (en) Autofocus head mounted display device
EP1143847B1 (en) Eye tracking system
US7708405B2 (en) Pupilometer for pupil center drift and pupil size measurements at differing viewing distances
JP3058004B2 (en) Visual control image display device
JPH11508780A (en) Method for parallel detection of visual information, apparatus therefor and method of using said method
JPH05232373A (en) Device for detecting direction of line of sight for camera
JP2004234002A (en) Automatic focusing in digital camera using ocular focal measurement value
CN114503011A (en) Compact retinal scanning device that tracks the movement of the pupil of the eye and uses thereof
JP2006153967A (en) Information display device
US11624907B2 (en) Method and device for eye metric acquisition
EP3984016A1 (en) Systems and methods for superimposing virtual image on real-time image
JP3143553B2 (en) Finder device
JPH0694978A (en) Device for detecting line of sight
JP2001290101A (en) System for detecting will to adjust visual point in length direction and method for driving the will and spectacles for automatic correction of perspective
JPH08286144A (en) Picture observation device and observation equipment using the device
JP2002085330A (en) Stereoscopic endoscope device
JP3548313B2 (en) Binocular focusing method and binoculars having focusing means
JPH10307314A (en) Observation optical device
JPH11197108A (en) Vision function testing device
JPH09262210A (en) Optical system
JP5962062B2 (en) Automatic focusing method and apparatus
JP3884864B2 (en) Eye refractometer
JPH09276226A (en) Optometric device and visual axis input device
JPH09171147A (en) Ocular optical system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040413

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040416

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090423

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100423

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20110423

LAPS Cancellation because of no payment of annual fees