JPH09184053A - Heat treatment method for powder metallurgy products - Google Patents

Heat treatment method for powder metallurgy products

Info

Publication number
JPH09184053A
JPH09184053A JP45096A JP45096A JPH09184053A JP H09184053 A JPH09184053 A JP H09184053A JP 45096 A JP45096 A JP 45096A JP 45096 A JP45096 A JP 45096A JP H09184053 A JPH09184053 A JP H09184053A
Authority
JP
Japan
Prior art keywords
treatment
powder
powder metallurgy
heat treatment
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP45096A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Takegawa
光弘 竹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
Ishikawajima Harima Heavy Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishikawajima Harima Heavy Industries Co Ltd filed Critical Ishikawajima Harima Heavy Industries Co Ltd
Priority to JP45096A priority Critical patent/JPH09184053A/en
Publication of JPH09184053A publication Critical patent/JPH09184053A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

(57)【要約】 【課題】 U720PMとして市販されはじめた金属粉
末Cを用いた粉末冶金製品の疲労強度とクリープ強度を
高め、これにより超耐熱部品への適用を可能にする粉末
冶金製品の熱処理方法を提供する。 【解決手段】 Ni,Co,Cr,Mo,W,Al,T
iを主成分とし、Hf及びNbを含まない粉末冶金製品
を、比較的低温の約1100℃に約4時間保持して固溶
させたのち急冷(油冷又は強制空冷)して溶体化処理
し、次いで約650℃で長時間(約24時間)保持した
後に空冷して安定化処理し、次いで約760℃で約16
時間保持した後に空冷して時効処理する。
(57) [Abstract] [Problem] Heat treatment of a powder metallurgy product that enhances fatigue strength and creep strength of a powder metallurgy product using metal powder C, which is commercially available as U720PM, thereby enabling application to a super heat-resistant component. Provide a way. SOLUTION: Ni, Co, Cr, Mo, W, Al, T
A powder metallurgy product containing i as a main component and containing no Hf and Nb is held at a relatively low temperature of about 1100 ° C. for about 4 hours to form a solid solution, and then rapidly cooled (oil-cooled or forced air-cooled) for solution treatment. Then, after holding at about 650 ° C for a long time (about 24 hours), air cooling is performed for stabilization treatment, and then about 16 ° C at about 760 ° C.
After holding for a period of time, air cool and age treatment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、粉末冶金製品の熱
処理方法に関する。
TECHNICAL FIELD The present invention relates to a heat treatment method for powder metallurgy products.

【0002】[0002]

【従来の技術】焼結金属を製造する方法を粉末冶金(pow
der metallurgy) といい、この方法による製品を粉末冶
金製品(或いは焼結金属製品)と呼ぶ。粉末冶金製品の
製造工程は、原料粉末の製造,粉末の配合・混合,圧粉
成形,焼結,後処理、等からなり、特に高強度、高じん
性を得るために後処理として、焼結鍛造(sinter forgin
g)や熱処理、等が行われる。
2. Description of the Related Art A method for producing a sintered metal is described by powder metallurgy (powder metallurgy).
der metallurgy) and the products produced by this method are called powder metallurgy products (or sintered metal products). The manufacturing process of powder metallurgy products consists of raw material powder manufacturing, powder mixing / mixing, powder compaction, sintering, post-treatment, etc. Sintering is performed as post-treatment to obtain high strength and high toughness. Forging (sinter forgin
g), heat treatment, etc. are performed.

【0003】例えば高圧タービンディスクのように酸化
や腐食に対する安定性,クリープ強度,及び疲労強度を
必要とする航空エンジン部品(以下、超耐熱部品とい
う)には、従来、ニッケル基超合金(nikel base supera
lloys)の金属粉末を用いた粉末冶金製品が用いられてい
た。表1にかかる焼結金属の化学組成の一例を示す。
[0003] For example, nickel-base superalloys (nikel base super alloys) have hitherto been used for aero engine parts (hereinafter referred to as super heat resistant parts) such as high pressure turbine disks which require stability against oxidation and corrosion, creep strength and fatigue strength. supera
Powder metallurgical products using metal powders of lloys) were used. Table 1 shows an example of the chemical composition of the sintered metal.

【0004】[0004]

【表1】 [Table 1]

【0005】表1において、金属粉末Aは、AF115
として市販されているものであり、これを用いた粉末冶
金製品は、上述した超耐熱部品(例えば高圧タービンデ
ィスク)にも既に適用されている。しかし、金属粉末A
は、ハフニウム(Hf)を含み、このHfが酸化されや
すく酸化物により欠陥を生じやすい問題点があった。ま
た、粉末製造工程においてハフニウム酸化物の除去が困
難なため金属粉末Aのコストが他の金属粉末に較べて3
〜4倍にもなる問題点があった。
In Table 1, metal powder A is AF115.
, And powder metallurgy products using the same have already been applied to the above-mentioned super heat-resistant parts (for example, high-pressure turbine disks). However, metal powder A
Contains hafnium (Hf), and there is a problem that this Hf is easily oxidized and a defect is easily caused by the oxide. In addition, since it is difficult to remove hafnium oxide in the powder manufacturing process, the cost of the metal powder A is 3 compared to other metal powders.
There was a problem that was up to 4 times.

【0006】また、金属粉末Bは、Rene95として
市販されているものであり、コストは低いが、これを用
いた粉末冶金製品はクリープ強度が低く超耐熱部品には
適用できなかった。更に、金属粉末Cは、同様の組成の
ものが従来は通常の金属材料として提供されていたもの
であり、通常の材料としては、インコネル材よりもクリ
ープ強度が高いが、金属粉末A,Bと比較すると疲労強
度とクリープ強度の両方が低く、上述した超耐熱部品へ
の適用例は数少ない。また、金属粉末Cは、近年になっ
て粉末化・量産化に成功し、U720PMとして市販さ
れはじめたものであるが、その特性はほとんど知られて
いなかった。
Further, the metal powder B is commercially available as Rene95, and the cost is low, but the powder metallurgy product using the metal powder B has low creep strength and cannot be applied to super heat resistant parts. Further, the metal powder C having the same composition has been conventionally provided as a normal metal material. As a normal material, although the creep strength is higher than that of the Inconel material, the metal powders A and B are By comparison, both fatigue strength and creep strength are low, and there are few examples of application to the above-mentioned super heat resistant parts. Further, the metal powder C has been successfully powdered and mass-produced in recent years, and has begun to be marketed as U720PM, but its characteristics have been hardly known.

【0007】[0007]

【発明が解決しようとする課題】金属粉末Cは、ハフニ
ウム(Hf)を含まず、金属粉末Aと比較するとコスト
が1/3〜1/4程度であり安価である。また、同様の
組成の通常(粉末冶金でない)の金属材料は、金属粉末
A,Bと比較すると疲労強度とクリープ強度は低いが、
通常の材料としては、インコネル材よりもクリープ強度
が高い。従って、粉末冶金化と適切な熱処理により金属
粉末A,Bに匹敵する疲労強度とクリープ強度を付加で
きる可能性がある。
The metal powder C does not contain hafnium (Hf), and the cost is about 1/3 to 1/4 that of the metal powder A, which is inexpensive. In addition, a normal (not powder metallurgical) metal material having the same composition has low fatigue strength and creep strength as compared with the metal powders A and B,
As a normal material, the creep strength is higher than that of Inconel material. Therefore, there is a possibility that the fatigue strength and creep strength comparable to those of the metal powders A and B can be added by powder metallurgy and appropriate heat treatment.

【0008】本発明はかかる課題を達成するために創案
されたものである。すなわち本発明の目的は、U720
PMとして市販されはじめた金属粉末Cを用いた粉末冶
金製品の疲労強度とクリープ強度を高め、これにより超
耐熱部品への適用を可能にする粉末冶金製品の熱処理方
法を提供することにある。
The present invention was devised to achieve the above object. That is, the object of the present invention is U720.
It is an object of the present invention to provide a heat treatment method for a powder metallurgical product that enhances the fatigue strength and creep strength of a powder metallurgical product using metal powder C that has begun to be commercially available as PM, thereby enabling application to superheat-resistant parts.

【0009】[0009]

【課題を解決するための手段】本発明によれば、Ni,
Co,Cr,Mo,W,Al,Tiを主成分とする粉末
冶金製品を、約1100℃に保持して固溶させたのち急
冷して溶体化処理し、次いで約650℃で保持した後に
空冷して安定化処理し、次いで約760℃で保持した後
に空冷して時効処理する、ことを特徴とする粉末冶金製
品の熱処理方法が提供される。
According to the present invention, Ni,
A powder metallurgical product containing Co, Cr, Mo, W, Al, and Ti as main components is held at about 1100 ° C to form a solid solution, and then rapidly cooled for solution treatment, and then held at about 650 ° C and then air-cooled. A heat treatment method for a powder metallurgical product is provided, which is characterized in that it is subjected to a stabilizing treatment, and then held at about 760 ° C., followed by air cooling and aging treatment.

【0010】本発明の好ましい実施形態によれば、前記
溶体化処理における急冷は、油冷又は強制空冷で行う。
また、前記溶体化処理、安定化処理、及び時効処理にお
ける保持時間はそれぞれ約4時間、約24時間、及び約
16時間である。更に、前記粉末冶金製品は、Hf及び
Nbを含まないニッケル基超合金である。また、前記ニ
ッケル基超合金は、Co15,Cr16,Ti5,Mo
3,Al2.5を含む、ことが好ましい。
According to a preferred embodiment of the present invention, the rapid cooling in the solution heat treatment is performed by oil cooling or forced air cooling.
The holding times in the solution treatment, stabilization treatment and aging treatment are about 4 hours, about 24 hours and about 16 hours, respectively. Further, the powder metallurgy product is a nickel-base superalloy that does not contain Hf and Nb. The nickel-based superalloy is Co15, Cr16, Ti5, Mo.
3, including Al2.5 is preferable.

【0011】Ni,Co,Cr,Mo,W,Al,Ti
を主成分とするニッケル基超合金(例えば金属粉末C)
の溶体化(solution)の処理温度としては、約1170℃
の高温処理が推奨されており、かつ類似のニッケル基超
合金である金属粉末Aの最適溶体化処理温度もこれに近
い温度である。しかし、本願発明者は、かかる高温の溶
体化処理では結晶が粗大化し、十分な性能が得られない
ことを実験により見いだした。また、適切な溶体化処理
の他に、安定化処理及び時効処理を付加することによ
り、良好な性能を粉末冶金製品に付加できることを種々
の実験から見いだした。本発明はかかる新規の知見に基
づくものである。
Ni, Co, Cr, Mo, W, Al, Ti
Nickel-based superalloy containing as a main component (for example, metal powder C)
The processing temperature of solution is about 1170 ℃
Is recommended, and the optimum solution treatment temperature of the metal powder A, which is a similar nickel-base superalloy, is close to this. However, the inventor of the present application has found by experiments that crystals are coarsened by such a high temperature solution treatment and sufficient performance cannot be obtained. In addition, it was found from various experiments that good performance can be added to powder metallurgy products by adding stabilization treatment and aging treatment in addition to appropriate solution treatment. The present invention is based on such a new finding.

【0012】すなわち、上述した本発明によれば、約1
100℃の比較的低い温度で溶体化処理したのち、長時
間(約24時間)の安定化処理を行い、更に、時効処理
を行うことにより、微細な結晶を得ることができ、これ
により強度が金属粉末A,Bに匹敵するほどに高く、低
サイクル疲労強度は金属粉末A,Bよりも優れ、かつク
リープ強度も十分高めることができ、これにより超耐熱
部品(例えば高圧タービンディスク)への適用を可能に
することができる。
That is, according to the present invention described above, about 1
After solution treatment at a relatively low temperature of 100 ° C., stabilization treatment for a long time (about 24 hours), and further aging treatment, fine crystals can be obtained, which results in higher strength. It is as high as metal powders A and B, low cycle fatigue strength is superior to metal powders A and B, and creep strength can be sufficiently increased, which makes it applicable to super heat-resistant parts (for example, high-pressure turbine disks). Can be enabled.

【0013】[0013]

【発明の実施の形態】以下、本発明の好ましい実施形態
を図面を参照して説明する。なお、各図において共通す
る部分には同一の符号を付して使用する。表1に示した
金属粉末Cは、Ni,Co,Cr,Mo,W,Al,T
iを主成分とするニッケル基超合金であり、更に詳しく
は、Co15,Cr16,Ti5,Mo3,Al2.5
を含んでいる。また、この粉末金属Cは、Hf及びNb
を含まないニッケル基超合金であり、金属粉末Aと比較
するとコストが1/3〜1/4程度であり安価である。
従って、適切な熱処理により金属粉末A,Bに匹敵する
疲労強度とクリープ強度を付加させることができれば、
コストの高い金属粉末Aの代替品として金属粉末Cを用
いることができる。本発明者は、かかる観点に基づき、
表2に示す4つの熱処理を金属粉末Cからなる粉末冶金
製品に適用し、種々の試験を実施した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. In the drawings, common parts are denoted by the same reference numerals. The metal powder C shown in Table 1 is Ni, Co, Cr, Mo, W, Al, T.
A nickel-base superalloy containing i as a main component, and more specifically, Co15, Cr16, Ti5, Mo3, Al2.5
Contains. Further, the powder metal C is Hf and Nb.
It is a nickel-based superalloy that does not contain, and is cheaper than the metal powder A at a cost of about 1/3 to 1/4.
Therefore, if it is possible to add fatigue strength and creep strength comparable to those of the metal powders A and B by appropriate heat treatment,
The metal powder C can be used as a substitute for the expensive metal powder A. The present inventor, based on such a viewpoint,
The four heat treatments shown in Table 2 were applied to the powder metallurgy product made of the metal powder C, and various tests were carried out.

【0014】[0014]

【表2】 [Table 2]

【0015】表2において、P1,P2は、金属粉末C
を、約1100℃に保持して固溶させたのち急冷して溶
体化処理し、次いで約650℃で保持した後に空冷して
安定化処理し、次いで約760℃で保持した後に空冷し
て時効処理したものである。すなわち、P1,P2は、
溶体化処理を従来より低温で4時間実施し(低温溶体化
処理)、更に長時間(24時間)の安定化処理と16時
間の時効処理を付加したものである。なお、P1とP2
は、溶体化処理における冷却手段(油冷と強制空冷)だ
けが相違している。
In Table 2, P1 and P2 are metal powders C
Is maintained at about 1100 ° C to form a solid solution, then rapidly cooled for solution treatment, then held at about 650 ° C and air-cooled for stabilization, and then held at about 760 ° C and air-cooled for aging. It has been processed. That is, P1 and P2 are
The solution treatment is carried out at a lower temperature than before for 4 hours (low temperature solution treatment), and a stabilizing treatment for a long time (24 hours) and an aging treatment for 16 hours are added. Note that P1 and P2
Differ only in the cooling means (oil cooling and forced air cooling) in the solution heat treatment.

【0016】一方、P3,P4は、溶体化処理温度を従
来のままの高温(約1170℃)と低温(約1100
℃)に分けて2回実施し、更にP1及びP2と同様の安
定化処理と時効処理を付加したものである。なお、P3
とP4は高温溶体化処理の保持時間だけが相違してい
る。以下、これらの試験片の試験結果を説明する。
On the other hand, P3 and P4 have the solution treatment temperatures of the high temperature (about 1170 ° C.) and the low temperature (about 1100) as they are.
C.) and performed twice, and the same stabilizing treatment and aging treatment as those of P1 and P2 were further added. Note that P3
And P4 differ only in the holding time of the high temperature solution heat treatment. The test results of these test pieces will be described below.

【0017】図1は、各試験片P1〜P4の金属組織を
示す顕微鏡写真である。この図から、P3,P4の結晶
が粗大化しているのに対して、P1,P2では微細な結
晶が得られているのがわかる。図2は、各試験片の引張
特性(破断応力と0.2%降伏応力)を400℃と65
0℃で比較したものである。この図から少なくともP
1,P2の試験片は、400℃及び650℃において、
金属粉末A,Bにほぼ匹敵する破断応力と0.2%降伏
応力を有していることがわかる。
FIG. 1 is a photomicrograph showing the metal structure of each of the test pieces P1 to P4. From this figure, it can be seen that the crystals of P3 and P4 are coarse, whereas the fine crystals of P1 and P2 are obtained. FIG. 2 shows tensile properties (breaking stress and 0.2% yield stress) of each test piece at 400 ° C. and 65%.
This is a comparison at 0 ° C. From this figure at least P
1, P2 test piece, at 400 ℃ and 650 ℃,
It can be seen that it has a breaking stress and a 0.2% yield stress that are almost comparable to those of the metal powders A and B.

【0018】図3は、各試験片の低サイクル疲労強度を
比較したものである。この図から明らかなように、P
1,P2の試験片は、金属粉末A,Bよりも高い疲労強
度を有している。図4は、P1,P2の試験片のクリー
プ強度を、金属粉末A,Bと比較したものである。この
図で横軸は温度と時間からなるラルソンミラーパラメー
タ(P)、縦軸は負荷応力(σ)であり、負荷応力が高
く、パラメータPが大きいほど、クリープ強度が高いと
いえる。この図から、P1,P2の試験片(◎で示す)
は、少なくとも金属粉末Bよりも相当に高く、かつ従来
のINCO材や粉末冶金製品でないU720CRよりも
はるかにクリープ強度が高いことがわかる。
FIG. 3 compares the low cycle fatigue strength of each test piece. As is apparent from FIG.
The test pieces 1 and P2 have higher fatigue strength than the metal powders A and B. FIG. 4 compares the creep strengths of the P1 and P2 test pieces with those of the metal powders A and B. In this figure, the horizontal axis is the Larson-Miller parameter (P) consisting of temperature and time, and the vertical axis is the load stress (σ). It can be said that the higher the load stress and the larger the parameter P, the higher the creep strength. From this figure, P1 and P2 test pieces (indicated by ⊚)
It can be seen that is at least considerably higher than the metal powder B and has a much higher creep strength than the conventional INCO material or U720CR which is not a powder metallurgy product.

【0019】従って、上述した本発明の粉末冶金製品の
熱処理方法により、微細な結晶を得ることができ、これ
により強度が金属粉末A,Bに匹敵するほどに高く、低
サイクル疲労強度は金属粉末A,Bよりも優れ、かつク
リープ強度も十分高めることができ、これにより超耐熱
部品(例えば高圧タービンディスク)への適用を可能に
することができる。
Therefore, by the heat treatment method of the powder metallurgical product of the present invention described above, fine crystals can be obtained, whereby the strength is as high as that of the metal powders A and B, and the low cycle fatigue strength is the metal powder. It is superior to A and B, and the creep strength can be sufficiently increased, which enables application to super heat resistant parts (for example, high pressure turbine disks).

【0020】なお、本発明は上述した実施形態に限定さ
れず、本発明の要旨を逸脱しない範囲で種々変更できる
ことは勿論である。
It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that various changes can be made without departing from the spirit of the present invention.

【0021】[0021]

【発明の効果】上述したように、本発明の粉末冶金製品
の熱処理方法は、U720PMとして市販されはじめた
新規の金属粉末Cを用いた粉末冶金製品の疲労強度とク
リープ強度を高め、これにより超耐熱部品への適用を可
能にすることができる、等の優れた効果を有する。
As described above, the heat treatment method for a powder metallurgical product of the present invention increases the fatigue strength and creep strength of a powder metallurgical product using the novel metal powder C which has been commercially available as U720PM, and thereby, It has an excellent effect that it can be applied to heat-resistant parts.

【図面の簡単な説明】[Brief description of the drawings]

【図1】各試験片P1〜P4の金属組織を示す顕微鏡写
真である。
FIG. 1 is a micrograph showing a metal structure of each of test pieces P1 to P4.

【図2】各試験片の引張特性(破断応力と0.2%降伏
応力)を400℃と650℃で比較したものである。
FIG. 2 is a comparison of tensile properties (breaking stress and 0.2% yield stress) of each test piece at 400 ° C. and 650 ° C.

【図3】各試験片の低サイクル疲労強度を比較したもの
である。
FIG. 3 is a comparison of low cycle fatigue strength of each test piece.

【図4】P1,P2の試験片のクリープ強度を、金属粉
末A,Bと比較したものである。
FIG. 4 is a comparison of creep strengths of P1 and P2 test pieces with metal powders A and B.

【符号の説明】[Explanation of symbols]

A 金属粉末(AF115) B 金属粉末(Rene95) C 金属粉末(U720PM) P1〜P4 試験片 A metal powder (AF115) B metal powder (Rene95) C metal powder (U720PM) P1 to P4 test pieces

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Ni,Co,Cr,Mo,W,Al,T
iを主成分とする粉末冶金製品を、約1100℃に保持
して固溶させたのち急冷して溶体化処理し、次いで約6
50℃で保持した後に空冷して安定化処理し、次いで約
760℃で保持した後に空冷して時効処理する、ことを
特徴とする粉末冶金製品の熱処理方法。
1. Ni, Co, Cr, Mo, W, Al, T
A powder metallurgical product containing i as a main component is held at about 1100 ° C. to form a solid solution, which is then rapidly cooled for solution treatment, and then about 6
A method for heat treatment of a powder metallurgical product, which comprises holding at 50 ° C., air-cooling for stabilization treatment, and then holding at about 760 ° C., air-cooling for aging treatment.
【請求項2】 前記溶体化処理における急冷を、油冷又
は強制空冷で行う、ことを特徴とする請求項1に記載の
粉末冶金製品の熱処理方法。
2. The heat treatment method for a powder metallurgy product according to claim 1, wherein the quenching in the solution treatment is performed by oil cooling or forced air cooling.
【請求項3】 前記溶体化処理、安定化処理、及び時効
処理における保持時間はそれぞれ約4時間、約24時
間、及び約16時間である、ことを特徴とする請求項1
乃至2に記載の粉末冶金製品の熱処理方法。
3. The holding times in the solution treatment, stabilization treatment and aging treatment are about 4 hours, about 24 hours and about 16 hours, respectively.
2. A heat treatment method for a powder metallurgy product according to any one of 1 to 3.
【請求項4】 前記粉末冶金製品は、Hf及びNbを含
まないニッケル基超合金である、ことを特徴とする請求
項1乃至3に記載の粉末冶金製品の熱処理方法。
4. The heat treatment method for a powder metallurgy product according to claim 1, wherein the powder metallurgy product is a nickel-base superalloy that does not contain Hf and Nb.
【請求項5】 前記ニッケル基超合金は、Co15,C
r16,Ti5,Mo3,Al2.5を含む、ことを特
徴とする請求項1乃至4に記載の粉末冶金製品の熱処理
方法。
5. The nickel-base superalloy is Co15, C
The heat treatment method for a powder metallurgical product according to claim 1, comprising r16, Ti5, Mo3, and Al2.5.
JP45096A 1996-01-08 1996-01-08 Heat treatment method for powder metallurgy products Pending JPH09184053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP45096A JPH09184053A (en) 1996-01-08 1996-01-08 Heat treatment method for powder metallurgy products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP45096A JPH09184053A (en) 1996-01-08 1996-01-08 Heat treatment method for powder metallurgy products

Publications (1)

Publication Number Publication Date
JPH09184053A true JPH09184053A (en) 1997-07-15

Family

ID=11474137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP45096A Pending JPH09184053A (en) 1996-01-08 1996-01-08 Heat treatment method for powder metallurgy products

Country Status (1)

Country Link
JP (1) JPH09184053A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1293583A1 (en) * 2001-09-18 2003-03-19 Honda Giken Kogyo Kabushiki Kaisha Ni based alloy, method for producing the same, and forging die
CN113637929A (en) * 2021-07-14 2021-11-12 北京科技大学 Heat treatment process for improving room temperature strength of nickel-based high-temperature alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1293583A1 (en) * 2001-09-18 2003-03-19 Honda Giken Kogyo Kabushiki Kaisha Ni based alloy, method for producing the same, and forging die
US6997994B2 (en) 2001-09-18 2006-02-14 Honda Giken Kogyo Kabushiki Kaisha Ni based alloy, method for producing the same, and forging die
CN113637929A (en) * 2021-07-14 2021-11-12 北京科技大学 Heat treatment process for improving room temperature strength of nickel-based high-temperature alloy

Similar Documents

Publication Publication Date Title
JP5278936B2 (en) Heat resistant superalloy
JP5696995B2 (en) Heat resistant superalloy
US20220380867A1 (en) Precipitation Hardenable Cobalt-Nickel Base Superalloy And Article Made Therefrom
JP5985754B2 (en) Ni-base alloy product and manufacturing method thereof
JP2778705B2 (en) Ni-based super heat-resistant alloy and method for producing the same
JP6826235B2 (en) Ni-based alloy softened powder and method for producing the softened powder
JP2016532777A (en) Superalloy and parts made thereof
JP7073051B2 (en) Manufacturing method of superalloy articles and related articles
US6969431B2 (en) High temperature powder metallurgy superalloy with enhanced fatigue and creep resistance
US6866727B1 (en) High temperature powder metallurgy superalloy with enhanced fatigue and creep resistance
JP2023520951A (en) Low stacking fault energy superalloy, structural member and use thereof
JP2015193870A (en) MANUFACTURING METHOD OF Fe-Ni BASE HEAT-RESISTANT SUPERALLOY
JPS63114950A (en) Method for forming fatique and cracking resistant nickel-base superalloy and formed product
KR20040089592A (en) Precipitation-strengthened nickel-iron-chromium alloy and process therefor
JPH0138848B2 (en)
CN114929912B (en) Nickel-based superalloy
JPH09184053A (en) Heat treatment method for powder metallurgy products
WO2024139241A1 (en) Powder superalloy and preparation method therefor and use thereof
JPS5837382B2 (en) Heat treatment method for nickel-based heat-resistant alloy
JP6185347B2 (en) Intermediate material for splitting Ni-base superheat-resistant alloy and method for producing the same, and method for producing Ni-base superheat-resistant alloy
JPH1025557A (en) Method for heat treating nickel base superalloy
TWI663263B (en) High creep-resistant equiaxed grain nickel-based superalloy
JP3590430B2 (en) Ti alloy disc with excellent heat resistance
JP4035617B2 (en) Iridium-based alloy and manufacturing method thereof
JP6803573B2 (en) Ni-based unidirectional solidified alloy