JPH09181704A - Cdma multi-path searth method and cdma signal receiver - Google Patents

Cdma multi-path searth method and cdma signal receiver

Info

Publication number
JPH09181704A
JPH09181704A JP33520995A JP33520995A JPH09181704A JP H09181704 A JPH09181704 A JP H09181704A JP 33520995 A JP33520995 A JP 33520995A JP 33520995 A JP33520995 A JP 33520995A JP H09181704 A JPH09181704 A JP H09181704A
Authority
JP
Japan
Prior art keywords
path
phase
replica
code replica
spread
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33520995A
Other languages
Japanese (ja)
Other versions
JP3745430B2 (en
Inventor
Mamoru Sawahashi
衛 佐和橋
Kenichi Higuchi
健一 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP33520995A priority Critical patent/JP3745430B2/en
Publication of JPH09181704A publication Critical patent/JPH09181704A/en
Application granted granted Critical
Publication of JP3745430B2 publication Critical patent/JP3745430B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain the method for multi-path search able to be RAKE synthesis (in-phase synthesis) with respect to plural paths in following to a fluctuation of a delay profile of a code division multiple access system (CDMA) signal. SOLUTION: A search finger is used to detect reception signal levels at all tip phases (S1). Through the detection of a mean reception signal level in the initial search, a path subjected to be RAKE synthesis is selected by a RAKE synthesis path selection means (S2). In regard to the selected path, a tracking finger is sued to detect correlation of the selected path. After integration and damping, demodulation is conducted for each path and RAKE synthesis is executed. Each trackihg finger has a tracking function independently of each path. When paths are in duplicate, the selected path is allocated again based on ranking information of the reception signal level as to a tracking finger (S4). Based on phase update information of spread code replica of each tracking finger, a phase of the spread code replica of each path subject to RAKE synthesis is managed in real time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、スペクトル拡散を
用いた符号分割多元接続方式(CDMA)の受信に関す
るものである。とりわけ、セルラ構成を用いた移動通信
分野におけるCDMAの受信に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to reception of a code division multiple access system (CDMA) using spread spectrum. In particular, it relates to the reception of CDMA in the field of mobile communication using a cellular structure.

【0002】[0002]

【従来の技術】DS−CDMA(Direct Sequence - Cod
e Division Multiple Access:直接拡散−符号分割多元
接続方式) は、複数の通信者が同一の周波数帯を用いて
通信を行う方式であり、各通信者の識別は拡散符号で行
う。移動通信では、多重波伝搬の各受信波の伝搬路長に
ばらつきがあるために、伝搬遅延時間が異なる多重波が
干渉しあう。DS−CDMA通信においては、情報デー
タを伝搬遅延時間よりも周期に短い高速のレートの拡散
符号で帯域拡散するために、この伝搬遅延時間の異なる
それぞれの多重波が分離・抽出できるようになる。移動
局は基地局に対して変動するために、この遅延プロファ
イル(遅延時間に対する信号電力分布)も時間変動す
る。また、それぞれのパスの信号は、見通しでない所で
はレイリー変動をする。DS−CDMAにおいては、こ
の時間分離した伝搬遅延時間の異なる複数のレイリー変
動をするマルチパス信号をかき集めて、同相合成(RA
KE合成)することにより。ダイバーシチ効果が得られ
て受信特性が向上する。あるいは、一定の受信品質(ビ
ット誤り率)に対しては、RAKE合成に伴うダイバー
シチ効果により送信電力を低減することができ、従って
同一セル内、セル外の他ユーザに対しての干渉電力が低
減するために、一定周波数帯域における加入者容量を増
大することができる。
2. Description of the Related Art DS-CDMA (Direct Sequence-Cod)
e Division Multiple Access (direct diffusion-code division multiple access method) is a method in which a plurality of communication parties communicate using the same frequency band, and each communication party is identified by a spread code. In mobile communication, multiple waves having different propagation delay times interfere with each other due to variations in the propagation path length of each received wave of multiple wave propagation. In the DS-CDMA communication, since the information data is band-spread with a spreading code having a high rate that is shorter than the propagation delay time, it is possible to separate and extract multiple waves having different propagation delay times. Since the mobile station changes with respect to the base station, this delay profile (signal power distribution with respect to delay time) also changes with time. In addition, the signals on the respective paths fluctuate in Rayleigh in places where the line of sight is not visible. In DS-CDMA, a plurality of Rayleigh-varying multipath signals having different propagation delay times separated by this time are scraped together to perform in-phase combining (RA
KE synthesis). A diversity effect is obtained and reception characteristics are improved. Alternatively, for a certain reception quality (bit error rate), the transmission power can be reduced by the diversity effect associated with RAKE combining, and therefore the interference power with respect to other users in the same cell or outside the cell can be reduced. Therefore, the subscriber capacity in a certain frequency band can be increased.

【0003】しかし、前述のように移動局は基地局に対
して相対変動をするために、遅延プロファイルも変動
し、RAKE合成すべきパスの遅延時間も変動する。従
って、移動通信環境下では、遅延プロファイルの変動に
対して追従し、瞬時において最大の信号電力が得られる
複数パスに対してRAKE合成できるような、マルチパ
ス・サーチ、トラッキング機能が受信機に必要になる。
However, since the mobile station changes relative to the base station as described above, the delay profile also changes, and the delay time of the path to be RAKE combined also changes. Therefore, in a mobile communication environment, the receiver needs a multipath search and tracking function that can follow the variation of the delay profile and perform RAKE combining for multiple paths that can instantly obtain the maximum signal power. become.

【0004】[0004]

【発明が解決しようとする課題】本発明は、セルラDS
−CDMA通信において遅延プロファイルの変動するマ
ルチパス信号に対して、プロファイルの変動に対して追
従特性の良好な、高精度のRAKE合成パスを選択する
マルチパス・サーチ・トラッキング方法及びCDMA信
号受信装置を提供するものである。
DISCLOSURE OF THE INVENTION The present invention is a cellular DS
-A multipath search tracking method and a CDMA signal receiving apparatus for selecting a highly accurate RAKE combining path having a good tracking characteristic with respect to a profile variation with respect to a multipath signal with a varying delay profile in CDMA communication. It is provided.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
めに、請求項1記載の発明は、CDMA信号のマルチパ
ス・サーチ方法において、チャネルに対応した拡散レプ
リカ符号を発生し、各パスの受信タイミングに応じた位
相の前記拡散レプリカ符号を用いて、各パスの受信信号
と相関検出を行い、RAKE合成パス・サーチ範囲にお
いて、各パスの受信信号レベルを検出し、前記受信信号
レベルを基に、一定周期毎にRAKE合成パスを選択
し、前記各パスの相関検出して得られた拡散符号レプリ
カ位相更新情報を入力として、RAKE合成パスの拡散
符号レプリカ位相を管理して、合成パス位置の重複の場
合に再割り当てを行うことを特徴とする。
In order to solve the above-mentioned problems, the invention according to claim 1 generates a spreading replica code corresponding to a channel in a multi-path search method for a CDMA signal, and Correlation detection is performed with the reception signal of each path using the spread replica code having a phase corresponding to the reception timing, the reception signal level of each path is detected in the RAKE combining path search range, and the reception signal level is used as a basis. , A RAKE combining path is selected at regular intervals, the spreading code replica phase update information obtained by detecting the correlation of each path is input, and the spreading code replica phase of the RAKE combining path is managed to determine the combining path position. The feature is that reallocation is performed in the case of duplication.

【0006】請求項2記載の発明は、CDMA信号を受
信するための装置において、チャネルに対応した拡散レ
プリカ符号を発生する拡散符号レプリカ発生器と、各パ
スの受信タイミングに応じた位相の前記拡散レプリカ符
号を用いて、各パスの受信信号と相関検出を行うトラッ
キング・フィンガと、RAKE合成パス・サーチ範囲に
おいて、各パスの受信信号レベルを検出するサーチ・フ
ィンガと、前記受信信号レベルを基に、一定周期毎にR
AKE合成パスを選択するとともに、前記各パスの相関
検出して得られた拡散符号レプリカ位相更新情報を入力
として、RAKE合成パスの拡散符号レプリカ位相を管
理して、合成パス位置の重複の場合に再割り当てを行う
コントロール手段とを有することを特徴とする。
According to a second aspect of the invention, in a device for receiving a CDMA signal, a spreading code replica generator for generating a spreading replica code corresponding to a channel, and the spreading of a phase corresponding to a reception timing of each path. A tracking finger for detecting a correlation with a received signal of each path by using a replica code, a search finger for detecting a received signal level of each path in the RAKE combining path search range, and a tracking finger based on the received signal level. , R at regular intervals
When the AKE combining path is selected, the spreading code replica phase update information obtained by detecting the correlation of each path is input, the spreading code replica phase of the RAKE combining path is managed, and in the case of overlapping of the combining path positions, And a control means for performing reallocation.

【0007】請求項3記載の発明は、請求項2記載のC
DMA信号受信装置において、前記トラッキング・フィ
ンガは、前記拡散符号レプリカ発生器からの拡散符号レ
プリカと、コントロール手段からの各パスに対する拡散
符号レプリカの位相情報を入力として、各パスの受信信
号の拡散符号の位相に同期した、および±Δ位相のシフ
トした拡散符号レプリカを生成する拡散符号レプリカ遅
延手段と、前記受信信号に、前記拡散符号レプリカ遅延
手段からの受信拡散符号に同期した拡散符号レプリカを
乗算する第1乗算手段と、前記乗算手段の出力信号を一
定時間積分する積分・ダンプ手段と、前記受信信号に、
前記拡散符号レプリカ遅延手段からの受信拡散符号の同
期位相に対して±Δ位相のシフトした拡散符号レプリカ
をそれぞれ乗算する第2乗算手段と、前記第2乗算手段
の出力信号をそれぞれ一定時間積分する積分・ダンプ手
段と、前記積分・ダンプ手段の出力信号から拡散符号レ
プリカ位相誤差を検出する拡散符号レプリカ位相誤差検
出手段とを有することを特徴とする。
The invention described in claim 3 is the C described in claim 2.
In the DMA signal receiving apparatus, the tracking finger inputs the spreading code replica from the spreading code replica generator and the phase information of the spreading code replica for each path from the control means, and inputs the spreading code of the received signal of each path. A spreading code replica delay means for generating a spreading code replica synchronized with the phase of and a phase shift of ± Δ, and the received signal is multiplied by a spreading code replica synchronized with the received spreading code from the spreading code replica delay means. First multiplying means, integrating / dumping means for integrating the output signal of the multiplying means for a certain period of time, and the received signal,
Second multiplication means for multiplying the spread code replicas having a phase shift of ± Δ with respect to the synchronous phase of the spread code received from the spread code replica delay means, and output signals of the second multiplication means are integrated for a certain period of time. The present invention is characterized by including integration / dump means and spread code replica phase error detection means for detecting a spread code replica phase error from the output signal of the integration / dump means.

【0008】請求項4記載の発明は、請求項2又は3記
載のCDMA信号受信装置において、前記サーチ・フィ
ンガは、前記拡散符号レプリカ発生器出力の拡散符号レ
プリカ信号に対して遅延を与える拡散符号レプリカ遅延
手段と、入力変調信号と前記拡散符号レプリカ遅延手段
出力の拡散符号レプリカとを乗算する乗算手段と、前記
乗算手段出力信号を一定時間積分する積分・ダンプ手段
と、前記積分・ダンプ手段出力信号を振幅2乗する振幅
2乗手段と、前記振幅2乗手段出力信号を入力として拡
散符号レプリカ位相に対する平均受信信号電力を生成す
る受信レベルメモリ手段とから構成されることを特徴と
する。
According to a fourth aspect of the present invention, in the CDMA signal receiving apparatus according to the second or third aspect, the search finger gives a spread code that gives a delay to a spread code replica signal output from the spread code replica generator. Replica delay means, multiplication means for multiplying the input modulation signal by the spreading code replica output from the spreading code replica delay means, integration / dump means for integrating the multiplication output signal for a certain period of time, and integration / dump means output It is characterized by comprising an amplitude squaring means for squaring the signal by an amplitude squared, and a reception level memory means for receiving the output signal of the amplitude squaring means and generating an average received signal power for a spread code replica phase.

【0009】請求項5記載の発明は、請求項2〜4いず
れか記載のCDMA信号受信装置において、前記拡散符
号レプリカ発生器から発生する拡散符号がロングコード
拡散符号であることを特徴とする。
According to a fifth aspect of the present invention, in the CDMA signal receiving apparatus according to any of the second to fourth aspects, the spreading code generated from the spreading code replica generator is a long code spreading code.

【0010】上記の様な構成を用いることにより、移動
通信環境下において、遅延プロファイルの変動に対して
追従し、瞬時において最大の信号電力が得られる複数パ
スに対してRAKE合成できるような、マルチパス・サ
ーチ、トラッキングができる。
By using the above-mentioned configuration, in a mobile communication environment, it is possible to perform RAKE combining for a plurality of paths that follow delay profile fluctuations and can instantaneously obtain maximum signal power. Can perform path search and tracking.

【0011】[0011]

【発明の実施の形態】図1に本発明のマルチパス・サー
チ方式におけるサーチ・アルゴリズムを示す。図2に本
発明のマルチパス・サーチ方式の基本動作を示す。
FIG. 1 shows a search algorithm in the multipath search system of the present invention. FIG. 2 shows the basic operation of the multipath search system of the present invention.

【0012】図1、図2を用いて、遅延プロファイルの
変動するマルチパス信号に対して、プロファイルの変動
に対して追従特性の良好な、高精度のRAKE合成パス
を選択するマルチパス・サーチ・トラッキングを説明す
る。
With reference to FIGS. 1 and 2, a multi-path search for selecting a highly accurate RAKE combining path having a good follow-up characteristic with respect to profile fluctuations with respect to multi-path signals with varying delay profiles. Tracking will be explained.

【0013】まず、サーチ・フィンガで、遅延プロファ
イルのサーチ範囲におけるオーバ・サンプリングを考慮
した、全てのチップ位相における受信信号レベルを検出
する(S1)。これは、各チップ位相毎に順次受信信号
レベルの検出を行い、サーチ範囲の全チップ位相におけ
る受信信号レベルを検出後、さらに数周期レベル検出を
行って1サーチ単位位相あたりの平均の受信信号レベル
を求めることで行う。各パスはレイリー変動を受けてい
るため、平均の受信信号レベルを求めるには、ドップラ
周波数が平均できる程度に長い時間受信レベルの平均化
を行う必要がある。
First, the search finger detects the received signal level in all chip phases in consideration of over-sampling in the search range of the delay profile (S1). This is to detect the received signal level sequentially for each chip phase, detect the received signal level in all chip phases in the search range, and then perform level detection for several cycles to detect the average received signal level per search unit phase. By asking for. Since each path is subject to Rayleigh fluctuations, it is necessary to average the reception level for a long period of time so that the Doppler frequency can be averaged, in order to obtain the average reception signal level.

【0014】この初期のサーチにおける平均受信信号レ
ベル検出により、RAKE合成パス選択手段でRAKE
合成すべきパスを選択する(S2)。この選択したパス
について、トラッキング・フィンガで相関検出を行う。
そして、積分・ダンプ後、各パス毎に復調を行いRAK
E合成する。各トラッキング・フィンガは、各パス毎に
独立トラッキング機能を有する。各パスが独立のトラッ
キングを行うために、異なるパスについて相関検出を行
った場合、パスが重なる場合もある。この場合には、一
方のトラッキング・フィンガについて、受信信号レベル
のランキング情報を基に選択パスの再割り当てを行う
(S4)。受信拡散レプリカ符号位相を基に、RAKE
合成しているパスの遅延時間を認識できる。
By detecting the average received signal level in this initial search, the RAKE combining path selection means RAKE.
A path to be combined is selected (S2). Correlation detection is performed by the tracking finger for the selected path.
After integration and dumping, demodulation is performed for each path and RAK is performed.
E Combine. Each tracking finger has an independent tracking function for each pass. When the correlation detection is performed for different paths because each path performs independent tracking, the paths may overlap. In this case, the selected path is reassigned to one of the tracking fingers based on the received signal level ranking information (S4). RAKE based on the received spread replica code phase
The delay time of the synthesized paths can be recognized.

【0015】また、トラッキング・フィンガが、独立に
トラッキングを行っているために、トラッキングに伴う
各トラッキング・フィンガの拡散符号レプリカの位相更
新情報を基に、RAKE合成の各パスの拡散符号レプリ
カの位相をリアルタイムで管理する(S4)。
Since the tracking fingers perform tracking independently, the phase of the spreading code replica of each path of RAKE combining is based on the phase update information of the spreading code replica of each tracking finger accompanying tracking. Is managed in real time (S4).

【0016】複数のサーチ・フィンガは、RAKE合成
すべき遅延時間の範囲の全チップ位相について受信信号
レベル検出を行い、さらに各チップ位相について平均化
して一定時間周期でRAKE合成パスを選択し、対応す
る拡散符号レプリカ符号を複数のトラッキング・フィン
ガのレプリカ符号として与える(S3)。
The plurality of search fingers detect the received signal level for all the chip phases within the range of the delay time to be RAKE-combined, and further average each chip phase to select the RAKE-combined path at a fixed time period. The spreading code replica code to be applied is given as a replica code of a plurality of tracking fingers (S3).

【0017】この図1の動作は、実際の信号との対応を
示す図2を参照することで、より理解が深まる。図2に
おいて、(a)は、受信信号を表しており、情報データ
N個のシンボル間、マルチパス・サーチが行われる。
(b)は、サーチ・フィンガで検出される各マルチパス
信号の受信信号レベルを表している。また、(c)は各
パスに割り当てれてたトラッキング・フィンガがトラッ
キングしている様子を表している。DLL(Delay Lock
Loop) でトラッキングを行う。(d)はコントロールが
トラッキング・フィンガに対して、制御を行っている様
子を示している。(e)は、サーチ・フィンガが周期的
にサーチする様子を示している。
The operation of FIG. 1 will be better understood by referring to FIG. 2 showing the correspondence with the actual signal. In FIG. 2, (a) represents a received signal, and a multipath search is performed between N symbols of information data.
(B) represents the received signal level of each multipath signal detected by the search finger. Further, (c) shows that the tracking fingers assigned to each path are tracking. DLL (Delay Lock
Loop). (D) shows that the control is controlling the tracking finger. (E) shows how the search finger periodically searches.

【0018】まず、サーチ・フィンガは、マルチパス・
サーチ範囲内で、各コード位相毎に受信信号レベルを検
出し、その受信信号レベルの高いコード位相に対してト
ラッキング・フィンガを割り当てる。割り当てられたト
ラッキング・フィンガは、受信信号の拡散符号位相に対
して±Δ位相シフトした拡散符号でトラッキングを行う
と同時に、復調を行う。コントロールは、トラッキング
・フィンガが同じ位置になった場合、RAKE合成パス
の変更を指示する。また、サーチ・フィンガは、周期的
にサーチを継続し、各コード位相受信信号のレベルを検
出しているので、トラッキング・フィンガのパスとサー
チ・フィンガの受信レベルを比較して、復調するための
拡散符号レプリカの位相を指定する。
First, the search finger is a multipath
Within the search range, the received signal level is detected for each code phase, and the tracking finger is assigned to the code phase having a high received signal level. The assigned tracking finger performs tracking with a spreading code that is ± Δ phase shifted with respect to the spreading code phase of the received signal, and at the same time demodulates. The control directs the change of the RAKE composite path if the tracking fingers are in the same position. Further, since the search finger continues the search periodically and detects the level of each code phase received signal, it is necessary to compare the path of the tracking finger with the received level of the search finger for demodulation. Specifies the phase of the spreading code replica.

【0019】[0019]

【実施例】図3に本発明の具体的な実施例構成を示すブ
ロック図である。
FIG. 3 is a block diagram showing the configuration of a specific embodiment of the present invention.

【0020】100は受信入力拡散信号が入力される端
子である。200はトラッキング・フィンガで、トラッ
キングと逆拡散を行う。300はサーチ・フィンガで、
各位相における受信信号のレベルを検出する。402は
RAKE合成パス選択部で、サーチ・フィンガ300や
トラッキング・フィンガからの信号により、拡散符号の
位相を選択している。403はパイロット内挿補間絶対
同期検波器で、トラッキング・フィンガ200で逆拡散
された信号を同期検波する。404は拡散符号レプリカ
発生器で、トラッキング・フィンガ200やサーチフィ
ンガ300に対して、使用する特定チャネルに対する拡
散符号レプリカを供給している。トラッキング・フィン
ガ200やサーチフィンガ300は、この拡散符号レプ
リカを所定量遅延して使用している。405はRAKE
合成回路で、各パスの信号を合成する。
Reference numeral 100 is a terminal to which the received input spread signal is input. A tracking finger 200 performs tracking and despreading. 300 is a search finger,
The level of the received signal in each phase is detected. Reference numeral 402 denotes a RAKE combining path selection unit, which selects the phase of the spread code based on signals from the search finger 300 and the tracking finger. Reference numeral 403 denotes a pilot interpolation interpolation absolute synchronous detector, which synchronously detects the signal despread by the tracking finger 200. A spreading code replica generator 404 supplies the spreading code replica for the specific channel to be used to the tracking finger 200 and the search finger 300. The tracking finger 200 and the search finger 300 delay and use this spread code replica by a predetermined amount. 405 is RAKE
The synthesis circuit synthesizes the signals of the respective paths.

【0021】201,202,203及び301は乗算
器で、拡散符号レプリカと受信信号とを乗算して逆拡散
を行う。204,205,207及び302は積分・ダ
ンプ回路で、一定時間積分している。208,209及
び303は振幅2乗回路で回路振幅2乗検波して信号レ
ベルを検出している。
Reference numerals 201, 202, 203 and 301 denote multipliers, which perform despreading by multiplying the spread code replica by the received signal. Reference numerals 204, 205, 207 and 302 denote integration / dump circuits, which integrate for a fixed time. Reference numerals 208, 209, and 303 denote circuit amplitude square-law detection by an amplitude square circuit to detect a signal level.

【0022】上記の様な構成の回路構成の動作を説明す
る。サーチ・フィンガ300の全チップ位相の受信レベ
ル検出情報を基に、RAKE合成パス選択部402で指
定された遅延のパスに対応する拡散レプリカ符号を用い
て、トラッキング・フィンガ200は、逆拡散を行う。
この逆拡散後の信号に対して復調する。
The operation of the circuit configuration as described above will be described. The tracking finger 200 performs despreading using the spreading replica code corresponding to the delay path designated by the RAKE combining path selection unit 402 based on the reception level detection information of all chip phases of the search finger 300. .
The despread signal is demodulated.

【0023】復調方式としては、遅延検波、同期検波等
がある。絶対同期検波では受信の絶対位相を推定する必
要がある。本実施例では、パイロット・シンボルを用い
て、パイロット・シンボルの位相をリファレンス位相と
して、各情報シンボルの位相を推定することで、絶対同
期検波を行っている(403)。
As demodulation methods, there are delay detection, synchronous detection and the like. In absolute synchronous detection, it is necessary to estimate the absolute phase of reception. In this embodiment, absolute synchronous detection is performed by using the pilot symbol and estimating the phase of each information symbol with the phase of the pilot symbol as the reference phase (403).

【0024】また、トラッキング・フィンガ200で
は、受信拡散変調信号と、各パスの受信信号の拡散符号
位相に同期した拡散符号レプリカ位相に対して±Δ位相
のシフトしたレプリカ符号とで相関検出(201,20
2)を行い、積分・ダンプ回路204及び205で一定
時間積分し、振幅2乗検波して(208,209)、デ
ータ変調成分、瞬時位相変動成分を除去する。その後、
+Δ位相シフトした拡散符号レプリカと、−Δ位相シフ
トした拡散符号レプリカとで、振幅2乗出力を互いに逆
極性で加算(210)して、拡散符号レプリカのチップ
・タイミング誤差信号を生成する。このチップ・タイミ
ング誤差信号をループ・フィルタ211で平均化し、こ
のループ・フィルタ出力信号に応じて拡散符号レプリカ
の位相を更新する。
Further, in the tracking finger 200, correlation detection (201) is performed between the reception spread modulation signal and the replica code which is ± Δ phase shifted with respect to the spread code replica phase synchronized with the spread code phase of the reception signal of each path. , 20
2) is performed, integration and dump circuits 204 and 205 perform integration for a certain period of time, and amplitude square detection (208, 209) is performed to remove the data modulation component and the instantaneous phase fluctuation component. afterwards,
A + Δ phase-shifted spreading code replica and a −Δ phase-shifted spreading code replica add the amplitude squared outputs in opposite polarities (210) to generate a chip timing error signal of the spreading code replica. This chip timing error signal is averaged by the loop filter 211, and the phase of the spread code replica is updated according to this loop filter output signal.

【0025】この位相更新情報をRAKE合成パス選択
部402に入力し、RAKE合成パス選択部402で
は、リアル・タイムにRAKE合成パスを管理し、パス
の重複を防ぐ。また、RAKE合成パス選択部402
は、RAKE合成を行っている各パスに対する拡散符号
レプリカの位相情報サーチ・フィンガ出力の平均遅延プ
ロファイルを基に、一定周期毎にRAKE合成パスを更
新する。
This phase update information is input to the RAKE combining path selecting section 402, and the RAKE combining path selecting section 402 manages the RAKE combining path in real time to prevent the paths from overlapping. Also, the RAKE combining path selection unit 402
Updates the RAKE combining path at regular intervals based on the average delay profile of the phase information search finger output of the spreading code replica for each path performing RAKE combining.

【0026】さらに、RAKE合成パス選択部402
は、トラッキング・フィンガ200での復調用、チップ
・タイミング誤差信号生成用の拡散符号レプリカ信号を
生成する。トラッキング・フィンガ200は、この時間
遅延を有する各パスの拡散符号レプリカと入力拡散変調
信号との、一定時間の相関検出を行って、積分出力信号
を復調器403へ入力する。
Further, the RAKE combining path selection unit 402
Generates a spread code replica signal for demodulation in the tracking finger 200 and for chip timing error signal generation. The tracking finger 200 detects the correlation between the spread code replica of each path having this time delay and the input spread modulation signal for a fixed time, and inputs the integrated output signal to the demodulator 403.

【0027】本実施例では、情報データ周期に比較して
非常に繰り返し周期の長いロングコードを用いている
(401)ので、1情報シンボル長よりも遅延時間の長
いマルチパス信号に対しても、RAKE合成を行うこと
ができる。
In this embodiment, since a long code having a very long repetition period compared to the information data period is used (401), even for a multipath signal having a delay time longer than one information symbol length, RAKE synthesis can be performed.

【0028】[0028]

【発明の効果】以上、本発明のマルチパス・サーチ方式
においては、各RAKE合成パス信号に対して独立に遅
延プロファイルの変動に対してトラッキングを行い、一
定時間毎にサーチ・フィンガで全サーチチップ位相につ
いて受信信号レベル検出を行い、RAKE合成パスを選
択してトラッキング・フィンガに割り当てている。この
ことにより、プロファイルの変動に対して、高精度な拡
散符号トラッキングが実現できる。
As described above, in the multipath search method of the present invention, the tracking of the variation of the delay profile is independently performed for each RAKE combined path signal, and all search chips are searched by the search finger at regular intervals. The received signal level is detected for the phase, and the RAKE combining path is selected and assigned to the tracking finger. This makes it possible to realize highly accurate spread code tracking with respect to profile changes.

【0029】また、プロファイルの遅延時間に応じて拡
散符号レプリカの位相を遅延させて相関検出を行うこと
により、非常に長遅延のマルチパスに対してもRAKE
合成できる。
Further, the phase of the spread code replica is delayed according to the delay time of the profile to perform correlation detection, so that RAKE is performed even for a multipath having an extremely long delay.
Can be synthesized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のマルチパス・サーチ法のフローを示す
ブロック図である。
FIG. 1 is a block diagram showing a flow of a multipath search method of the present invention.

【図2】本発明のマルチパス・サーチ法の基本動作を示
すブロック図である。
FIG. 2 is a block diagram showing the basic operation of the multipath search method of the present invention.

【図3】本発明のマルチパス・サーチ法の実施例構成を
示すブロック図である。
FIG. 3 is a block diagram showing the configuration of an embodiment of the multipath search method of the present invention.

【符号の説明】[Explanation of symbols]

100 入力端子 200 トラッキング・フィンガ 201,202,203 乗算器 204,205,207 積分・ダンプ回路 208,209 振幅2乗回路 300 サーチ・フィンガ 301 乗算器 302 積分・ダンプ回路 303 振幅2乗回路 401 拡散符号レプリカ発生器 402 RAKE合成パス選択部 403 パイロット内挿補間絶対同期検波器 405 RAKE合成回路 100 Input Terminal 200 Tracking Finger 201,202,203 Multiplier 204,205,207 Integral / Dump Circuit 208,209 Amplitude Square Circuit 300 Search Finger 301 Multiplier 302 Integral / Dump Circuit 303 Amplitude Square Circuit 401 Spreading Code Replica generator 402 RAKE combining path selection unit 403 Pilot interpolation interpolation Absolute synchronous detector 405 RAKE combining circuit

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 CDMA信号のマルチパス・サーチ方法
において、 チャネルに対応した拡散レプリカ符号を発生し、 各パスの受信タイミングに応じた位相の前記拡散レプリ
カ符号を用いて、各パスの受信信号と相関検出を行い、 RAKE合成パス・サーチ範囲において、各パスの受信
信号レベルを検出し、 前記受信信号レベルを基に、一定周期毎にRAKE合成
パスを選択し、 前記各パスの相関検出して得られた拡散符号レプリカ位
相更新情報を入力として、RAKE合成パスの拡散符号
レプリカ位相を管理して、合成パス位置の重複の場合に
再割り当てを行うことを特徴とするCDMAマルチパス
・サーチ方法。
1. A multipath search method for a CDMA signal, wherein a spread replica code corresponding to a channel is generated, and a received signal of each path is generated by using the spread replica code having a phase corresponding to a reception timing of each path. Correlation detection is performed, the received signal level of each path is detected in the RAKE combining path search range, and a RAKE combining path is selected at regular intervals based on the received signal level, and correlation detection of each path is performed. A CDMA multipath search method characterized in that the spread code replica phase update information thus obtained is used as input to manage the spread code replica phase of a RAKE combining path and to perform reallocation in the case where the combining path positions overlap.
【請求項2】 CDMA信号を受信するための装置にお
いて、 チャネルに対応した拡散レプリカ符号を発生する拡散符
号レプリカ発生器と、 各パスの受信タイミングに応じた位相の前記拡散レプリ
カ符号を用いて、各パスの受信信号と相関検出を行うト
ラッキング・フィンガと、 RAKE合成パス・サーチ範囲において、各パスの受信
信号レベルを検出するサーチ・フィンガと、 前記受信信号レベルを基に、一定周期毎にRAKE合成
パスを選択するとともに、前記各パスの相関検出して得
られた拡散符号レプリカ位相更新情報を入力として、R
AKE合成パスの拡散符号レプリカ位相を管理して、合
成パス位置の重複の場合に再割り当てを行うコントロー
ル手段とを有することを特徴とするCDMA信号受信装
置。
2. An apparatus for receiving a CDMA signal, using a spreading code replica generator for generating a spreading replica code corresponding to a channel, and the spreading replica code having a phase according to a reception timing of each path, A tracking finger for detecting the correlation with the received signal of each path, a search finger for detecting the received signal level of each path in the RAKE combining path search range, and a RAKE for every fixed period based on the received signal level. When a synthetic path is selected and the spread code replica phase update information obtained by detecting the correlation of each path is input, R
A CDMA signal receiving apparatus, comprising: a control means that manages a spread code replica phase of an AKE combining path and performs reallocation in the case where the combining path positions overlap.
【請求項3】 請求項2記載のCDMA信号受信装置に
おいて、 前記トラッキング・フィンガは、 前記拡散符号レプリカ発生器からの拡散符号レプリカ
と、コントロール手段からの各パスに対する拡散符号レ
プリカの位相情報を入力として、各パスの受信信号の拡
散符号の位相に同期した、および±Δ位相のシフトした
拡散符号レプリカを生成する拡散符号レプリカ遅延手段
と、 前記受信信号に、前記拡散符号レプリカ遅延手段からの
受信拡散符号に同期した拡散符号レプリカを乗算する第
1乗算手段と、 前記乗算手段の出力信号を一定時間積分する積分・ダン
プ手段と、 前記受信信号に、前記拡散符号レプリカ遅延手段からの
受信拡散符号の同期位相に対して±Δ位相のシフトした
拡散符号レプリカをそれぞれ乗算する第2乗算手段と、 前記第2乗算手段の出力信号をそれぞれ一定時間積分す
る積分・ダンプ手段と、 前記積分・ダンプ手段の出力信号から拡散符号レプリカ
位相誤差を検出する拡散符号レプリカ位相誤差検出手段
とを有することを特徴とするCDMA信号受信装置。
3. The CDMA signal receiving apparatus according to claim 2, wherein the tracking finger inputs the spreading code replica from the spreading code replica generator and the phase information of the spreading code replica for each path from the control means. As a spread code replica delay means for generating a spread code replica that is synchronized with the phase of the spread code of the received signal of each path and has a ± Δ phase shift, and the received signal from the spread code replica delay means. First multiplying means for multiplying a spread code replica by a spread code replica; integration / dump means for integrating an output signal of the multiplying means for a certain time; and a received spread code from the spread code replica delay means for the received signal. Second multiplication means for multiplying the spread phase code replicas of ± Δ phase with respect to the synchronization phase of It is characterized by further comprising integration / dump means for integrating the output signals of the second multiplication means for a certain period of time, and spreading code replica phase error detection means for detecting the spreading code replica phase error from the output signal of the integration / dump means. CDMA signal receiving apparatus for
【請求項4】 請求項2又は3記載のCDMA信号受信
装置において、 前記サーチ・フィンガは、 前記拡散符号レプリカ発生器出力の拡散符号レプリカ信
号に対して遅延を与える拡散符号レプリカ遅延手段と、 入力変調信号と前記拡散符号レプリカ遅延手段出力の拡
散符号レプリカとを乗算する乗算手段と、 前記乗算手段出力信号を一定時間積分する積分・ダンプ
手段と、 前記積分・ダンプ手段出力信号を振幅2乗する振幅2乗
手段と、 前記振幅2乗手段出力信号を入力として拡散符号レプリ
カ位相に対する平均受信信号電力を生成する受信レベル
メモリ手段と、 から構成されることを特徴とするCDMA信号受信装
置。
4. The CDMA signal receiving apparatus according to claim 2 or 3, wherein the search finger is a spreading code replica delay unit for delaying a spreading code replica signal output from the spreading code replica generator. Multiplying means for multiplying the modulated signal by the spread code replica output from the spread code replica delay means, integrating / dumping means for integrating the output signal of the multiplying means for a certain period of time, and squaring the amplitude of the output signal of the integrating / dumping means. A CDMA signal receiving apparatus comprising: an amplitude squaring unit; and a reception level memory unit that receives an output signal of the amplitude squaring unit and generates an average received signal power for a spread code replica phase.
【請求項5】 請求項2〜4いずれか記載のCDMA信
号受信装置において、前記拡散符号レプリカ発生器から
発生する拡散符号がロングコード拡散符号であることを
特徴とするCDMA信号受信装置。
5. The CDMA signal receiving apparatus according to claim 2, wherein the spreading code generated from the spreading code replica generator is a long code spreading code.
JP33520995A 1995-12-22 1995-12-22 CDMA multipath search method and CDMA signal receiver Expired - Fee Related JP3745430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33520995A JP3745430B2 (en) 1995-12-22 1995-12-22 CDMA multipath search method and CDMA signal receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33520995A JP3745430B2 (en) 1995-12-22 1995-12-22 CDMA multipath search method and CDMA signal receiver

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002316424A Division JP3667313B2 (en) 2002-10-30 2002-10-30 CDMA signal receiver

Publications (2)

Publication Number Publication Date
JPH09181704A true JPH09181704A (en) 1997-07-11
JP3745430B2 JP3745430B2 (en) 2006-02-15

Family

ID=18285991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33520995A Expired - Fee Related JP3745430B2 (en) 1995-12-22 1995-12-22 CDMA multipath search method and CDMA signal receiver

Country Status (1)

Country Link
JP (1) JP3745430B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0896438A1 (en) * 1997-07-31 1999-02-10 Lucent Technologies Inc. Rake receiver finger assignment avoiding path tracking duplication
WO2000002338A1 (en) * 1998-07-03 2000-01-13 Nec Corporation Cdma receiving method and circuit
US6052007A (en) * 1998-03-17 2000-04-18 Fujitsu Limited Phase control method and apparatus for synchronizing dual link transmission signals
EP1032138A2 (en) * 1999-02-24 2000-08-30 Nec Corporation Reception path search method and searcher circuit of cdma reception device
WO2000052863A1 (en) * 1999-03-01 2000-09-08 Fujitsu Limited Cdma receiver
WO2001022638A1 (en) * 1999-09-24 2001-03-29 Nec Corporation Search method in cdma mobile communication receiving system and receiving device
EP1030459A3 (en) * 1999-02-19 2002-10-30 Nec Corporation CDMA multipath receiver
US6590888B1 (en) 1998-03-04 2003-07-08 Nec Corporation Cellar system, mobile portable apparatus, base station apparatus, optimum path detecting method, and apparatus thereof
US6628698B1 (en) 1998-12-10 2003-09-30 Nec Corporation CDMA reception apparatus and power control method therefor
US6728305B2 (en) 1997-11-19 2004-04-27 Ntt Mobile Communications Network, Inc. Simultaneous plural code series generator and CDMA radio receiver using same
US6768729B1 (en) 1998-09-24 2004-07-27 Nec Corporation CDMA receiver, path detection method, and recording medium on which path detection control program is recorded
US6795422B2 (en) 1998-09-30 2004-09-21 Nec Corporation Method of providing hysteresis in detection of path timing by multiplying delay profile by weighting coefficient
US6891883B2 (en) 1998-10-07 2005-05-10 Ericsson Inc. Delay searcher and delay trackers interaction for new delays assignment to rake fingers
KR100512357B1 (en) * 2000-12-29 2005-09-02 엘지전자 주식회사 Method for Managing searcher of multi-channel in mobile communication system
JP2006515725A (en) * 2002-12-20 2006-06-01 クゥアルコム・インコーポレイテッド Management of searcher and tracker resources in wireless communication devices
US7075974B2 (en) 2000-11-27 2006-07-11 Nec Corporation Multi-path detection circuit and method for a CDMA receiver
US7149241B2 (en) 2000-10-11 2006-12-12 Nec Corporation Mobile station and method for allocating finger thereof in CDMA communication system
US7359342B2 (en) 2003-03-26 2008-04-15 Nec Corporation CDMA receiver, and path management method and path management program thereof
US7876809B2 (en) 2005-02-16 2011-01-25 Nec Corporation Code division multiple access (CDMA) receiving device, and path searching method
KR101029768B1 (en) * 2008-03-13 2011-04-19 닛본 덴끼 가부시끼가이샤 Device and method for demodulating control signals
US10054364B2 (en) 2016-02-18 2018-08-21 Leica Biosystems Nussloch Gmbh Melting apparatus for metered melting of paraffin

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0896438A1 (en) * 1997-07-31 1999-02-10 Lucent Technologies Inc. Rake receiver finger assignment avoiding path tracking duplication
US6728305B2 (en) 1997-11-19 2004-04-27 Ntt Mobile Communications Network, Inc. Simultaneous plural code series generator and CDMA radio receiver using same
US6590888B1 (en) 1998-03-04 2003-07-08 Nec Corporation Cellar system, mobile portable apparatus, base station apparatus, optimum path detecting method, and apparatus thereof
US6052007A (en) * 1998-03-17 2000-04-18 Fujitsu Limited Phase control method and apparatus for synchronizing dual link transmission signals
WO2000002338A1 (en) * 1998-07-03 2000-01-13 Nec Corporation Cdma receiving method and circuit
US6813309B1 (en) 1998-07-03 2004-11-02 Nec Corporation CDMA receiving method and circuit
AU760919B2 (en) * 1998-07-03 2003-05-22 Nec Corporation Cdma receiving method and circuit
US6768729B1 (en) 1998-09-24 2004-07-27 Nec Corporation CDMA receiver, path detection method, and recording medium on which path detection control program is recorded
US6795422B2 (en) 1998-09-30 2004-09-21 Nec Corporation Method of providing hysteresis in detection of path timing by multiplying delay profile by weighting coefficient
US6891883B2 (en) 1998-10-07 2005-05-10 Ericsson Inc. Delay searcher and delay trackers interaction for new delays assignment to rake fingers
US6628698B1 (en) 1998-12-10 2003-09-30 Nec Corporation CDMA reception apparatus and power control method therefor
EP1030459A3 (en) * 1999-02-19 2002-10-30 Nec Corporation CDMA multipath receiver
US6888812B1 (en) 1999-02-19 2005-05-03 Nec Corporation CDMA receiver
EP1032138A2 (en) * 1999-02-24 2000-08-30 Nec Corporation Reception path search method and searcher circuit of cdma reception device
EP1032138A3 (en) * 1999-02-24 2003-01-02 Nec Corporation Reception path search method and searcher circuit of cdma reception device
US6650692B2 (en) 1999-03-01 2003-11-18 Fujitsu Limited CDMA receiver
WO2000052863A1 (en) * 1999-03-01 2000-09-08 Fujitsu Limited Cdma receiver
US7079569B1 (en) 1999-09-24 2006-07-18 Nec Corporation Search method in CDMA mobile communication receiving system and receiving device
WO2001022638A1 (en) * 1999-09-24 2001-03-29 Nec Corporation Search method in cdma mobile communication receiving system and receiving device
US7149241B2 (en) 2000-10-11 2006-12-12 Nec Corporation Mobile station and method for allocating finger thereof in CDMA communication system
US7075974B2 (en) 2000-11-27 2006-07-11 Nec Corporation Multi-path detection circuit and method for a CDMA receiver
KR100512357B1 (en) * 2000-12-29 2005-09-02 엘지전자 주식회사 Method for Managing searcher of multi-channel in mobile communication system
JP2006515725A (en) * 2002-12-20 2006-06-01 クゥアルコム・インコーポレイテッド Management of searcher and tracker resources in wireless communication devices
US7359342B2 (en) 2003-03-26 2008-04-15 Nec Corporation CDMA receiver, and path management method and path management program thereof
US7876809B2 (en) 2005-02-16 2011-01-25 Nec Corporation Code division multiple access (CDMA) receiving device, and path searching method
KR101029768B1 (en) * 2008-03-13 2011-04-19 닛본 덴끼 가부시끼가이샤 Device and method for demodulating control signals
US10054364B2 (en) 2016-02-18 2018-08-21 Leica Biosystems Nussloch Gmbh Melting apparatus for metered melting of paraffin

Also Published As

Publication number Publication date
JP3745430B2 (en) 2006-02-15

Similar Documents

Publication Publication Date Title
JP3745430B2 (en) CDMA multipath search method and CDMA signal receiver
US5654980A (en) Method for controlling a receiver, and a receiver
JP5002838B2 (en) Combination of subchip resolution samples in the arms of a spread spectrum rake receiver.
US5936999A (en) Receiver and method for generating spreading codes in a receiver
US6650689B1 (en) Correlator and delay lock loop circuit
JP4280423B2 (en) CDMA receiver with multiple rake branches sharing tracking device
JPH10190528A (en) Spread spectrum receiver
JPH1051355A (en) Spread spectrum communication equipment
JP3149868B2 (en) Receiving path search method and searcher circuit for CDMA receiver
JP3228405B2 (en) Receiver of direct spread CDMA transmission system
JP3274375B2 (en) Spread spectrum demodulator
TWI399931B (en) Simple and robust digital code tracking loop for wireless communication systems
JP4651735B2 (en) Changes in the early-delay interval in a delay-locked loop
JP3385200B2 (en) Signal transmission method and spreading code synchronization method in mobile communication system
EP0966110A2 (en) Finger receiver unit capable of tracking a quick variation of a delay profile
US7023904B2 (en) Synchronization tracking circuit
JP2977019B2 (en) Dual spread spectrum transmitter and receiver
US20020018519A1 (en) Rake reception apparatus
JP3667313B2 (en) CDMA signal receiver
JP2000216703A (en) Error estimate device for direct spread reception data and direct spread receiver
JPH10164011A (en) Spread spectrum communication equipment
JP2930585B1 (en) Signal receiving apparatus in DS-CDMA system
JP3306321B2 (en) Cellular telephone system receiver
JPH08331011A (en) Receiver for spread communication system
JP3258944B2 (en) Mobile radio receiver

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051117

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081202

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees