JPH09184490A - Drive shaft support structure of vane pump - Google Patents

Drive shaft support structure of vane pump

Info

Publication number
JPH09184490A
JPH09184490A JP35433795A JP35433795A JPH09184490A JP H09184490 A JPH09184490 A JP H09184490A JP 35433795 A JP35433795 A JP 35433795A JP 35433795 A JP35433795 A JP 35433795A JP H09184490 A JPH09184490 A JP H09184490A
Authority
JP
Japan
Prior art keywords
drive shaft
diameter portion
rotor
small diameter
cam ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35433795A
Other languages
Japanese (ja)
Other versions
JP3577381B2 (en
Inventor
Tetsuji Hayashi
哲司 林
Kenichi Hisaie
健一 久家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
Kayaba Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kayaba Industry Co Ltd filed Critical Kayaba Industry Co Ltd
Priority to JP35433795A priority Critical patent/JP3577381B2/en
Publication of JPH09184490A publication Critical patent/JPH09184490A/en
Application granted granted Critical
Publication of JP3577381B2 publication Critical patent/JP3577381B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Rotary Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce manufacturing cost while certainly carrying out slip-off preventing device of a drive shaft. SOLUTION: This structure stores a cam ring 30 storing a rotor 31 and a vane 32 spline-connected to a drive shaft 5 free to rotate and furnishes with a body 1 furnished with a shaft hole 100 to axially support the drive shaft 5, a side plate 8 provided with a communicating passage 81 interposed between this body 1 and an end surface of the cam ring 30 and communicated to a high pressure chamber 12 corresponding to a discharge region of the cam ring 30 and partitioned in the body and a cover 2 to seal the inside of the body 1. Additionally, the drive shaft 5 is furnished with a small diametrical part 54 to be connected to the rotor 31 and a large diametrical part 55 formed with an outside diameter larger than the small diametrical part 54 and projected outside, a step part 56 is formed between this small diametrical part 54 and the large diametrical part 55, a bearing 18 to support the large diametrical part 55 is furnished in the shaft hole 100, and a shoulder part 1E free to make contact with this step part 56 is provided in the shaft hole 100.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ベーンポンプの駆
動軸支持構造に関し、特に車両のパワーステアリング装
置等の油圧源として最適なベーンポンプの駆動軸支持構
造の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a drive shaft support structure for a vane pump, and more particularly to an improvement of a drive shaft support structure for a vane pump, which is optimal as a hydraulic power source for a vehicle power steering device or the like.

【0002】[0002]

【従来の技術】自動車等の車両では油圧を用いたパワー
ステアリング装置を備えており、油圧供給源としては、
従来からベーンポンプが採用されており、このような、
ベーンポンプの駆動軸支持構造としては、図3に示すよ
うなものが知られている。
2. Description of the Related Art Vehicles such as automobiles are equipped with a power steering device using hydraulic pressure.
Traditionally, vane pumps have been adopted.
As a drive shaft support structure for a vane pump, a structure shown in FIG. 3 is known.

【0003】このベーンポンプは、ボディ107の内周
にポンプカートリッジ3を構成するカムリング30、ロ
ーター31及びベーン32を収装したもので、カムリン
グ30及びローター31はボディ107に締結されたカ
バー106と、ボディ107の内周に固設されたサイド
プレート108との間に配設される。
The vane pump has a cam ring 30, a rotor 31 and a vane 32 constituting the pump cartridge 3 housed on the inner periphery of a body 107. The cam ring 30 and the rotor 31 include a cover 106 fastened to the body 107, It is disposed between the body 107 and a side plate 108 fixed to the inner periphery of the body 107.

【0004】ローター31はボディ107を貫通した駆
動軸90とスプライン結合しており、この駆動軸90の
基端90B側には機関と連結した図示しないプーリーが
結合され、ローター31及びベーン32を駆動する。
The rotor 31 is splined to a drive shaft 90 penetrating the body 107. A pulley (not shown) connected to an engine is connected to the base end 90B of the drive shaft 90 to drive the rotor 31 and the vanes 32. To do.

【0005】この駆動軸90は、基端90B側をボディ
107の内周に設けた軸受120で、先端90A側をカ
バー106の内周に設けた軸受121でそれぞれ軸支さ
れ、先端90Aはカバー106を貫通することなく当接
支持される。
The drive shaft 90 is rotatably supported by a bearing 120 provided on the inner periphery of the body 107 on the base end 90B side and a bearing 121 provided on the inner periphery of the cover 106 on the tip 90A side. Abutment is supported without penetrating 106.

【0006】ローター31と駆動軸90は、駆動軸90
の所定の外周に形成したリング溝52にサークリップ等
の止め輪33を嵌合し、駆動軸90がボディ107から
抜ける方向への力が加わると、止め輪33がサイドプレ
ート108に摺接するローター31に係止されて、駆動
軸90は図中右側へ向かう軸線に沿う方向への変位は規
制される。
The rotor 31 and the drive shaft 90 are the drive shaft 90.
When a retaining ring 33 such as a circlip is fitted into a ring groove 52 formed on a predetermined outer periphery of the rotor and a force is applied in a direction in which the drive shaft 90 comes out of the body 107, the retaining ring 33 slides on the side plate 108. The drive shaft 90 is locked by 31 so that the displacement of the drive shaft 90 in the direction along the axis toward the right side in the drawing is restricted.

【0007】逆に、駆動軸90をカバー106側へ押圧
する力が加わると、駆動軸90は図中左側へ向けて変位
しようとするが、先端90Aがカバー106の内面に当
接するため、駆動軸90の変位は規制される。
On the contrary, when a force for pressing the drive shaft 90 toward the cover 106 is applied, the drive shaft 90 tries to displace toward the left side in the drawing, but the tip 90A abuts on the inner surface of the cover 106, so that the drive is performed. The displacement of the shaft 90 is restricted.

【0008】なお、このベーンポンプでは、ボディ10
7の内部にはサイドプレート108との間に画成された
高圧室101、この高圧室101と流量制御弁4のバル
ブ穴を連通する通路111、ボディ107の外部と連通
する吸込コネクタ105及び流量制御弁4で余剰となっ
た作動油をポンプカートリッジ3に還流させる低圧連通
路109が形成されており、駆動軸90を駆動すると、
サイドプレート108の連通孔を介してポンプカートリ
ッジ3から圧送された作動油は、高圧室101、通路1
11及び流量制御弁4を介して図示しないパワーステア
リング装置へ必要な流量が供給される一方、流量制御弁
4からの余剰流量及び吸込コネクタ105からの作動油
は、低圧連通路109からカバー106の内部へ流入
し、このカバー106内で二股状に分岐するように屈曲
形成された中空の二股通路102、102を介してポン
プカートリッジ3の吸込領域へ送られる。
In this vane pump, the body 10
7, a high pressure chamber 101 defined between the high pressure chamber 101 and a side plate 108, a passage 111 communicating the high pressure chamber 101 with the valve hole of the flow rate control valve 4, a suction connector 105 communicating with the outside of the body 107, and a flow rate. A low-pressure communication passage 109 is formed to circulate excess hydraulic oil in the control valve 4 to the pump cartridge 3, and when the drive shaft 90 is driven,
The hydraulic oil pressure-fed from the pump cartridge 3 via the communication hole of the side plate 108 is supplied to the high-pressure chamber 101, the passage 1
A required flow rate is supplied to a power steering device (not shown) via the valve 11 and the flow rate control valve 4, while the excess flow rate from the flow rate control valve 4 and the hydraulic oil from the suction connector 105 flow from the low pressure communication passage 109 to the cover 106. It flows into the inside and is sent to the suction region of the pump cartridge 3 through the hollow bifurcated passages 102, 102 that are bent and formed so as to bifurcate inside the cover 106.

【0009】また、実開昭63−118388号公報に
開示されるように、駆動軸を片持ち支持するもの知られ
ており、これは、図4に示すように、ボディ207とカ
バー206との間に、上記と同様にしてカムリング、ロ
ーター及びベーンからなるポンプカートリッジ203が
挟持されたもので、ポンプカートリッジ203のロータ
ーはボディ207を貫通した駆動軸190とスプライン
結合しており、駆動軸190の基端190B側がボディ
207の内周に設けた軸受218によって片持ち支持さ
れる。
Further, as disclosed in Japanese Utility Model Laid-Open No. 63-118388, a drive shaft cantilever is known, which is composed of a body 207 and a cover 206 as shown in FIG. A pump cartridge 203 composed of a cam ring, a rotor, and a vane is sandwiched between them, and the rotor of the pump cartridge 203 is spline-coupled with a drive shaft 190 penetrating a body 207. The base end 190B side is cantilevered by a bearing 218 provided on the inner circumference of the body 207.

【0010】一方、カバー206内に突出する先端19
0Aは、カバー206に形成された凹部224内と当接
することなく収装される。
On the other hand, the tip 19 protruding into the cover 206
0A is accommodated without coming into contact with the inside of the recess 224 formed in the cover 206.

【0011】この場合の駆動軸190の抜け止め手段と
しては、ローターとスプライン結合された駆動軸190
の前後に止め輪233、234が嵌合しており、駆動軸
190に軸方向の力が加わると、止め輪233または2
34がローターに係止されるため、駆動軸190の軸方
向の変位を規制することができるのである。
In this case, as means for preventing the drive shaft 190 from coming off, the drive shaft 190 spline-coupled with the rotor is used.
Snap rings 233, 234 are fitted in front and rear of the drive shaft 190, and when an axial force is applied to the drive shaft 190, the snap rings 233 or 2
Since 34 is locked by the rotor, axial displacement of the drive shaft 190 can be regulated.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、上記前
者の従来例においては、駆動軸90をボディ107の軸
受120と、カバー106端面の軸受120でそれぞれ
軸支する構成となっているため、ベーンポンプの組立工
程では、カバー106側に軸受121を圧入する工程が
必要となり、カバー106端面と駆動軸90の直角度及
び軸受120及び121と駆動軸90の同軸度を確保す
るため、カバー106とボディ107の合わせ面は、所
定の面精度で仕上げねばならず、加工工数または加工時
間が増大して製造コストの上昇を招くという問題があ
り、また、駆動軸90は止め輪33によって図3の右方
向への変位を規制されるが、逆にカバー106側へ変位
した場合には、駆動軸90の先端90Aはカバー106
の内面に当接するため、その分の肉厚強度を確保する必
要がある軸受121を圧入するカバー106における受
け穴の深さ等の寸法管理を厳密に行う必要があり、カバ
ー106の鋳造後に機械加工が必要となって、加工工数
及び時間の増大を招いて製造コストを増大させる一因と
なっており、さらに、サイドプレート108を貫通する
駆動軸90の外径が大きいため、ローター31に対する
プレッシャーローディング領域の確保が難しく、ポンプ
効率の向上が困難になるという問題があった。
However, in the former conventional example described above, the drive shaft 90 is rotatably supported by the bearing 120 of the body 107 and the bearing 120 of the end face of the cover 106. In the assembling process, a process of press-fitting the bearing 121 on the cover 106 side is required, and in order to secure the perpendicularity between the end surface of the cover 106 and the drive shaft 90 and the coaxiality between the bearings 120 and 121 and the drive shaft 90, the cover 106 and the body 107 are required. 3 has to be finished with a predetermined surface accuracy, which causes a problem that the number of processing steps or processing time increases and the manufacturing cost increases, and the drive shaft 90 is moved rightward in FIG. However, when the cover 106 is displaced toward the cover 106 side, the tip 90A of the drive shaft 90 is not covered by the cover 106.
Since it abuts against the inner surface of the cover 106, it is necessary to ensure the wall thickness strength for that amount, and it is necessary to strictly control the dimensions such as the depth of the receiving hole in the cover 106 into which the bearing 121 is press-fitted. This requires machining, which causes an increase in machining man-hour and time, which is a factor of increasing manufacturing cost. Further, since the outer diameter of the drive shaft 90 penetrating the side plate 108 is large, the pressure on the rotor 31 is increased. There is a problem that it is difficult to secure a loading area and it is difficult to improve pump efficiency.

【0013】また、前記後者の従来例では、駆動軸19
0の抜け止め手段として、ローターの前後で止め輪23
3、234を嵌合させたが、ベーンポンプの組み立て工
程においては止め輪233、234の組み付けを、ロー
ターの両面から行う必要があるため作業性が悪く組み立
て工数が増大して生産性が低下し、さらに、ロボットな
どによる組み立てラインの自動化が難しくなるという問
題があった。
In the latter conventional example, the drive shaft 19
Retaining rings 23 in front of and behind the rotor are used as 0
3 and 234 were fitted, but in the assembly process of the vane pump, it is necessary to assemble the retaining rings 233 and 234 from both sides of the rotor, so the workability is poor and the assembly man-hour increases and the productivity decreases, Further, there is a problem that it is difficult to automate the assembly line by a robot or the like.

【0014】そこで本発明は、上記問題点に鑑みてなさ
れたもので、駆動軸の抜け止めを確実に行いながらベー
ンポンプの加工工数の低減及び組み立て性を向上させ
て、かつ、ポンプ効率を向上させることが可能なベーン
ポンプの駆動軸支持構造を提供することを目的とする。
Therefore, the present invention has been made in view of the above-mentioned problems, and reduces the man-hours for assembling the vane pump and improves the assemblability while surely preventing the drive shaft from coming off, and also improves the pump efficiency. It is an object of the present invention to provide a drive shaft support structure for a vane pump capable of performing the above.

【0015】[0015]

【課題を解決するための手段】第1の発明は、駆動軸と
スプライン結合したローターと、これに出入り自在に設
けたベーンとを回転自在に収装するカムリングと、この
カムリングを収装するとともに、前記駆動軸を軸支する
軸穴を備えたポンプボディと、このボディとカムリング
端面との間に介装されてボディ内に高圧室を画成すると
ともに、この高圧室とカムリングの吐出領域とを連通す
る連通路を設けたサイドプレートと、前記ボディの開口
端面を封止するカバーとを備えたベーンポンプの駆動軸
支持構造において、前記駆動軸はローターと結合する小
径部と、この小径部よりも大なる外径で形成されて前記
ボディの外部へ突出する大径部とを備え、この小径部と
大径部との間に段部を形成し、前記軸穴には大径部を支
持する第1の軸受を備えるとともに、前記ボディの軸穴
にはこの段部と当接可能な肩部を設け、駆動軸とロータ
ーとの間には駆動軸がボディの外部へ抜ける方向の変位
を規制する抜け止め手段を備える。
SUMMARY OF THE INVENTION A first aspect of the present invention is a cam ring for rotatably accommodating a rotor spline-coupled to a drive shaft, and a vane provided in and out of the rotor, and the cam ring. A pump body having a shaft hole for supporting the drive shaft, and a high pressure chamber defined in the body by being interposed between the body and the end face of the cam ring, and a discharge region of the high pressure chamber and the cam ring. In a drive shaft supporting structure of a vane pump including a side plate provided with a communication passage communicating with each other, and a cover for sealing the opening end face of the body, the drive shaft has a small diameter portion coupled to the rotor, and a small diameter portion from the small diameter portion. Also has a large diameter portion formed with a large outer diameter and protruding to the outside of the body, a step portion is formed between the small diameter portion and the large diameter portion, and the large diameter portion is supported in the shaft hole. First bearing to In addition, a shoulder portion is provided in the shaft hole of the body, the shoulder portion being capable of contacting the step portion, and retaining means for restricting displacement in the direction in which the drive shaft is pulled out of the body is provided between the drive shaft and the rotor. Prepare

【0016】また、第2の発明は、前記第1の発明にお
いて、前記サイドプレートを貫通する駆動軸は小径部で
ある。
In a second aspect based on the first aspect, the drive shaft penetrating the side plate has a small diameter portion.

【0017】また、第3の発明は、前記第1の発明にお
いて、前記ボディの軸穴には小径部を支持する第2の軸
受を配設する。
In a third aspect based on the first aspect, a second bearing for supporting the small diameter portion is provided in the shaft hole of the body.

【0018】[0018]

【作用】したがって、第1の発明は、ローターとスプラ
イン結合された駆動軸は、小径部と大径部との間に段部
を備え、小径部では抜け止め手段を介してローターと係
合し、駆動軸がボディから抜ける方向への変位が規制さ
れるため、駆動軸はボディから脱落することはなく、一
方、ボディの軸穴内周に設けた段部によって、駆動軸が
カバー側へ向かう軸線に沿う方向の変位が規制されるた
め、駆動軸先端はカバーに当接することはなく、カバー
側に駆動軸の変位を規制する手段を設けたりカバーの肉
厚強度を増す必要がなくなって、確実に駆動軸の抜け止
めを行いながらカバー側での軸支を不要にしてカバーの
構成を簡易にでき、加工工数の低減を図るとともに、ベ
ーンポンプの組み立て時には、駆動軸を小径部から軸穴
へ挿入すると、段部が軸穴の肩部に当接して変位が規制
され、この状態でサイドプレート及びローター及びカム
リング等をボディへ組み付けた後に、抜け止め手段を駆
動軸とローターとの間に装着すればよく、駆動軸の段部
及び軸穴の肩部を組み立て時の位置決め手段として利用
することができる。
Therefore, according to the first aspect of the present invention, the drive shaft spline-coupled to the rotor is provided with a step portion between the small diameter portion and the large diameter portion, and the small diameter portion engages with the rotor through the retaining means. Since the displacement of the drive shaft in the direction of coming out of the body is restricted, the drive shaft does not fall out of the body, while the stepped portion provided inside the shaft hole of the body causes the drive shaft to move toward the cover side. Since the displacement in the direction along the axis is restricted, the tip of the drive shaft does not contact the cover, and there is no need to provide a means to restrict the displacement of the drive shaft on the cover side or increase the wall thickness strength of the cover. While the drive shaft is prevented from coming off, the cover is not required to support the shaft so that the structure of the cover can be simplified and the number of processing steps can be reduced. Then, the stage Is abutted against the shoulder of the shaft hole and displacement is restricted.In this state, after assembling the side plate, rotor, cam ring, etc. to the body, the retaining device may be installed between the drive shaft and the rotor. The step portion of the shaft and the shoulder portion of the shaft hole can be used as positioning means during assembly.

【0019】また、第2の発明は、サイドプレートを貫
通する駆動軸が小径部であるため、その分カムリングの
吐出領域と連通した高圧室に面したサイドプレート端面
における受圧面積を拡大することができ、高圧室に流入
した高圧油によってサイドプレートをカムリング端面へ
向けて確実に押圧し、カムリングとサイドプレートとの
当接面からの圧油の漏れを低減して、ベーンポンプの効
率を向上させることができる。
Further, according to the second aspect of the invention, since the drive shaft penetrating the side plate has a small diameter portion, the pressure receiving area at the end face of the side plate facing the high pressure chamber communicating with the discharge region of the cam ring can be increased accordingly. The high-pressure oil that has flowed into the high-pressure chamber reliably presses the side plate toward the end face of the cam ring, reducing the leakage of pressure oil from the contact surface between the cam ring and the side plate and improving the efficiency of the vane pump. You can

【0020】また、第3の発明は、駆動軸は大径部と小
径部でそれぞれ第1及び第2の軸受で軸支されるため、
ボディによって片持ち支持となる駆動軸の小径部の振れ
を抑制することができる。
According to the third aspect of the invention, the drive shaft is rotatably supported by the first and second bearings at the large diameter portion and the small diameter portion, respectively.
It is possible to suppress the shake of the small diameter portion of the drive shaft that is cantilevered by the body.

【0021】[0021]

【発明の実施の形態】図1に本発明を適用したベーンポ
ンプの一実施形態を示す。
1 shows an embodiment of a vane pump to which the present invention is applied.

【0022】図1において、1は駆動軸5を軸支すると
ともに、ローター31及びベーン32を回転自在に収装
したカムリング30からなるベーンポンプのポンプカー
トリッジ3及び流量制御弁4を収装するボディで、この
ボディ1の開口端面1Aにはカバー2が結合される。
In FIG. 1, reference numeral 1 denotes a body for supporting a drive shaft 5 and for accommodating a pump cartridge 3 and a flow control valve 4 of a vane pump, which comprises a cam ring 30 in which a rotor 31 and a vane 32 are rotatably accommodated. A cover 2 is coupled to the open end surface 1A of the body 1.

【0023】ボディ1の内部には開口端面1A側からポ
ンプカートリッジ3、サイドプレート8が順次収装さ
れ、サイドプレート8とボディ1との間に画成された高
圧室12、この高圧室12と流量制御弁4のバルブ穴を
連通する通路11が形成され、さらに、ポンプボディ1
の外部と連通する吸込コネクタ7及び流量制御弁4で余
剰となった作動油をポンプカートリッジ3に還流させる
低圧連通路9が形成される。
Inside the body 1, a pump cartridge 3 and a side plate 8 are housed in order from the opening end face 1A side, and a high pressure chamber 12 defined between the side plate 8 and the body 1 and the high pressure chamber 12 are formed. A passage 11 communicating with the valve hole of the flow control valve 4 is formed, and further, the pump body 1
A low-pressure communication passage 9 is formed which circulates the excess working oil in the suction connector 7 and the flow control valve 4 communicating with the outside of the pump cartridge 3 to the pump cartridge 3.

【0024】ポンプカートリッジ3の吐出領域に対向し
たサイドプレート8の連通孔81を介して作動油が高圧
室12へ圧送され、通路11及び流量制御弁4を介して
図示しないパワーステアリング装置へ必要な流量が供給
される一方、流量制御弁4からの余剰流量及び吸込コネ
クタ7からの作動油は、低圧連通路9からカバー2の内
部へ流入し、このカバー2内で二股状に分岐するように
屈曲形成された二股通路6、6を介してポンプカートリ
ッジ3の吸込領域へ送られる。
The hydraulic oil is pressure-fed to the high-pressure chamber 12 through the communication hole 81 of the side plate 8 facing the discharge area of the pump cartridge 3, and is required for a power steering device (not shown) through the passage 11 and the flow control valve 4. While the flow rate is supplied, the surplus flow rate from the flow rate control valve 4 and the hydraulic oil from the suction connector 7 flow into the inside of the cover 2 from the low pressure communication passage 9 and branch into two in the cover 2. It is sent to the suction area of the pump cartridge 3 via the bifurcated passages 6 formed in a bent manner.

【0025】駆動軸5の基端5Bには機関と連結した図
示しないプーリが結合され、この基端5Bとは反対側の
先端5A側にはスプライン部53を介してローター31
と駆動軸5は回転方向で結合する一方、軸線に沿う方向
の変位が許容される。
A pulley (not shown) connected to the engine is coupled to the base end 5B of the drive shaft 5, and the rotor 31 is connected to the tip 5A side opposite to the base end 5B via a spline portion 53.
While the drive shaft 5 and the drive shaft 5 are connected in the rotational direction, the displacement in the direction along the axis is allowed.

【0026】ここで、駆動軸5は先端5A側をカバー2
の凹部24内面と当接することのないように突出してお
り、この先端5A側の外径は基端5Bの外径よりも小さ
く、この先端5Aから軸線に沿う方向へ所定の位置まで
を所定の外径の小径部54として形成され、この小径部
54の反対側において、ボディ1の外部へ突出した基端
5B側を小径部54より大なる外径の大径部55として
形成されて、大径部55と小径部54との間には段部5
6が形成される。
Here, the drive shaft 5 covers the tip 5A side of the cover 2
The outer diameter of the tip end 5A side is smaller than the outer diameter of the base end 5B, and the tip end 5A has a predetermined diameter in the direction along the axis. It is formed as a small-diameter portion 54 having an outer diameter, and on the opposite side of the small-diameter portion 54, the base end 5B side protruding to the outside of the body 1 is formed as a large-diameter portion 55 having an outer diameter larger than that of the small-diameter portion 54. The step portion 5 is provided between the diameter portion 55 and the small diameter portion 54.
6 are formed.

【0027】一方、ボディ1のほぼ中央部には駆動軸5
を支持する軸穴100が貫通形成され、この軸穴100
には駆動軸5の大径部55を支持する第1の軸受18が
配設されると共に、小径部54を軸支する第2の軸受1
9が、軸穴100の小径部100B内周に配設され、駆
動軸5は、ボディ1の内部で大径部55及び小径部54
の2カ所において軸受18、19でそれぞれ支持され
る。
On the other hand, the drive shaft 5 is provided at the substantially central portion of the body 1.
A shaft hole 100 for supporting the
Is provided with a first bearing 18 that supports a large diameter portion 55 of the drive shaft 5, and a second bearing 1 that axially supports the small diameter portion 54.
9 is disposed on the inner circumference of the small diameter portion 100B of the shaft hole 100, and the drive shaft 5 has a large diameter portion 55 and a small diameter portion 54 inside the body 1.
The bearings 18 and 19 are respectively supported at two positions.

【0028】そして、小径部54には先端5A側から、
抜け止め手段としてサークリップ等の止め輪33を嵌合
するためのリング溝52、ローター31と回転方向で結
合するためのスプライン部53の順に形成され、このス
プライン部53と段部56との間で軸受19に軸支さ
れ、このスプライン部53と軸受19との間でサイドプ
レート8を貫通する。
Then, from the tip 5A side to the small diameter portion 54,
A ring groove 52 for fitting a retaining ring 33 such as a circlip and a spline portion 53 for coupling with the rotor 31 in the rotational direction are formed in this order as retaining means, and between the spline portion 53 and the step portion 56. Is rotatably supported by the bearing 19 and penetrates the side plate 8 between the spline portion 53 and the bearing 19.

【0029】そして、ボディ1の軸穴100には、小径
部100Bとの間に肩部1Eが径方向に形成され、この
肩部1Eは駆動軸5の段部56と対向する関係において
所定の間隙Δxが形成され、この間隙Δxは駆動軸5を
その軸線に沿って押し込んだ場合に段部56と肩部1E
が当接可能な所定値に設定される。
A shoulder portion 1E is formed in the shaft hole 100 of the body 1 in a radial direction between the shoulder portion 1E and the small diameter portion 100B, and the shoulder portion 1E faces the step portion 56 of the drive shaft 5 in a predetermined relationship. A gap Δx is formed, and the gap Δx is formed when the drive shaft 5 is pushed along its axis, and the step portion 56 and the shoulder portion 1E.
Is set to a predetermined value that allows contact with.

【0030】この軸穴100の小径部100Bを設けた
ボディ1のボス部の外周ではサイドプレート8の内周に
嵌合するとともに、このボディ1のボス部の高圧室12
に位置する部分には、サイドプレート8の端面内周側と
ボディ1との間にOリング41が介装され、さらに、サ
イドプレート8の端面外周側とボディ1との間にもOリ
ング42が介装される。これら、Oリング41、42に
よって高圧室12内の圧油の漏れが防止されるととも
に、Oリング41、42により囲まれた環状端面部分に
は、高圧室12内の高圧油が作用し、それによりサイド
プレート8をポンプカートリッジ3端面へ向けて押圧す
るプレッシャローディング領域が形成される。
The outer periphery of the boss portion of the body 1 provided with the small diameter portion 100B of the shaft hole 100 is fitted to the inner periphery of the side plate 8 and the high pressure chamber 12 of the boss portion of the body 1 is fitted.
An O-ring 41 is interposed between the body 1 and the inner peripheral surface of the end surface of the side plate 8, and an O-ring 42 is also arranged between the outer peripheral surface of the end surface of the side plate 8 and the body 1. Is installed. These O-rings 41 and 42 prevent the pressure oil from leaking in the high-pressure chamber 12, and the high-pressure oil in the high-pressure chamber 12 acts on the annular end surface portion surrounded by the O-rings 41 and 42. Thereby, a pressure loading area for pressing the side plate 8 toward the end surface of the pump cartridge 3 is formed.

【0031】以上のように構成され、次に作用について
説明する。
The configuration is as described above. Next, the operation will be described.

【0032】図示しないプーリを介して駆動軸5を駆動
することでポンプカートリッジ3のローター31が回転
し、ポンプカートリッジ3の吐出領域における高圧油は
サイドプレート8の高圧ポート81から高圧室12へと
圧送され、さらにボディ1内部の高圧室12、通路11
を介して流量制御弁4へと導かれ、必要流量のみが図示
しない吐出口からパワーステアリング装置へ供給される
一方、余剰流量は低圧連通路9へ還流され、吸込コネク
タ7からの作動油と合流して、再びポンプカートリッジ
3の吸い込み領域へ流入する。一方、高圧室12に導か
れた高圧油は、Oリング41と42の間のプレッシャロ
ーディング領域でサイドプレート8をポンプカートリッ
ジ3端面へ向けて押圧し、カムリング30とサイドプレ
ート8の間からの圧油の漏れを抑制する。
By driving the drive shaft 5 via a pulley (not shown), the rotor 31 of the pump cartridge 3 rotates, and the high pressure oil in the discharge region of the pump cartridge 3 flows from the high pressure port 81 of the side plate 8 to the high pressure chamber 12. The high pressure chamber 12 and the passage 11 inside the body 1 are pumped.
While being guided to the flow rate control valve 4 via the outlet, only the necessary flow rate is supplied to the power steering device from a discharge port (not shown), while the surplus flow rate is returned to the low pressure communication passage 9 and merges with the hydraulic oil from the suction connector 7. Then, it again flows into the suction area of the pump cartridge 3. On the other hand, the high-pressure oil introduced into the high-pressure chamber 12 presses the side plate 8 toward the end surface of the pump cartridge 3 in the pressure loading area between the O-rings 41 and 42, and the pressure from between the cam ring 30 and the side plate 8 is increased. Controls oil leakage.

【0033】そして、ボディ1の軸穴100で片持ち支
持される駆動軸5は、大径部55を軸受18で、小径部
54を軸受19でそれぞれ軸支されるため、前記前者の
従来例のようにカバー側の軸受を省略してカバー2の構
造を簡易にしながら、前記後者の従来例のような片持ち
支持に比して駆動軸5の先端部の振れを抑制することが
でき、ベーンポンプの耐久性を向上させることができ
る。
The drive shaft 5, which is cantilevered in the shaft hole 100 of the body 1, has the large diameter portion 55 supported by the bearing 18 and the small diameter portion 54 supported by the bearing 19, respectively. As described above, while omitting the bearing on the cover side to simplify the structure of the cover 2, it is possible to suppress the deflection of the tip end portion of the drive shaft 5 as compared with the cantilever support as in the latter conventional example. The durability of the vane pump can be improved.

【0034】そして、駆動軸5が図中左側へ向かう軸線
方向の変位量が所定値を越えると、段部56が肩部1E
に当接して駆動軸5の図中左側へ向かう変位が規制さ
れ、駆動軸5の先端部50Aがカバー2の逃げ凹部24
の底部と当接するのを防止することができ、一方、駆動
軸5がボディ1から抜ける方向、すなわち、図中右方向
へ変位しようとすると、止め輪33がローター31を係
止し、このローター31はサイドプレート8と摺接して
係止されるので、駆動軸5は軸線に沿う方向で係止さ
れ、駆動軸5がボディ1から抜けるのを防止することが
できる。なお、段部56と肩部1Eの間隙Δxは、止め
輪33がローター31と当接した状態で、の所定値に設
定される。すなわち、駆動軸5は、肩部1Eとの間に軸
方向へ若干のガタを備えて、熱膨張等を吸収可能となっ
ている。
Then, when the displacement amount of the drive shaft 5 in the axial direction toward the left side in the figure exceeds a predetermined value, the step portion 56 causes the shoulder portion 1E.
The displacement of the drive shaft 5 toward the left side in the drawing is regulated by contacting with the drive shaft 5, and the tip portion 50A of the drive shaft 5 is inserted into the escape recess 24
It is possible to prevent the drive shaft 5 from coming into contact with the bottom part of the rotor 1. When the drive shaft 5 is displaced in the direction of coming out of the body 1, that is, in the right direction in the drawing, the snap ring 33 locks the rotor 31. Since 31 is slidably contacted with the side plate 8 and locked, the drive shaft 5 is locked in the direction along the axis, and the drive shaft 5 can be prevented from coming off the body 1. The gap Δx between the step portion 56 and the shoulder portion 1E is set to a predetermined value when the retaining ring 33 is in contact with the rotor 31. That is, the drive shaft 5 has some play in the axial direction between the drive shaft 5 and the shoulder portion 1E, and can absorb thermal expansion and the like.

【0035】こうして、駆動軸5の支持は軸穴100、
100Bに固設された軸受18、19の2カ所で行わ
れ、カバー2には、駆動軸5の先端5Aとの当接を回避
する凹部24が形成されるだけで、前記前者の従来例の
ようにカバー側で駆動軸を軸支する必要がなくなり、同
軸度や直角等を厳密に仕上げる必要がなくなり、カバー
2の構成を簡易にして部品点数及び加工工数を削減しな
がら、駆動軸5の抜け止めを確実に行うことができ、製
造コストの低減を図りながらカバー2の肉厚寸法を低減
して、ベーンポンプの小型化、軽量化を図ることができ
る。
Thus, the drive shaft 5 is supported by the shaft hole 100,
It is carried out at two locations of the bearings 18 and 19 fixed to the 100B, and the cover 2 is provided with only the recess 24 for avoiding contact with the tip 5A of the drive shaft 5. As described above, it is not necessary to pivotally support the drive shaft on the cover side, and it is not necessary to strictly finish the coaxiality, the right angle, and the like, and the structure of the cover 2 is simplified to reduce the number of parts and the processing man-hours, and It is possible to reliably prevent disengagement, the thickness of the cover 2 can be reduced while reducing the manufacturing cost, and the vane pump can be reduced in size and weight.

【0036】また、このようなベーンポンプの組み立て
は、駆動軸5を小径部54側からボディ1の軸穴100
へ挿入して段部56をボディ1側の肩部1Eへ当接させ
て、ボディ1の開口端面1A側からその凹状のボディ内
部へ、サイドプレート8、ポンプカートリッジ3を順次
組み込んでから、リング溝52に止め輪33を装着する
ことでローター31と駆動軸5は軸方向で結合され、上
記したように、段部56及び肩部1Eは駆動軸5の軸方
向の変位を規制するだけでなく、組み立て時の位置決め
用に利用することもでき、このようなポンプの組み立て
は開口端面1A側から行うことができるため、前記後者
の従来例に比して作業性を向上させるとともに、ロボッ
トなどによる組み立てラインの自動化を容易に推進でき
るのである。
In the assembly of such a vane pump, the drive shaft 5 is mounted on the shaft hole 100 of the body 1 from the small diameter portion 54 side.
And the step portion 56 is brought into contact with the shoulder portion 1E on the body 1 side, and the side plate 8 and the pump cartridge 3 are sequentially assembled from the open end surface 1A side of the body 1 into the concave body thereof, and then the ring By mounting the retaining ring 33 in the groove 52, the rotor 31 and the drive shaft 5 are coupled in the axial direction, and as described above, the step portion 56 and the shoulder portion 1E merely regulate the displacement of the drive shaft 5 in the axial direction. Alternatively, the pump can be used for positioning during assembly, and the assembly of such a pump can be performed from the opening end face 1A side. Therefore, the workability is improved as compared with the latter conventional example, and the robot etc. The automation of the assembly line by can be easily promoted.

【0037】そして、軸受18、19はボディ1の軸穴
100及び小径部100Bに配設されるため、ボディ1
の成型後にこれら軸穴100と小径部100Bの機械加
工を同一の刃物で行うことができるのに加えて、同軸度
の確保を前記従来例に比して容易に行うことができ、加
工工数の低減と工作精度の向上を共に図ることができる
のである。
Since the bearings 18 and 19 are arranged in the shaft hole 100 and the small diameter portion 100B of the body 1, the body 1
In addition to the fact that the shaft hole 100 and the small diameter portion 100B can be machined by the same blade after molding, the coaxiality can be secured more easily than in the conventional example, and the number of machining steps is reduced. Both reduction and improvement of work precision can be aimed at.

【0038】また、駆動軸5は段部56を境にして外径
の小さい小径部54でサイドプレート8を貫通するた
め、前記従来例に比して、サイドプレート8の端面内周
側と高圧室12との間に介装するOリング41の内径を
縮小することがき、その分サイドプレート8のプレッシ
ャローディング領域を拡大することによって、ベーンポ
ンプの効率を向上させることも可能となり、さらに、小
径部54の外径を縮小することによって軽量化を推進す
ることができるのである。
Further, since the drive shaft 5 penetrates the side plate 8 at the small diameter portion 54 having a small outer diameter with the step portion 56 as a boundary, it is higher in pressure than the inner peripheral side of the end face of the side plate 8 as compared with the conventional example. The inner diameter of the O-ring 41 interposed between the chamber 12 and the chamber 12 can be reduced, and the pressure loading area of the side plate 8 can be increased by that amount, thereby improving the efficiency of the vane pump. By reducing the outer diameter of 54, weight reduction can be promoted.

【0039】図2は第2の実施形態を示し、前記第1実
施形態の小径部54の軸受19を廃止して軸受18のみ
による片持支持としたもので、その他の構成は前記第1
実施形態とほぼ同様に構成される。
FIG. 2 shows a second embodiment, in which the bearing 19 of the small diameter portion 54 of the first embodiment is abolished and cantilevered only by the bearing 18, and other configurations are the same as the first embodiment.
The configuration is almost the same as that of the embodiment.

【0040】ボディ1’に形成された軸穴100の小径
部100B’は,駆動軸50の小径部54を挿通するだ
けとなり、前記第1実施形態の軸受19を配設しない
分、サイドプレート8及びOリング41を嵌合する小径
部100B’を設けたボディ1のボス部の外径をさらに
縮小でき、高圧室12の油圧が作用するサイドプレート
8の受圧面積を増しその分カムリング30端面へ向けて
押圧するプレッシャローディング領域をさらに拡大する
ことができ、前記第1実施形態の作用に加えて、ポンプ
の効率をさらに向上させることができると共に、小径部
54を短縮することで駆動軸50の全長を短縮し、ベー
ンポンプの小型軽量化をさらに推進することができるの
である。
The small diameter portion 100B 'of the shaft hole 100 formed in the body 1'is only inserted through the small diameter portion 54 of the drive shaft 50, and the side plate 8 is not provided because the bearing 19 of the first embodiment is not provided. Also, the outer diameter of the boss portion of the body 1 provided with the small diameter portion 100B ′ for fitting the O-ring 41 can be further reduced, and the pressure receiving area of the side plate 8 on which the hydraulic pressure of the high pressure chamber 12 acts can be increased to the end surface of the cam ring 30. It is possible to further expand the pressure loading area that is pressed toward the direction, further improve the efficiency of the pump in addition to the operation of the first embodiment, and shorten the small diameter portion 54 to reduce the drive shaft 50. The overall length can be shortened, and the vane pump can be made smaller and lighter.

【0041】[0041]

【発明の効果】以上のように第1の発明によれば、ロー
ターとスプライン結合された駆動軸は、小径部と大径部
との間に段部を備え、小径部では抜け止め手段を介して
ローターと係合し、駆動軸がボディから抜ける方向への
変位が規制されるため、駆動軸はボディから脱落するこ
とはなく、一方、ボディの軸穴内周に設けた肩部と駆動
軸の段部によって、駆動軸がカバー側へ向かう軸方向の
変位が規制されるため、駆動軸先端がカバーに当接する
ことはなく、前記従来例のようにカバー側に駆動軸の変
位を規制する手段を設ける必要がなくなって、確実に駆
動軸の抜け止めを行いながらカバーの構成を簡易にして
カバー側の加工工数の低減を図るとともに、駆動軸の全
長を前記従来例に比して短縮すると同時に肉厚強度も薄
くすることができ、ベーンポンプの小型軽量化を実現で
き、さらに、ベーンポンプの組み立て時には、駆動軸を
小径部から軸穴へ挿入すると、段部が軸穴の肩部に当接
して変位が規制され、この状態でサイドプレート及びロ
ーター及びカムリング等をボディへ組み付けた後に、抜
け止め手段を駆動軸とローターとの間に装着すればよ
く、駆動軸の段部及び軸穴の肩部を組み立て時の位置決
め手段として利用することができ、前記後者の従来例に
比して組み立て工程の工数を低減することが可能となっ
て製造コストの低減を推進でき、さらに、ベーンポンプ
の組み立てを、単一の方向から行うことができるため組
み立てラインの自動化を容易に行う事ができる。
As described above, according to the first aspect of the present invention, the drive shaft spline-coupled with the rotor is provided with the step portion between the small diameter portion and the large diameter portion, and the small diameter portion is provided with the retaining means. The drive shaft does not drop from the body because it is engaged with the rotor and the displacement of the drive shaft in the direction of coming out of the body is restricted. Since the displacement of the drive shaft in the axial direction toward the cover side is regulated by the step portion, the tip of the drive shaft does not contact the cover, and means for regulating the displacement of the drive shaft toward the cover side as in the conventional example. Since it is unnecessary to provide the drive shaft, the cover structure is simplified while the drive shaft is securely prevented from coming off, and the number of processing steps on the cover side is reduced, and the total length of the drive shaft is shortened as compared with the conventional example. The wall thickness and strength can also be reduced The vane pump can be made smaller and lighter.When the vane pump is assembled, if the drive shaft is inserted from the small diameter part into the shaft hole, the stepped part comes into contact with the shoulder part of the shaft hole and displacement is restricted. After assembling the rotor, the cam ring, etc. to the body, the retaining means may be installed between the drive shaft and the rotor, and the step portion of the drive shaft and the shoulder portion of the shaft hole should be used as positioning means during assembly. Since it is possible to reduce the man-hours of the assembly process as compared with the latter conventional example, it is possible to promote the reduction of the manufacturing cost, and the vane pump can be assembled from a single direction. The assembly line can be easily automated.

【0042】また、第2の発明は、駆動軸の小径部がサ
イドプレートを貫通するため、カムリングの吐出領域と
連通した高圧室がサイドプレートと対向する領域を拡大
することができ、高圧室に流入した圧油によってサイド
プレートをカムリングへ向けて確実に押圧し、カムリン
グとサイドプレートとの当接面からの圧油の漏れを低減
して、ベーンポンプの効率を向上させることが可能とな
り、駆動軸の小径化によって小型軽量化をさらに推進で
きる。
In the second aspect of the invention, since the small diameter portion of the drive shaft penetrates the side plate, the high pressure chamber communicating with the discharge region of the cam ring can expand the region facing the side plate. The inflowing pressure oil reliably presses the side plate toward the cam ring, reducing the leakage of pressure oil from the contact surface between the cam ring and the side plate, and improving the efficiency of the vane pump. By reducing the diameter, the size and weight can be further promoted.

【0043】また、第3の発明は、駆動軸は大径部と小
径部でそれぞれ第1及び第2の軸受で軸支されるため、
ボディによって片持ち支持される駆動軸の小径部の振れ
を抑制することができ、ベーンポンプの耐久性を向上さ
せることが可能となる。
In the third aspect of the invention, the drive shaft is rotatably supported by the first and second bearings at the large diameter portion and the small diameter portion, respectively.
The swinging of the small diameter portion of the drive shaft that is cantilevered by the body can be suppressed, and the durability of the vane pump can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示すベーンポンプの断面
図である。
FIG. 1 is a cross-sectional view of a vane pump showing an embodiment of the present invention.

【図2】第2の実施形態を示し、駆動軸の段部近傍の拡
大断面図。
FIG. 2 is an enlarged cross-sectional view showing the second embodiment and the vicinity of a step portion of a drive shaft.

【図3】従来の例を示すベーンポンプの断面図である。FIG. 3 is a cross-sectional view of a conventional vane pump.

【図4】他の従来例を示すベーンポンプの断面図。FIG. 4 is a cross-sectional view of a vane pump showing another conventional example.

【符号の説明】[Explanation of symbols]

1 ボディ 1A 開口端面 1E 肩部 2 カバー 3 ポンプカートリッジ 4 流量調整弁 5 駆動軸 5A 先端 5B 基端 8 サイドプレート 12 高圧室 18、19 軸受 24 凹部 30 カムリング 31 ロータ 32 ベーン 33 止め輪 52 リング溝 53 スプライン部 54 小径部 55 大径部 56 段部 100 軸穴 100B 小径部 1 Body 1A Open End Face 1E Shoulder 2 Cover 3 Pump Cartridge 4 Flow Control Valve 5 Drive Shaft 5A Tip 5B Base End 8 Side Plate 12 High Pressure Chamber 18, 19 Bearing 24 Recess 30 Cam Ring 31 Rotor 32 Vane 33 Retaining Ring 52 Ring Groove 53 Spline 54 Small diameter 55 Large diameter 56 Step 100 Shaft hole 100B Small diameter

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 駆動軸とスプライン結合したローター
と、これに出入り自在に設けたベーンとを回転自在に収
装するカムリングと、このカムリングを収装するととも
に、前記駆動軸を軸支する軸穴を備えたポンプボディ
と、このボディとカムリング端面との間に介装されてボ
ディ内に高圧室を画成するとともに、この高圧室とカム
リングの吐出領域とを連通する連通路を設けたサイドプ
レートと、前記ボディの開口端面を封止するカバーとを
備えたベーンポンプの駆動軸支持構造において、前記駆
動軸はローターと結合する小径部と、この小径部よりも
大なる外径で形成されて前記ボディの外部へ突出する大
径部とを備え、この小径部と大径部との間に段部を形成
し、前記軸穴には大径部を支持する第1の軸受を備える
とともに、前記ボディの軸穴にはこの段部と当接可能な
肩部を設け、駆動軸とローターとの間には駆動軸がボデ
ィの外部へ抜ける方向の変位を規制する抜け止め手段を
備えたことを特徴とするベーンポンプの駆動軸支持構
造。
1. A cam ring that rotatably accommodates a rotor that is spline-coupled to a drive shaft, and a vane that is installed in and out of the rotor, and a shaft hole that accommodates the cam ring and that axially supports the drive shaft. And a side plate provided between the body and the end surface of the cam ring to define a high pressure chamber in the body, and a communication passage that connects the high pressure chamber and the discharge region of the cam ring. And a drive shaft supporting structure for a vane pump including a cover that seals the opening end surface of the body, wherein the drive shaft is formed with a small diameter portion that is coupled to the rotor and an outer diameter that is larger than the small diameter portion. A large diameter portion protruding to the outside of the body, a step portion is formed between the small diameter portion and the large diameter portion, and the shaft hole includes a first bearing for supporting the large diameter portion, and Of the body The shaft hole is provided with a shoulder portion that can come into contact with the stepped portion, and a retaining means is provided between the drive shaft and the rotor to restrict displacement of the drive shaft in a direction in which the drive shaft is pulled out of the body. Vane pump drive shaft support structure.
【請求項2】 前記サイドプレートを貫通する駆動軸は
小径部であることを特徴とする請求項1に記載のベーン
ポンプの駆動軸支持構造。
2. The drive shaft support structure for a vane pump according to claim 1, wherein the drive shaft penetrating the side plate has a small diameter portion.
【請求項3】 前記ボディの軸穴には小径部を支持する
第2の軸受を配設したことを特徴とする請求項1に記載
のベーンポンプの駆動軸支持構造。
3. The drive shaft support structure for a vane pump according to claim 1, wherein a second bearing that supports the small diameter portion is provided in the shaft hole of the body.
JP35433795A 1995-12-28 1995-12-28 Drive shaft support structure for vane pump Expired - Fee Related JP3577381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35433795A JP3577381B2 (en) 1995-12-28 1995-12-28 Drive shaft support structure for vane pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35433795A JP3577381B2 (en) 1995-12-28 1995-12-28 Drive shaft support structure for vane pump

Publications (2)

Publication Number Publication Date
JPH09184490A true JPH09184490A (en) 1997-07-15
JP3577381B2 JP3577381B2 (en) 2004-10-13

Family

ID=18436877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35433795A Expired - Fee Related JP3577381B2 (en) 1995-12-28 1995-12-28 Drive shaft support structure for vane pump

Country Status (1)

Country Link
JP (1) JP3577381B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018123682A1 (en) * 2016-12-28 2018-07-05 日立オートモティブシステムズ株式会社 Oil pump and balancer unit of oil pump integrated type

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018123682A1 (en) * 2016-12-28 2018-07-05 日立オートモティブシステムズ株式会社 Oil pump and balancer unit of oil pump integrated type

Also Published As

Publication number Publication date
JP3577381B2 (en) 2004-10-13

Similar Documents

Publication Publication Date Title
US5122039A (en) Electric-motor fuel pump
US5219277A (en) Electric-motor fuel pump
US4784587A (en) Pump apparatus
US6227833B1 (en) Fluid machine having cooperating displacement elements and a housing partially covering the displacement elements
US5090883A (en) Fuel supply assembly for a motor vehicle
US5941203A (en) Valve timing control device
US6227816B1 (en) Hydraulic delivery device
US5358383A (en) Radial-piston pump for internal combustion engine fuel
JP3547242B2 (en) Vane pump
US6634876B2 (en) Vane pump having a vane guide
JPH09184490A (en) Drive shaft support structure of vane pump
JP3710227B2 (en) Vane pump
US4541791A (en) Vaned hydraulic system
US5797181A (en) Methods of manufacturing automotive fuel pumps with set clearance for the pumping chamber
JP3725597B2 (en) Vane pump flow control valve
JPH0743502U (en) Fluid fitting
JP3699858B2 (en) Hydraulic power transmission coupling
JPH09310683A (en) Driving shaft of vane pump
JPH09151862A (en) Flow rate control valve for vane pump
JPH01208585A (en) Oil pump
JPH09184489A (en) Vane pump and assembly method of vane pump
WO1997024530A1 (en) Vane pump
JP2570184Y2 (en) Hydraulic power transmission coupling
KR20010015123A (en) High-pressure pump with a removable on-off valve for feeding fuel to an internal combustion engine
JPH0932739A (en) Vane pump

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040706

A61 First payment of annual fees (during grant procedure)

Effective date: 20040712

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20080716

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090716

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20110716

LAPS Cancellation because of no payment of annual fees