JP3725597B2 - Vane pump flow control valve - Google Patents

Vane pump flow control valve Download PDF

Info

Publication number
JP3725597B2
JP3725597B2 JP34840495A JP34840495A JP3725597B2 JP 3725597 B2 JP3725597 B2 JP 3725597B2 JP 34840495 A JP34840495 A JP 34840495A JP 34840495 A JP34840495 A JP 34840495A JP 3725597 B2 JP3725597 B2 JP 3725597B2
Authority
JP
Japan
Prior art keywords
valve
valve hole
control valve
hole
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34840495A
Other languages
Japanese (ja)
Other versions
JPH09170569A (en
Inventor
哲司 林
健一 久家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
KYB Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYB Corp filed Critical KYB Corp
Priority to JP34840495A priority Critical patent/JP3725597B2/en
Publication of JPH09170569A publication Critical patent/JPH09170569A/en
Application granted granted Critical
Publication of JP3725597B2 publication Critical patent/JP3725597B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/24Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • F04C14/26Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ベーンポンプに関し、特に車両のパワーステアリング装置等の油圧源として最適なベーンポンプの流量制御弁の改良に関する。
【0002】
【従来の技術】
自動車等の車両では油圧を用いたパワーステアリング装置を備えており、油圧供給源としては、図7〜図9のようなベーンポンプが採用されている。
【0003】
このベーンポンプは、ボディ100の内周にポンプカートリッジ3を構成するカムリング30、ローター31及びベーン32を収装したもので、カムリング30及びローター31はボディ100に締結されたカバー2と、ボディ100の内周に固設されたサイドプレート108との間に配設される。
【0004】
ローター31はボディ100を貫通した軸50と結合しており、この軸50の一端には機関と連結したプーリーが結合されて、ローター31及びベーン32を駆動する。軸50はボディ100の内部に設けた軸受120と、カバー2に設けた軸受121で軸支される。
【0005】
ボディ100の内部にはサイドプレート108との間に画成された高圧室101、この高圧室101と流量制御弁4を収装したバルブ穴とを連通する通路111、ボディ100の外部と連通する吸込コネクタ105及び流量制御弁4において余剰となった作動油をポンプカートリッジ3へ還流させる低圧連通路109が形成され、サイドプレート108の連通孔を介してポンプカートリッジ3から高圧室101に圧送された作動油は、通路111、流量制御弁4で調整された所定の流量が図示しないパワーステアリング装置へ供給される。一方、流量制御弁4からの余剰流量は低圧連通路109へ還流し、吸込コネクタ105からの作動油と合流して再びポンプカートリッジ3ヘ吸い込まれる。なお、ポンプカートリッジ3の両端面から漏れた作動油は、軸50に対して所定の角度で傾斜したドレーン通路112を介して軸受120の外周から低圧連通路109へ還流される。
【0006】
ベーンポンプから外部へ供給する作動油の流量は、ボディ100の内部に収装された流量制御弁4によって制御され、このような流量制御弁4としては、例えば、図9に示すように、ボディ100の所定位置に開口したバルブ穴4A内にスプール90を軸方向へ摺動自由に収装し、このスプール90から開口部側へ突出したロッド90aの先端部に可変絞りの可動部材としてのバルブプランジャ部90bを形成する。
【0007】
そして、このバルブ穴4Aの開口端には上記パワーステアリング装置へ作動油を供給する吐出口200を備えたコネクタ98が、シールリング96を介してボディ100に螺合しており、このコネクタ98のバルブ穴4A側端部の内周には、スプール90のバルブプランジャ部90bを挿通するオリフィス部材97が固設され、バルブプランジャ部90bはコネクタ98に固定されたオリフィス部材97のオリフィス穴との間隙をスプール90の変位に応じて変更することで可変絞りを構成して、ボディ100に螺合したコネクタ98から上記パワーステアリング装置へ所定の流量の作動油を供給する。
【0008】
ここで、スプール90はバルブ穴4Aの底部との間に背圧室92を画成し、この背圧室92は連通路95、パイロット通路91を介してオリフィス97の下流の吐出口200側に連通して、ベーンポンプの吐出圧を背圧室92へ導く。
【0009】
パイロット通路91の両端部はコネクタ98側ではオリフィス部材97の下流側位置に斜めに開口した連通路91aを有するとともに、背圧室92側においては大径部91bから縦に開口された連通路95を有する。
【0010】
そして、連通路91aに面したコネクタ98の内端外周には環状溝98aが形成され、さらにコネクタ98には、環状溝98aとオリフィス部材97の下流とを連通する連通路98bが貫通形成されて、環状溝98a、連通路98bを介して連通路91aと吐出口200側が連通される。
【0011】
このような斜めの連通路91a及び連通路95は、鋳造などによりパイロット通路91をバルブ穴4Aと平行して成形した後に、大径部91bより斜め方向からドリル等を挿通することで貫通形成され、同様に連通路91aはバルブ穴4Aの開口部側から斜めにドリル等を挿通することで貫通形成される。
【0012】
このため、大径部91bには作動油を封止するためのボール93が圧入され、さらにこのボール93が外部へ脱落するのを防止するため、大径部91bの開口端側には菊座バネ94が配設される。
【0013】
さらに、流量制御弁4の組み立てに際しては、まず背圧室92内にスプール90を付勢するスプリング89を挿入した後スプール90を組み込み、次いでバルブプランジャ部90bを予めコネクタ98に固定されたオリフィス部材97のオリフィス穴に貫通させた状態のまま、バルブ穴の開口部にシール96配置してこのコネクタ98をボディ100に螺合締結して開口部側の一方向からの組み立て作業を終了する。
【0014】
また、上記のようなベーンポンプの流量制御弁の他に、特公昭63−37749号公報に開示されるものも知られており、これは、図10のように、ボディ100bに貫通形成したバルブ穴199へ摺動自由なスプール190を収装し、バルブ穴199の一端に止め栓182をサークリップ等により設ける一方、他端側に絞り部材197及びコネクタ198を配設するもので、スプール190と止め栓182との間に画成された背圧室192へ絞り部材197下流の圧力を導くパイロット通路191は、バルブ穴199と直交する方向に貫通した連通路191b、195を介して背圧室192と絞り部材197の下流を連通しており、これらパイロット通路191、連通路191b、195はボディ100bの外部に開口するため、それぞれボール193、180、181を圧入することで流量制御弁4からの作動油の漏れを防いでいる。
【0015】
【発明が解決しようとする課題】
しかしながら、上記前者の従来例においては、オリフィス部材97の下流の圧力を導くパイロット通路91に斜めの連通路91a、95をボディ100の鋳造後に機械加工する必要があり、特に、バルブ穴4Aの開口部側から小径のパイロット通路91に向けて連通路91aに応じた外径の小さなドリルを斜めに挿通させるため、機械加工上の熟練を要するのみならず作業性が低下するため加工時間が増大し、同時に、このドリルは折れ易いために生産性が低いという問題があり、さらに、外部の配管と接続するためのコネクタ98は流量制御弁4と別部品として形成され、パワーステアリング装置の形式などに応じて異なる部品として用意する必要があり、また、このコネクタ98内周にオリフィス部材97を圧入する必要があるため、部品点数及び組み立て工数も増大して、製造コストが増大するという問題があった。
【0016】
また、上記後者の従来例では、ボディ100bを貫通形成したバルブ穴199の両側から止め栓182や絞り部材197、コネクタ198等を組み付ける構造となっているため、加工工数がかさみ、また、組み付け作業が繁雑になり組立方向を逆転する必要があって、流量制御弁4の組み立て工程の工数が増大して生産性が低下するという問題があった。
【0017】
そこで本発明は、上記問題点に鑑みてなされたもので、コネクタの使用によるオリフィス部材の取付方式の斜めの連通路を廃止して加工の容易な構造とし、流量制御弁の部品点数及び加工工数を削減するとともに、組み立て工数の削減を図って製造コストを低減可能なしかも、種々のパワーステアリング装置への対応も共通的に可能とするベーンポンプを提供することを目的とする。
【0018】
【課題を解決するための手段】
第1の発明は、駆動軸と結合したローターと、これに出入り自在に設けたベーンとを回転自在に収装するカムリングと、前記駆動軸を軸支するとともに、このカムリングを収装したボディと、このボディ設けたバルブ穴に収装されるとともに、前記カムリングの吐出領域と連通して所定流量の作動吐出油を外部へ供給する流量制御弁を備えたベーンポンプにおいて、前記流量制御弁は、ボディの所定の位置に開口形成したバルブ穴に収装されて軸方向に変位可能な弁体と、前記バルブ穴の開口端に形成されて、外部の配管と連通する開口部と、この開口部からバルブ穴の所定の位置へ圧入されて、弁体の変位に応じて吐出流量を制御する可変絞りを構成するためのオリフィス部材と、前記バルブ穴と平行的に配設されたパイロット通路と、前記オリフィス部材の下流側とパイロット通路とを連通する第1の連通路と、前記バルブ穴の底部と弁体との間に画成された背圧室に介装されて弁体をオリフィス部材へ向け付勢する手段とを備え、前記背圧室とパイロット通路とを連通する第2の連通路を形成し、円形バイトを前記バルブ穴の内側から入れて前記バルブ穴の軸線とほぼ直交する平面内で移動することにより切り欠きを形成し、この切り欠きによって前記第1または第2の連通路を形成する。
【0022】
また、第の発明は、前記第1の発明において、前記オリフィス部材の外周には、その母線に沿って外側端部から第1の連通路と対向した位置まで延びる所定の深さの溝部を形成する。
【0023】
【作用】
したがって、第1の発明は、カムリングの吐出領域と連通して所定の流量を外部へ供給する流量制御弁は、ボディの所定の所定位置に開口したバルブ穴に収装された弁体が、その背圧室に介装された付勢手段とバルブ穴の開口部側に圧入固定されたオリフィス部材のオリフィス前後の差圧との平衡関係を保って作動することによりバルブ穴に設けたバイパスポート(低圧連通路)から余剰の吐出流量をポンプカートリッジにおける吸込側に還流制御すると同時に、オリフィス部材のオリフィス穴部を経た必要流量を外部へ供給する。
【0024】
前記可変オリフィス部材は、バルブ穴の開口部へ圧入するだけで組み付けを行うことができ、このような流量制御弁の組み付けは、例えば、バルブ穴へ付勢手段、弁体を挿入した後、オリフィス部材を圧入するだけでよく、部品点数及び組立工数を削減でき、また、流量制御弁の組み立ては、バルブ穴が開口した一方の側から行えるため、自動化を可能とし、組み立て工程の作業性を向上でき、さらに、バルブ穴とパイロット通路をほぼ平行的に配設したため、ボディをダイカストによって成型する場合には、鋳抜きピンなどによりバルブ穴とパイロット通路を同時に鋳抜き成形加工でき、その分の機械加工を不要にして生産性をさらに向上させることができる。
また、第1または第2の連通路は、ボディの成形後にバルブ穴の軸線とほぼ直交する平面内における切り欠きとして形成されるため、これら連通路をドリルなどで斜めに加工した場合に比して、流量制御弁の軸線に沿う方向の寸法を短縮してボディの小型化、軽量化を推進することができる。
また、記第1または第2の連通路が、バルブ穴の軸線と直交する平面内における円形バイトの移動による半円状の切り欠きで形成されるため、例えば、ボディ成形後にバルブ穴に挿入した円盤状の刃物をバルブ穴の半径方向に送るだけで、これら連通路を容易に形成することができ、流量制御弁の加工性を向上させることができる。
【0028】
また、第の発明は、バルブ穴における第1の連通路の開口位置に対応してオリフィス部材が圧入され、その外周の母線に沿って第1の連通路と対向した位置から外側端部まで延びる所定の深さの溝部を形成されるため、開口部とパイロット通路はこの溝部と第1連通路を介して連通でき、特別な穴加工を別途に機械加工することなくオリフィス部材の組み付けによって連通路を形成できるとともに、流量制御弁の軸方向の寸法をさらに短縮してベーンポンプのボディの小型化、軽量化を推進できる。
【0029】
【実施形態】
図1〜図4に本発明を適用したベーンポンプの一実施形態を示す。
【0030】
図1、図2において、ボディ1は前記図7、図8の従来例と同様に構成され、同一のものに同一の図番を付して説明を省略する。
【0031】
図1に示すように、ベーンポンプの吐出領域に連通した通路111と余剰流量をポンプ吸込領域へと還流させる低圧連通路109とを選択的に制御可能な流量制御弁4は、ボディ1に設けたバルブ穴4Aに収装されて軸方向へ摺動自由なスプール90を主体に構成される。このバルブ穴4Aは図中右側のボディ1の側面に開口形成され、このバルブ穴4Aの開口端は図示しないパワーステアリング装置の配管と接続するために、雌ネジ48を内周に備えた開口部5が形成される。
【0032】
そして、この開口部5側のバルブ穴4Aには、筒状部材で構成されたオリフィス部材47が圧入され、このオリフィス部材47におけるオリフィス穴47bが後述するバルブプランジャ部90bとともに、可変絞りを構成する。
【0033】
バルブ穴4Aに収装されたスプール90には開口部5側へ突出したロッド90aの端部にバルブプランジャ部90bが形成され、このバルブプランジャ部90bがオリフィス部材47におけるオリフィス穴47bを貫通して開口部5側へ突出する。
【0034】
なお、バルブプランジャ部90bの外径は、オリフィス穴47bの内径よりも小さく設定されており、スプール90をバルブ穴4Aへ挿入した後に、オリフィス部材47を所定位置まで圧入して固定する。
【0035】
バルブプランジャ部90bはスプール90の変位に応じてオリフィス穴47bとの間の流路面積を変更する可変絞りを構成し、通路111から開口部5へ供給される作動油の流量を負荷圧の変化に応じたスプール90の変位に応じて設定する。
【0036】
ここで、バルブ穴4Aの図中上方には、バルブ穴4Aと平行的にパイロット通路91がダイカスト成形時に鋳抜きピン等で形成され、パイロット通路91はバルブ穴4Aの開口部と反対側のボディ1側面に開口し、パイロット通路91の端部はオリフィス部材47よりも開口部5側まで形成されるが、開口部5側へ貫通することはない。
【0037】
パイロット通路91は前記従来例と同様に、開口端側をボール93、菊座バネ94により封止され、バルブ穴4Aの底部とスプール90との間に画成した背圧室92が、連通路95(第2連通路)を介してパイロット通路91と連通する。
【0038】
一方、オリフィス穴47bの下流の油圧を背圧室92へ導くため、パイロット通路91と開口部5とを連通する連通路41(第1連通路)が、オリフィス部材47に面したバルブ穴4Aに開口し、かつ、連通路41はバルブ穴4Aの軸線とほぼ直交する平面内において貫通形成される。
【0039】
この連通路41は、図3に示すように、ほぼ半円状の切り欠きで形成され、例えば、図4(A)〜(C)に示すように、円盤状の回転刃70を開口部5の内周へ所定の深さまで挿入した後、パイロット通路91側へ向けて、バルブ穴4Aの半径方向へ送って切削することにより容易に形成することができる。
【0040】
ここで、オリフィス部材47の外周には、連通路41と開口部5を連通するため、連通路41と対向する位置から開口部5側の端部に向けて絞り溝43が所定の深さの凹部として形成され、さらに、絞り溝43よりスプール90側には、シールリング46を収装するための環状溝47aが形成される。
【0041】
こうして、絞り溝43、半円状の連通路41、パイロット通路91及び連通路95を介して背圧室92とオリフィス穴47b下流の開口部5は連通される。
【0042】
以上のように構成されたベーンポンプの流量制御弁4の作用について次に説明する。
【0043】
スプール90は前記従来例と同様に、オリフィス穴47b前後の差圧との平衡関係を保つように軸方向へ変位し、通路111と低圧連通路109とのバイパスポートから余剰油を還流させると同時に、オリフィス穴47b下流の負荷圧に応じたスプール90の変位に伴ってバルブプランジャ部90bとオリフィス穴47bの間隙を変更することで、通路111から開口部5への流路断面積を変更して開口部5に接続された図示しないパワーステアリング装置へ所定の流量の作動油を供給する。
【0044】
ここで、本発明の特徴は、バルブ穴4Aにおけるオリフィス穴47bの下流とパイロット通路91を半円状の連通路41により連通するようにしたため、前記従来例のように斜め方向にドリルを挿通する作業を廃止することができ、円盤状の回転刃70をバルブ穴4Aの半径方向へ変位させるだけであるため、連通路41の加工に要する工数及び時間を大幅に短縮して生産性を向上できるとともに、回転刃70はバルブ穴4Aの径方向へ変位するだけなので、曲げ等の力が加わることはなく、前記従来例のドリルのように頻繁に破損することがなくなって、工具寿命を延長させて生産性をさらに向上させることができるのであり、また、連通路41をバルブ穴4Aの軸線に対してほぼ直交する平面内に位置させ、かつ、オリフィス部材47の外周に刻設した絞り溝43を介してオリフィス部材47の圧入固定によりパイロット通路91と開口部5側を連通するようにしたため、前記従来例のような斜めの連通路に比して、軸線に沿う方向の穴加工寸法を斜め穴より小さくでき、その分、流量制御弁4の全長を短縮することも可能となって、ベーンポンプの小型化も推進できる。
【0045】
そして、オリフィス部材47を直接バルブ穴4Aへ圧入し、かつ、パワーステアリング装置の配管との接続を、開口部5の内周に形成した雌ネジ48で行うようにしたため、前記従来例のようなコネクタ98が不要となり、さらにコネクタ98へオリフィス部材を予め圧入する工程も不要となって、部品点数及び加工工数を削減するとともに、組立工数の削減が可能となって製造コストの削減が可能となるのである。
【0046】
図5は第2の実施形態を示し、前記第1実施形態のオリフィス部材47から環状溝47a及びシールリング46を廃止したオリフィス部材47’によって、流量制御弁4内を封止する一方、背圧室92とパイロット通路91とを連通する連通する連通路95を、連通路41と同様に半円状の連通路45としたもので、その他の構成は上記と同様である。
【0047】
圧入されたオリフィス部材47’の外周とバルブ穴4Aの内周の金属接触によって作動油の漏れを防止するため、環状溝47aの加工及びシールリング46が不要となって、加工工数及び部品点数を削減して製造コストをさらに低減することが可能となって、さらにオリフィス部材47’の軸方向の寸法を短縮して流量制御弁4の小型化を推進する事が可能となる。
【0048】
また、背圧室92とパイロット通路91を連通する連通路45を、連通路41と同様にバルブ穴4Aの軸線とほぼ直交平面内において、半円状に形成したため、前記従来例のような斜めの連通路が不要となって、加工時間を大幅に短縮して生産性を大幅に向上できるとともに、斜めの連通路を廃止することにより流量制御弁4の軸方向の寸法をさらに短縮して、ベーンポンプの小型化をさらに推進できる。
【0049】
【発明の効果】
以上のように第1の発明によれば、オリフィス部材は、ポンプボディに設けたバルブ穴にその開口部側から圧入するだけで組み付けを行うことができ、このような流量制御弁の組み付けは、例えば、バルブ穴へ付勢手段、弁体を挿入した後、オリフィス部材を圧入するだけで可変絞りを構成することができ、前記従来例のように開口部に螺合する特殊なコネクタなどの別部品に予めオリフィス部材を組み付けておき、このコネクタをボディへ螺合する必要がないため、部品点数及び組立工数を削減でき、また、流量制御弁の組み立ては、バルブ穴が開口した一方の側から行えるため、自動化が可能となって組み立て工程の生産性を向上でき、さらに、バルブ穴とパイロット通路を平行的に配設したため、ボディをダイカストによって成型する場合には、鋳抜きピンなどによりバルブ穴とパイロット通路を同時に鋳抜き成形でき、パイロット通路の機械加工を廃止して生産性をさらに向上させて製造コストの大幅な低減が可能となる。
また、第1または第2の連通路は、ボディの成形後にバルブ穴の軸線とほぼ直交する平面内における切り欠きとして形成されるため、前記従来例のように、連通路を細いドリルなどで斜めに挿通させて穴加工する場合に比して、流量制御弁の軸線に沿う方向の寸法を斜め穴よりも短縮できボディの小型化、軽量化を推進することができるとともに、工具寿命の延長及び加工性を向上させて生産性を向上させることができる。
また、第1または第2の連通路が、バルブ穴の軸線と直交する平面内における円形バイトの移動による半円状の切り欠きで形成されるため、例えば、ボディ成形後にバルブ穴に挿入した円盤状の刃物をバルブ穴の半径方向に送るだけで、これら連通路を容易に形成することができ、前記従来例のように斜めにドリル穴加工する必要がなくなって、流量制御弁の加工性を向上させることができる。
【0053】
また、第の発明は、バルブ穴内周における第1の連通路の開口位置に対応してオリフィス部材が圧入され、その外周の母線に沿って第1の連通路と対向した位置から外側端部まで延びる所定の深さの溝部が形成されるため、開口部とパイロット通路はこの溝部と第1連通路を介して連通でき、特殊な穴加工を別途に機械加工することなくオリフィス部材の組み付けによって連通路を形成できると共に流量制御弁の軸方向の寸法をさらに短縮してベーンポンプのボディの小型化、軽量化を推進できる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す流量制御弁の断面図である。
【図2】同じくオリフィス部材の斜視図を示す。
【図3】同じく図1のC−C矢視断面図。
【図4】連通路の加工の様子を示す説明図で、(A)は工具の挿入を、(B)は工具の半径方向の切り込みの様子を、(C)は加工後の連通路を示す。
【図5】第2の実施形態を示す流量制御弁の断面図。
【図6】同じくオリフィス部材の斜視図。
【図7】従来の例を示すベーンポンプの断面図。
【図8】同じく図7のA−A視図で、ベーンポンプを示す。
【図9】同じく図7のB−B矢視断面図で、流量制御弁の断面図である。
【図10】他の従来例を示す流量制御弁の断面図である。
【符号の説明】
1 ボディ
2 カバー
3 ポンプカートリッジ
4 流量制御弁
4A バルブ穴
5 開口部
30 カムリング
31 ロータ
32 ベーン
41 連通路
43 絞り溝
46 シールリング
47 オリフィス部材
47a オリフィス穴
48 雌ネジ部
50 駆動軸
89 スプリング
90 スプール
90a ロッド
90b バルブプランジャ部
91 パイロット通路
92 背圧室
93 ボール
94 菊座
95 連通路
101 高圧室
102 二股通路
105 吸込コネクタ
108 サイドプレート
109 低圧連通路
111 通路
112 ドレーン通路
120、121 軸受
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vane pump, and more particularly to an improvement in a flow control valve of a vane pump that is optimal as a hydraulic power source for a vehicle power steering device or the like.
[0002]
[Prior art]
A vehicle such as an automobile is provided with a power steering device using hydraulic pressure, and a vane pump as shown in FIGS. 7 to 9 is employed as a hydraulic pressure supply source.
[0003]
In this vane pump, a cam ring 30, a rotor 31, and a vane 32 constituting the pump cartridge 3 are accommodated on the inner periphery of the body 100, and the cam ring 30 and the rotor 31 are connected to the cover 2 fastened to the body 100 and the body 100. It arrange | positions between the side plates 108 fixed to the inner periphery.
[0004]
The rotor 31 is coupled to a shaft 50 penetrating the body 100, and a pulley connected to the engine is coupled to one end of the shaft 50 to drive the rotor 31 and the vane 32. The shaft 50 is pivotally supported by a bearing 120 provided inside the body 100 and a bearing 121 provided on the cover 2.
[0005]
Inside the body 100, a high pressure chamber 101 defined between the side plate 108, a passage 111 that connects the high pressure chamber 101 and a valve hole that houses the flow control valve 4, and communication with the outside of the body 100. A low-pressure communication passage 109 for returning excess hydraulic oil in the suction connector 105 and the flow control valve 4 to the pump cartridge 3 is formed, and is pumped from the pump cartridge 3 to the high-pressure chamber 101 through the communication hole of the side plate 108. The hydraulic oil is supplied to a power steering device (not shown) at a predetermined flow rate adjusted by the passage 111 and the flow rate control valve 4. On the other hand, the surplus flow rate from the flow control valve 4 returns to the low-pressure communication path 109, merges with the hydraulic oil from the suction connector 105, and is sucked into the pump cartridge 3 again. The hydraulic oil leaking from both end faces of the pump cartridge 3 is returned from the outer periphery of the bearing 120 to the low-pressure communication passage 109 via the drain passage 112 inclined at a predetermined angle with respect to the shaft 50.
[0006]
The flow rate of the hydraulic oil supplied from the vane pump to the outside is controlled by a flow control valve 4 housed in the body 100. As such a flow control valve 4, for example, as shown in FIG. In the valve hole 4A opened at a predetermined position, the spool 90 is freely slidable in the axial direction, and a valve plunger as a movable member of a variable throttle is attached to the tip of the rod 90a protruding from the spool 90 toward the opening. A portion 90b is formed.
[0007]
A connector 98 having a discharge port 200 for supplying hydraulic oil to the power steering device is screwed into the body 100 via a seal ring 96 at the opening end of the valve hole 4A. An orifice member 97 that passes through the valve plunger portion 90b of the spool 90 is fixed to the inner periphery of the end portion on the valve hole 4A side, and the valve plunger portion 90b is a gap between the orifice hole of the orifice member 97 fixed to the connector 98. Is changed according to the displacement of the spool 90 to form a variable throttle, and a predetermined amount of hydraulic fluid is supplied from the connector 98 screwed to the body 100 to the power steering device.
[0008]
Here, the spool 90 defines a back pressure chamber 92 between the spool hole 4A and the bottom of the valve hole 4A. The back pressure chamber 92 is disposed on the discharge port 200 side downstream of the orifice 97 via the communication passage 95 and the pilot passage 91. In communication, the discharge pressure of the vane pump is guided to the back pressure chamber 92.
[0009]
Both end portions of the pilot passage 91 have a communication passage 91a that is opened obliquely at a position downstream of the orifice member 97 on the connector 98 side, and a communication passage 95 that is opened vertically from the large diameter portion 91b on the back pressure chamber 92 side. Have
[0010]
An annular groove 98a is formed on the outer periphery of the inner end of the connector 98 facing the communication path 91a. Further, the connector 98 is formed with a communication path 98b passing through the annular groove 98a and the downstream of the orifice member 97. The communication passage 91a communicates with the discharge port 200 through the annular groove 98a and the communication passage 98b.
[0011]
Such slanted communication passages 91a and communication passages 95 are formed by penetrating a drill or the like from the large-diameter portion 91b in an oblique direction after the pilot passage 91 is formed in parallel with the valve hole 4A by casting or the like. Similarly, the communication path 91a is formed through by inserting a drill or the like obliquely from the opening side of the valve hole 4A.
[0012]
For this reason, a ball 93 for sealing the hydraulic oil is press-fitted into the large diameter portion 91b. Further, in order to prevent the ball 93 from falling off to the outside, the open end side of the large diameter portion 91b is provided on the open end side. A spring 94 is provided.
[0013]
Further, when assembling the flow control valve 4, first, the spring 89 for biasing the spool 90 is inserted into the back pressure chamber 92, the spool 90 is assembled, and then the valve plunger portion 90 b is fixed to the connector 98 in advance. The seal 96 is disposed in the opening of the valve hole while being passed through the orifice hole 97, and the connector 98 is screwed and fastened to the body 100 to complete the assembling work from one direction on the opening side.
[0014]
In addition to the flow control valve of the vane pump as described above, the one disclosed in Japanese Patent Publication No. 63-37749 is also known, which is a valve hole formed through the body 100b as shown in FIG. A spool 190 that is freely slidable in 199 is installed, and a stopper plug 182 is provided at one end of the valve hole 199 by a circlip or the like, while a throttle member 197 and a connector 198 are provided on the other end side. A pilot passage 191 that guides the pressure downstream of the throttle member 197 to a back pressure chamber 192 defined between the stop plug 182 and the back pressure chamber via communication passages 191b and 195 penetrating in a direction orthogonal to the valve hole 199. 192 and the downstream of the throttle member 197, and these pilot passages 191, communication passages 191b and 195 open to the outside of the body 100b. Thereby preventing leakage of the working fluid from the flow control valve 4 by press-fitting the Lumpur 193,180,181.
[0015]
[Problems to be solved by the invention]
However, in the former conventional example, it is necessary to machine the oblique communication passages 91a and 95 in the pilot passage 91 that guides the pressure downstream of the orifice member 97 after casting the body 100, and in particular, the opening of the valve hole 4A. Since a drill having a small outer diameter corresponding to the communication passage 91a is obliquely inserted from the section side toward the small-diameter pilot passage 91, not only skill in machining is required but also workability is reduced, so that processing time increases. At the same time, this drill has a problem that productivity is low because it is easy to break, and a connector 98 for connecting to an external pipe is formed as a separate part from the flow control valve 4, so It is necessary to prepare different parts depending on the situation, and the orifice member 97 must be press-fitted into the inner periphery of the connector 98. Number and assembling steps also increase, there is a problem that manufacturing cost is increased.
[0016]
In the latter conventional example, since the stopper plug 182, the throttle member 197, the connector 198, and the like are assembled from both sides of the valve hole 199 formed through the body 100 b, the number of processing steps is increased, and the assembling work is performed. As a result, the assembly direction needs to be reversed and the number of steps in the assembly process of the flow control valve 4 increases, resulting in a decrease in productivity.
[0017]
Accordingly, the present invention has been made in view of the above-mentioned problems, and eliminates the oblique communication path of the attachment method of the orifice member by using a connector to make the structure easy to process, and the number of parts and processing man-hours of the flow control valve. An object of the present invention is to provide a vane pump that can reduce the manufacturing cost by reducing the number of assembling steps and can also cope with various power steering devices in common.
[0018]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a cam ring that rotatably accommodates a rotor coupled to a drive shaft, and a vane that is provided in and out of the rotor, and a body that supports the drive shaft and accommodates the cam ring. In the vane pump having a flow rate control valve that is accommodated in a valve hole provided in the body and that supplies a predetermined flow rate of hydraulic discharge oil to the outside in communication with the discharge region of the cam ring, the flow rate control valve includes: A valve body that is accommodated in a valve hole formed in an opening at a predetermined position of the body and is axially displaceable; an opening formed at an opening end of the valve hole and communicating with an external pipe; and the opening An orifice member for constituting a variable throttle that is press-fitted into a predetermined position of the valve hole and controls the discharge flow rate according to the displacement of the valve body, and a pilot passage disposed in parallel with the valve hole; The valve body is connected to the orifice member by being interposed in a first communication passage communicating the downstream side of the orifice member and the pilot passage, and a back pressure chamber defined between the bottom of the valve hole and the valve body. A second communication passage that communicates the back pressure chamber and the pilot passage, and a circular bite is inserted from the inside of the valve hole so as to be substantially orthogonal to the axis of the valve hole. A notch is formed by moving the inside, and the first or second communication path is formed by the notch .
[0022]
According to a second aspect of the present invention, in the first aspect of the present invention, a groove portion having a predetermined depth extending from the outer end portion to a position facing the first communication path along the generatrix on the outer periphery of the orifice member. Form.
[0023]
[Action]
Therefore, according to the first aspect of the present invention, the flow rate control valve that communicates with the discharge region of the cam ring and supplies a predetermined flow rate to the outside has a valve body that is housed in a valve hole that opens at a predetermined predetermined position of the body. Bypass port provided in the valve hole by operating in an equilibrium relationship between the biasing means interposed in the back pressure chamber and the differential pressure across the orifice of the orifice member press-fitted to the opening side of the valve hole ( At the same time, the excess discharge flow rate from the low-pressure communication path) is controlled to return to the suction side of the pump cartridge, and at the same time, the necessary flow rate through the orifice hole of the orifice member is supplied to the outside.
[0024]
The variable orifice member can be assembled simply by press-fitting into the opening of the valve hole. For example, the flow control valve can be assembled by inserting an urging means and a valve body into the valve hole and then inserting the orifice. It is only necessary to press-fit the members, reducing the number of parts and assembly man-hours, and the flow control valve can be assembled from one side where the valve hole is opened, enabling automation and improving the workability of the assembly process. In addition, since the valve hole and pilot passage are arranged almost in parallel, when the body is molded by die casting, the valve hole and pilot passage can be cast and formed at the same time using a cast pin, etc. Productivity can be further improved by eliminating processing.
Further, since the first or second communication path is formed as a notch in a plane substantially orthogonal to the axis of the valve hole after the body is formed, these communication paths are compared with a case where these communication paths are processed obliquely with a drill or the like. Thus, the size in the direction along the axis of the flow control valve can be shortened, and the size and weight of the body can be reduced.
In addition, since the first or second communication path is formed by a semicircular cutout due to the movement of a circular cutting tool in a plane perpendicular to the axis of the valve hole, for example, it is inserted into the valve hole after body molding. These communication paths can be easily formed simply by feeding a disk-shaped blade in the radial direction of the valve hole, and the workability of the flow control valve can be improved.
[0028]
Further, in the second invention, the orifice member is press-fitted in correspondence with the opening position of the first communication path in the valve hole, and from the position facing the first communication path along the outer peripheral bus line to the outer end portion. Since the groove portion having a predetermined depth extending is formed, the opening portion and the pilot passage can be communicated with each other through this groove portion and the first communication passage, and can be connected by assembling the orifice member without special machining of the hole. The passage can be formed, and the axial dimension of the flow control valve can be further shortened to reduce the size and weight of the vane pump body.
[0029]
Embodiment
1 to 4 show an embodiment of a vane pump to which the present invention is applied.
[0030]
1 and 2, the body 1 is configured in the same manner as the conventional example in FIGS. 7 and 8, and the same components are denoted by the same reference numerals and description thereof is omitted.
[0031]
As shown in FIG. 1, the flow control valve 4 capable of selectively controlling the passage 111 communicating with the discharge region of the vane pump and the low pressure communication passage 109 for returning the excess flow rate to the pump suction region is provided in the body 1. A spool 90 that is housed in the valve hole 4A and is slidable in the axial direction is mainly configured. The valve hole 4A is formed in the side surface of the body 1 on the right side in the figure, and the opening end of the valve hole 4A is an opening provided with a female screw 48 on the inner periphery in order to connect to a pipe of a power steering device (not shown). 5 is formed.
[0032]
An orifice member 47 made of a cylindrical member is press-fitted into the valve hole 4A on the opening 5 side, and the orifice hole 47b in the orifice member 47 together with a valve plunger portion 90b described later constitutes a variable throttle. .
[0033]
The spool 90 accommodated in the valve hole 4A is formed with a valve plunger portion 90b at the end of the rod 90a protruding toward the opening 5, and the valve plunger portion 90b penetrates the orifice hole 47b in the orifice member 47. Projects to the opening 5 side.
[0034]
The outer diameter of the valve plunger portion 90b is set smaller than the inner diameter of the orifice hole 47b. After the spool 90 is inserted into the valve hole 4A, the orifice member 47 is press-fitted to a predetermined position and fixed.
[0035]
The valve plunger portion 90b constitutes a variable throttle that changes the flow passage area between the valve plunger portion 90b and the orifice hole 47b in accordance with the displacement of the spool 90, and changes the flow rate of the hydraulic oil supplied from the passage 111 to the opening portion 5 by changing the load pressure. It is set according to the displacement of the spool 90 according to.
[0036]
Here, in the upper part of the valve hole 4A in the figure, a pilot passage 91 is formed in parallel with the valve hole 4A by a die pin or the like at the time of die casting, and the pilot passage 91 is on the opposite side of the opening 5 of the valve hole 4A. It opens to the side of the body 1 and the end of the pilot passage 91 is formed to the opening 5 side of the orifice member 47, but does not penetrate to the opening 5 side.
[0037]
Similar to the conventional example, the pilot passage 91 is sealed at the opening end side by a ball 93 and a seat spring 94, and a back pressure chamber 92 defined between the bottom of the valve hole 4A and the spool 90 has a communication passage. It communicates with the pilot passage 91 through 95 (second communication passage).
[0038]
On the other hand, in order to guide the hydraulic pressure downstream of the orifice hole 47 b to the back pressure chamber 92, the communication path 41 (first communication path) that connects the pilot passage 91 and the opening 5 is formed in the valve hole 4 A facing the orifice member 47. The opening 41 and the communication passage 41 are formed through in a plane substantially orthogonal to the axis of the valve hole 4A.
[0039]
As shown in FIG. 3, the communication path 41 is formed by a substantially semicircular cutout. For example, as shown in FIGS. 4A to 4C, the disk-shaped rotary blade 70 is formed in the opening 5. After being inserted to a predetermined depth in the inner circumference of the valve, it can be easily formed by sending it to the pilot passage 91 side and cutting it in the radial direction of the valve hole 4A.
[0040]
Here, since the communication passage 41 and the opening 5 are communicated with the outer periphery of the orifice member 47, the throttle groove 43 has a predetermined depth from the position facing the communication passage 41 toward the end on the opening 5 side. Further, an annular groove 47 a for accommodating the seal ring 46 is formed on the spool 90 side from the throttle groove 43.
[0041]
In this way, the back pressure chamber 92 and the opening 5 downstream of the orifice hole 47 b communicate with each other through the throttle groove 43, the semicircular communication passage 41, the pilot passage 91 and the communication passage 95.
[0042]
Next, the operation of the flow rate control valve 4 of the vane pump configured as described above will be described.
[0043]
As in the conventional example, the spool 90 is displaced in the axial direction so as to maintain an equilibrium relationship with the differential pressure across the orifice hole 47b, and at the same time as the excess oil is recirculated from the bypass port between the passage 111 and the low-pressure communication passage 109. By changing the gap between the valve plunger portion 90b and the orifice hole 47b in accordance with the displacement of the spool 90 according to the load pressure downstream of the orifice hole 47b, the flow path cross-sectional area from the passage 111 to the opening 5 is changed. A predetermined amount of hydraulic fluid is supplied to a power steering device (not shown) connected to the opening 5.
[0044]
Here, the feature of the present invention is that the downstream side of the orifice hole 47b in the valve hole 4A and the pilot passage 91 are communicated by the semicircular communication passage 41, so that the drill is inserted obliquely as in the conventional example. Since the work can be abolished and the disk-like rotary blade 70 is merely displaced in the radial direction of the valve hole 4A, the man-hours and time required for processing the communication passage 41 can be greatly reduced, and the productivity can be improved. At the same time, since the rotary blade 70 is only displaced in the radial direction of the valve hole 4A, no force such as bending is applied, and it is not frequently damaged like the conventional drill, thereby extending the tool life. The productivity can be further improved, and the communication passage 41 is positioned in a plane substantially perpendicular to the axis of the valve hole 4A, and the orifice member 47 The pilot passage 91 and the opening 5 side are communicated with each other by the press-fitting and fixing of the orifice member 47 through the throttle groove 43 formed on the circumference. The hole machining dimension in the direction along the direction can be made smaller than that of the oblique hole, and the total length of the flow control valve 4 can be shortened accordingly, and the vane pump can be downsized.
[0045]
Then, the orifice member 47 is directly press-fitted into the valve hole 4A, and the connection with the piping of the power steering device is performed by the female screw 48 formed on the inner periphery of the opening 5, so that the conventional example The connector 98 is not required, and the step of press-fitting the orifice member into the connector 98 is not required, so that the number of parts and the number of processing steps can be reduced, and the number of assembly steps can be reduced, thereby reducing the manufacturing cost. It is.
[0046]
FIG. 5 shows a second embodiment, in which the inside of the flow control valve 4 is sealed by an orifice member 47 ′ in which the annular groove 47a and the seal ring 46 are eliminated from the orifice member 47 of the first embodiment, while the back pressure is reduced. The communication path 95 that communicates the chamber 92 and the pilot path 91 is a semicircular communication path 45 similar to the communication path 41, and the other configurations are the same as described above.
[0047]
In order to prevent hydraulic fluid from leaking due to metal contact between the outer periphery of the press-fitted orifice member 47 'and the inner periphery of the valve hole 4A, the processing of the annular groove 47a and the seal ring 46 are not required, and the processing man-hours and the number of parts are reduced. Thus, the manufacturing cost can be further reduced, and the axial dimension of the orifice member 47 ′ can be further shortened to reduce the size of the flow control valve 4.
[0048]
Further, since the communication passage 45 that communicates the back pressure chamber 92 and the pilot passage 91 is formed in a semicircular shape in a plane substantially orthogonal to the axis of the valve hole 4A as in the case of the communication passage 41, the communication passage 45 is inclined as in the conventional example. This eliminates the need for the communication passage, greatly reducing the processing time and greatly improving productivity, and eliminating the oblique communication passage further reduces the axial dimension of the flow control valve 4. Further downsizing of vane pump can be promoted.
[0049]
【The invention's effect】
As described above, according to the first invention, the orifice member can be assembled simply by press-fitting into the valve hole provided in the pump body from the opening side, and the assembly of such a flow control valve is as follows. For example, after inserting the urging means and the valve body into the valve hole, the variable restrictor can be configured simply by press-fitting the orifice member. Since it is not necessary to assemble the orifice member in advance and screw this connector into the body, the number of parts and assembly man-hours can be reduced, and the flow control valve can be assembled from one side where the valve hole is opened. Because it can be automated, the productivity of the assembly process can be improved, and the valve hole and pilot passage are arranged in parallel, so the body is molded by die casting. Expediently, such as by core pin can simultaneously cast stamped and formed a valve hole and the pilot passage, it is possible to greatly reduce the manufacturing cost further increases productivity abolished the machining of the pilot passage.
Further, since the first or second communication path is formed as a notch in a plane substantially orthogonal to the axis of the valve hole after the body is molded, the communication path is slanted with a thin drill or the like as in the conventional example. Compared to drilling through the hole, the dimension along the axis of the flow control valve can be shortened compared to the slanted hole, and the body can be made smaller and lighter. Workability can be improved and productivity can be improved.
In addition, since the first or second communication path is formed by a semicircular notch formed by movement of a circular cutting tool in a plane orthogonal to the axis of the valve hole, for example, a disk inserted into the valve hole after body molding By simply sending a blade in the radial direction of the valve hole, these communication passages can be easily formed, eliminating the need for drilling holes obliquely as in the prior art, and improving the workability of the flow control valve. Can be improved.
[0053]
In the second invention, the orifice member is press-fitted in correspondence with the opening position of the first communication passage in the inner periphery of the valve hole, and the outer end portion is located from the position facing the first communication passage along the outer peripheral bus. The groove and the pilot passage can be communicated with each other through the groove and the first communication passage, and the orifice member can be assembled without special machining of the hole. The communication passage can be formed and the axial dimension of the flow control valve can be further shortened to reduce the size and weight of the vane pump body.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a flow control valve showing an embodiment of the present invention.
FIG. 2 is a perspective view of the orifice member.
3 is a cross-sectional view taken along the line CC of FIG.
FIGS. 4A and 4B are explanatory diagrams showing a state of machining of the communication path, where FIG. 4A shows the insertion of the tool, FIG. 4B shows the state of cutting in the radial direction of the tool, and FIG. 4C shows the communication path after machining. .
FIG. 5 is a cross-sectional view of a flow control valve showing a second embodiment.
FIG. 6 is a perspective view of the orifice member.
FIG. 7 is a cross-sectional view of a vane pump showing a conventional example.
FIG. 8 is a view taken along the line AA in FIG. 7, showing a vane pump.
9 is a cross-sectional view taken along the line BB in FIG. 7 and is a cross-sectional view of the flow control valve.
FIG. 10 is a cross-sectional view of a flow control valve showing another conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Body 2 Cover 3 Pump cartridge 4 Flow control valve 4A Valve hole 5 Opening part 30 Cam ring 31 Rotor 32 Vane 41 Communication path 43 Restriction groove 46 Seal ring 47 Orifice member 47a Orifice hole 48 Female thread part 50 Drive shaft 89 Spring 90 Spool 90a Rod 90b Valve plunger portion 91 Pilot passage 92 Back pressure chamber 93 Ball 94 Kikuza 95 Communication passage 101 High pressure chamber 102 Bifurcated passage 105 Suction connector 108 Side plate 109 Low pressure communication passage 111 Passage 112 Drain passage 120, 121 Bearing

Claims (2)

駆動軸と結合したローターと、これに出入り自在に設けたベーンとを回転自在に収装するカムリングと、前記駆動軸を軸支するとともに、このカムリングを収装したボディと、このボディ設けたバルブ穴に収装されるとともに、前記カムリングの吐出領域と連通して所定流量の作動吐出油を外部へ供給する流量制御弁を備えたベーンポンプにおいて、前記流量制御弁は、ボディの所定の位置に開口形成したバルブ穴に収装されて軸方向に変位可能な弁体と、前記バルブ穴の開口端に形成されて、外部の配管と連通する開口部と、この開口部からバルブ穴の所定の位置へ圧入されて、弁体の変位に応じて吐出流量を制御する可変絞りを構成するためのオリフィス部材と、前記バルブ穴と平行的に配設されたパイロット通路と、前記オリフィス部材の下流側とパイロット通路とを連通する第1の連通路と、前記バルブ穴の底部と弁体との間に画成された背圧室に介装されて弁体をオリフィス部材へ向け付勢する手段とを備え、前記背圧室とパイロット通路とを連通する第2の連通路を形成し、円形バイトを前記バルブ穴の内側から入れて前記バルブ穴の軸線とほぼ直交する平面内で移動することにより切り欠きを形成し、この切り欠きによって前記第1または第2の連通路を形成したことを特徴とするベーンポンプの流量制御弁。A rotor coupled to the drive shaft, a cam ring which accommodated rotatably and vanes provided freely and out thereto, thereby pivotally supporting said drive shaft, and the body was housed the cam ring, provided in the body In the vane pump having a flow rate control valve that is accommodated in the valve hole and that communicates with the discharge region of the cam ring and supplies a predetermined amount of working discharge oil to the outside, the flow rate control valve is located at a predetermined position of the body. A valve body that is accommodated in the valve hole that is formed to be open and can be displaced in the axial direction, an opening that is formed at the opening end of the valve hole and communicates with an external pipe, and a predetermined opening of the valve hole from the opening. An orifice member configured to form a variable throttle that is press-fitted into a position and controls the discharge flow rate in accordance with the displacement of the valve body, a pilot passage disposed in parallel with the valve hole, and the orifice The valve body is directed to the orifice member by being interposed in a first communication path communicating the downstream side of the material and the pilot path, and a back pressure chamber defined between the bottom of the valve hole and the valve body. A second communication passage that communicates the back pressure chamber and the pilot passage, and a circular cutting tool is inserted from the inside of the valve hole in a plane substantially orthogonal to the axis of the valve hole. A flow control valve for a vane pump, wherein a notch is formed by movement, and the first or second communication path is formed by the notch . 前記オリフィス部材の外周には、その母線に沿って外側端部から第1の連通路と対向した位置まで延びる所定の深さの溝部を形成したことを特徴とする請求項1に記載のベーンポンプの流量制御弁。2. The vane pump according to claim 1, wherein a groove portion having a predetermined depth extending from an outer end portion to a position facing the first communication path along the generatrix is formed on the outer periphery of the orifice member. Flow control valve.
JP34840495A 1995-12-18 1995-12-18 Vane pump flow control valve Expired - Fee Related JP3725597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34840495A JP3725597B2 (en) 1995-12-18 1995-12-18 Vane pump flow control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34840495A JP3725597B2 (en) 1995-12-18 1995-12-18 Vane pump flow control valve

Publications (2)

Publication Number Publication Date
JPH09170569A JPH09170569A (en) 1997-06-30
JP3725597B2 true JP3725597B2 (en) 2005-12-14

Family

ID=18396801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34840495A Expired - Fee Related JP3725597B2 (en) 1995-12-18 1995-12-18 Vane pump flow control valve

Country Status (1)

Country Link
JP (1) JP3725597B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101680646B1 (en) 2015-03-17 2016-11-30 명화공업주식회사 Variable type vane pump

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003097455A (en) * 2001-09-25 2003-04-03 Kayaba Ind Co Ltd Vane pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101680646B1 (en) 2015-03-17 2016-11-30 명화공업주식회사 Variable type vane pump

Also Published As

Publication number Publication date
JPH09170569A (en) 1997-06-30

Similar Documents

Publication Publication Date Title
EP1801419A2 (en) Variable displacement vane pump
JPH07507120A (en) Device for automatic continuous angular adjustment between two drive-coupled axes
US6227816B1 (en) Hydraulic delivery device
JP3725597B2 (en) Vane pump flow control valve
JP4929471B2 (en) Variable displacement vane pump
JP3820273B2 (en) Hydraulic pump flow control valve
JP3547242B2 (en) Vane pump
JPH07279871A (en) Drive shaft pivotally support structure in oil pump
JPH10184483A (en) Pump device
JPH09151862A (en) Flow rate control valve for vane pump
WO1997021032A1 (en) Vane pump
JP2016211523A (en) Pump unit
JP2020180601A (en) Variable displacement hydraulic pump and construction machine
JP3577381B2 (en) Drive shaft support structure for vane pump
JP3502820B2 (en) Relief valve
CN212154955U (en) Air intake control device
WO2021145352A1 (en) Variable displacement pump manufacturing method and variable displacement pump
JPH1026086A (en) Seizure preventing structure for vane pump
JPH077648Y2 (en) Lubrication structure of automatic transmission
JP3803210B2 (en) Vane pump
JP3109526B2 (en) Flow control valve
JPH06241176A (en) Variable displacement type pump
JP3207096B2 (en) Flow control device
CN112128426A (en) Ball valve
JP2001065470A (en) Variable displacement pump

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050922

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees