JPH09180919A - Rare-earth bonded magnet, its composition and manufacturing method - Google Patents

Rare-earth bonded magnet, its composition and manufacturing method

Info

Publication number
JPH09180919A
JPH09180919A JP7337386A JP33738695A JPH09180919A JP H09180919 A JPH09180919 A JP H09180919A JP 7337386 A JP7337386 A JP 7337386A JP 33738695 A JP33738695 A JP 33738695A JP H09180919 A JPH09180919 A JP H09180919A
Authority
JP
Japan
Prior art keywords
rare earth
magnet
bonded magnet
earth bonded
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7337386A
Other languages
Japanese (ja)
Other versions
JP3729908B2 (en
Inventor
Koji Akioka
宏治 秋岡
Isato Shirai
勇人 白井
Takeshi Ikuma
健 井熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP33738695A priority Critical patent/JP3729908B2/en
Priority to TW085112439A priority patent/TW323374B/zh
Priority to KR1019960052715A priority patent/KR100238371B1/en
Priority to DE69627610T priority patent/DE69627610T2/en
Priority to US08/744,014 priority patent/US6143193A/en
Priority to CNB961219416A priority patent/CN1135572C/en
Priority to EP96117687A priority patent/EP0772211B1/en
Publication of JPH09180919A publication Critical patent/JPH09180919A/en
Application granted granted Critical
Publication of JP3729908B2 publication Critical patent/JP3729908B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0558Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together bonded together

Abstract

PROBLEM TO BE SOLVED: To provide a rare-earth bonded magnet having excellent moldability, magnetic characteristics and high mechanical strength making the best use of the advantages of extrusion molding. SOLUTION: The rare-earth bonded magnet is a magnet which is extrusion molded, and it contains rare-earth magnet powder and thermoplastic resin. The content of the rare-earth magnet powder is 78.1 to 83mol%. For example, an Sm-Co alloy, an R-Fe-B alloy (R indicates at least a kind selected from Y-containing rare-earth elements) and Sm-Fe-N alloy or the material properly mixed them are used as the rare-earth magnet powder. For example, liquid crystal polymer and PPS are used as the thermoplastic resin.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、希土類ボンド磁
石、希土類ボンド磁石用組成物および希土類ボンド磁石
の製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a rare earth bonded magnet, a composition for a rare earth bonded magnet, and a method for producing a rare earth bonded magnet.

【0002】[0002]

【従来の技術】希土類ボンド磁石は、希土類磁石粉末と
結合樹脂(有機バインダー)との混合物(コンパウン
ド)を所望の磁石形状に加圧成形して製造されるもので
あるが、その成形方法には、圧縮成形法、射出成形法お
よび押出成形法が利用されている。
2. Description of the Related Art A rare earth bonded magnet is manufactured by press-molding a mixture (compound) of rare earth magnet powder and a binder resin (organic binder) into a desired magnet shape. , Compression molding method, injection molding method and extrusion molding method are used.

【0003】圧縮成形法は、前記コンパウンドをプレス
金型中に充填し、これを圧縮成形して成形体を得、その
後、加熱して結合樹脂である熱硬化性樹脂を硬化させて
磁石を製造する方法である。この方法は、他の方法に比
べ、結合樹脂の量が少なくても成形が可能であるため、
得られた磁石中の樹脂量が少なくなり、磁気特性の向上
にとって有利であるが、磁石の形状に対する自由度が小
さい。
In the compression molding method, the compound is filled in a press mold, and the molded product is compression-molded to obtain a molded body, which is then heated to cure a thermosetting resin which is a binding resin to produce a magnet. Is the way to do it. Compared to other methods, this method allows molding even with a small amount of binding resin,
The amount of resin in the obtained magnet is small, which is advantageous for improving the magnetic characteristics, but the degree of freedom in the shape of the magnet is small.

【0004】押出成形法は、加熱溶融された前記コンパ
ウンドを押出成形機の金型から押し出すとともに冷却固
化し、所望の長さに切断して、磁石とする方法である。
この方法では、磁石の形状に対する自由度が大きく、薄
肉、長尺の磁石をも容易に製造できるという利点がある
が、成形時における溶融物の流動性を確保するために、
結合樹脂の添加量を圧縮成形法のそれに比べて多くする
必要があり、従って、得られた磁石中の樹脂量が多く、
磁気特性が低下するという欠点がある。
The extrusion molding method is a method of extruding a heated and melted compound from a mold of an extrusion molding machine, solidifying it by cooling, cutting it into a desired length, and forming a magnet.
In this method, there is a large degree of freedom with respect to the shape of the magnet, and there is an advantage that thin and long magnets can be easily manufactured, but in order to secure the fluidity of the melt during molding,
It is necessary to increase the addition amount of the binder resin compared to that of the compression molding method, and therefore, the resin amount in the obtained magnet is large,
There is a drawback that the magnetic properties are degraded.

【0005】射出成形法は、前記コンパウンドを加熱溶
融し、十分な流動性を持たせた状態で該溶融物を金型内
に注入し、所定の磁石形状に成形する方法である。この
方法では、磁石の形状に対する自由度は、押出成形法に
比べさらに大きく、特に、異形状の磁石をも容易に製造
できるという利点がある。しかし、成形時における溶融
物の流動性は、前記押出成形法より高いレベルが要求さ
れるので、結合樹脂の添加量は、押出成形法のそれに比
べてさらに多くする必要があり、従って、得られた磁石
中の樹脂量が多く、磁気特性がさらに低下するという欠
点がある。
The injection molding method is a method in which the compound is heated and melted, and the melt is injected into a mold in a state of having sufficient fluidity to mold it into a predetermined magnet shape. With this method, the degree of freedom with respect to the shape of the magnet is greater than that of the extrusion molding method, and in particular, there is an advantage that a magnet with a different shape can be easily manufactured. However, since the flowability of the melt at the time of molding is required to be higher than that of the extrusion molding method, the addition amount of the binder resin needs to be increased more than that of the extrusion molding method, and therefore, In addition, there is a drawback that the amount of resin in the magnet is large and the magnetic properties are further deteriorated.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、押出
成形の利点を生かしつつ、少量の結合樹脂で、成形性、
磁気特性に優れた希土類ボンド磁石、このような磁石を
得ることができる希土類ボンド磁石用組成物および希土
類ボンド磁石の製造方法を提供することにある。
SUMMARY OF THE INVENTION The object of the present invention is to obtain the moldability of a small amount of binder resin while taking advantage of the advantages of extrusion molding.
It is an object of the present invention to provide a rare earth bonded magnet having excellent magnetic properties, a composition for a rare earth bonded magnet capable of obtaining such a magnet, and a method for producing the rare earth bonded magnet.

【0007】[0007]

【課題を解決するための手段】このような目的は、下記
(1)〜(14)の本発明により達成される。
This and other objects are achieved by the present invention which is defined below as (1) to (14).

【0008】(1) 希土類磁石粉末と熱可塑性樹脂と
を含む希土類ボンド磁石用組成物を用い、押出成形によ
り製造される希土類ボンド磁石であって、希土類ボンド
磁石中の前記希土類磁石粉末の含有量が、78.1〜8
3 vol%であることを特徴とする希土類ボンド磁石。
(1) A rare earth bonded magnet produced by extrusion molding using a composition for a rare earth bonded magnet containing the rare earth magnet powder and a thermoplastic resin, the content of the rare earth magnet powder in the rare earth bonded magnet. But 78.1-8
A rare earth bonded magnet characterized by being 3 vol%.

【0009】(2) 空孔率が2 vol%以下である上記
(1)に記載の希土類ボンド磁石。
(2) The rare earth bonded magnet according to the above (1), which has a porosity of 2 vol% or less.

【0010】(3) 前記熱可塑性樹脂は、融点が40
0℃以下のものである上記(1)または(2)に記載の
希土類ボンド磁石。
(3) The thermoplastic resin has a melting point of 40.
The rare earth bonded magnet according to the above (1) or (2), which has a temperature of 0 ° C. or less.

【0011】(4) 前記熱可塑性樹脂は、ポリアミ
ド、液晶ポリマーまたはポリフェニレンサルファイドで
ある上記(1)ないし(3)のいずれかに記載の希土類
ボンド磁石。
(4) The rare earth bonded magnet according to any one of (1) to (3), wherein the thermoplastic resin is polyamide, liquid crystal polymer or polyphenylene sulfide.

【0012】(5) 前記希土類磁石粉末は、Smを主
とする希土類元素と、Coを主とする遷移金属とを基本
成分とするものである上記(1)ないし(4)のいずれ
かに記載の希土類ボンド磁石。
(5) The rare earth magnet powder contains a rare earth element mainly containing Sm and a transition metal mainly containing Co as basic components. Rare earth bonded magnet.

【0013】(6) 前記希土類磁石粉末は、R(ただ
し、RはYを含む希土類元素のうち少なくとも1種)
と、Feを主とする遷移金属と、Bとを基本成分とする
ものである上記(1)ないし(4)のいずれかに記載の
希土類ボンド磁石。
(6) The rare earth magnet powder is R (where R is at least one of rare earth elements containing Y).
The rare earth bonded magnet according to any one of the above (1) to (4), which has a transition metal mainly composed of Fe, and B as basic components.

【0014】(7) 前記希土類磁石粉末は、Smを主
とする希土類元素と、Feを主とする遷移金属と、Nを
主とする格子間元素とを基本成分とするものである上記
(1)ないし(4)のいずれかに記載の希土類ボンド磁
石。
(7) The rare earth magnet powder contains a rare earth element containing Sm as a main component, a transition metal containing Fe as a main component, and an interstitial element containing N as a main component. ) To (4) The rare earth bonded magnet according to any one of (4) to (4).

【0015】(8) 前記希土類磁石粉末は、上記
(5)、(6)および(7)に記載の希土類磁石粉末の
うちの少なくとも2種を混合したものである上記(1)
ないし(4)のいずれかに記載の希土類ボンド磁石。
(8) The rare earth magnet powder is a mixture of at least two of the rare earth magnet powders described in (5), (6) and (7) above.
The rare earth bonded magnet according to any one of (4) to (4).

【0016】(9) 無磁場中で成形された場合の磁気
エネルギー積(BH)max が8MGOe以上である上記(1)な
いし(8)のいずれかに記載の希土類ボンド磁石。
(9) The rare earth bonded magnet according to any one of the above (1) to (8), which has a magnetic energy product (BH) max of 8 MGOe or more when molded in a non-magnetic field.

【0017】(10) 磁場中で成形された場合の磁気エ
ネルギー積(BH)max が12MGOe以上である上記(1)な
いし(8)のいずれかに記載の希土類ボンド磁石。
(10) The rare earth bonded magnet according to any one of (1) to (8) above, which has a magnetic energy product (BH) max of 12 MGOe or more when molded in a magnetic field.

【0018】(11) 希土類磁石粉末と熱可塑性樹脂と
酸化防止剤とを含み、押出成形に供される希土類ボンド
磁石用組成物であって、前記希土類ボンド磁石用組成物
中の前記希土類磁石粉末の含有量が、77.6〜82.
5 vol%であることを特徴とする希土類ボンド磁石用組
成物。
(11) A composition for a rare earth bond magnet, which comprises rare earth magnet powder, a thermoplastic resin, and an antioxidant and is used for extrusion molding, wherein the rare earth magnet powder in the composition for the rare earth bond magnet is Content of 77.6-82.
A composition for a rare earth bonded magnet, which is 5 vol%.

【0019】(12) 希土類磁石粉末と熱可塑性樹脂と
酸化防止剤とを含み、押出成形に供される希土類ボンド
磁石用組成物であって、前記希土類ボンド磁石用組成物
中の前記熱可塑性樹脂と前記酸化防止剤との合計含有量
が、15.0〜22.4 vol%であることを特徴とする
希土類ボンド磁石用組成物。
(12) A composition for a rare earth bond magnet, which comprises rare earth magnet powder, a thermoplastic resin, and an antioxidant and is used for extrusion molding, wherein the thermoplastic resin in the composition for the rare earth bond magnet is used. The total content of the antioxidant and the antioxidant is 15.0 to 22.4 vol%, a rare earth bonded magnet composition.

【0020】(13) 前記希土類ボンド磁石用組成物中
の前記酸化防止剤の含有量が、2.0〜12.0 vol%
である上記(11)または(12)に記載の希土類ボンド磁
石用組成物。
(13) The content of the antioxidant in the rare earth bonded magnet composition is 2.0 to 12.0 vol%.
The composition for a rare earth bonded magnet according to the above (11) or (12), which is

【0021】(14) 上記(11)ないし(13)のいずれ
かに記載の希土類ボンド磁石用組成物を混練し、該混練
物を用いて押出成形法により磁石形状に成形することを
特徴とする希土類ボンド磁石の製造方法。
(14) The composition for rare earth bonded magnet according to any one of the above (11) to (13) is kneaded, and the kneaded product is molded into a magnet shape by an extrusion molding method. Manufacturing method of rare earth bonded magnet.

【0022】[0022]

【発明の実施の形態】以下、本発明の希土類ボンド磁
石、希土類ボンド磁石用組成物および希土類ボンド磁石
の製造方法について詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The rare earth bonded magnet, the composition for rare earth bonded magnet, and the method for producing the rare earth bonded magnet of the present invention will be described in detail below.

【0023】まず、本発明の希土類ボンド磁石について
説明する。本発明の希土類ボンド磁石は、押出成形によ
り製造されるものであり、以下のような希土類磁石粉末
と熱可塑性樹脂よりなる結合樹脂とを含む。さらに、以
下のような酸化防止剤を含むのが好ましい。
First, the rare earth bonded magnet of the present invention will be described. The rare earth bonded magnet of the present invention is manufactured by extrusion molding and contains the following rare earth magnet powder and a binder resin made of a thermoplastic resin. Furthermore, it is preferable to contain the following antioxidants.

【0024】1.希土類磁石粉末 希土類磁石粉末としては、希土類元素と遷移金属とを含
む合金よりなるものが好ましく、特に、次の[1]〜
[4]が好ましい。
1. Rare earth magnet powder The rare earth magnet powder is preferably made of an alloy containing a rare earth element and a transition metal. In particular, the following [1]-
[4] is preferred.

【0025】[1] Smを主とする希土類元素と、C
oを主とする遷移金属とを基本成分とするもの(以下、
Sm−Co系合金と言う)。
[1] A rare earth element mainly containing Sm and C
Those containing a transition metal mainly containing o as a basic component (hereinafter,
Sm-Co based alloy).

【0026】[2] R(ただし、RはYを含む希土類
元素のうち少なくとも1種)と、Feを主とする遷移金
属と、Bとを基本成分とするもの(以下、R−Fe−B
系合金と言う)。
[2] R (where R is at least one of rare earth elements including Y), a transition metal mainly containing Fe, and B as basic components (hereinafter, R-Fe-B)
System alloy).

【0027】[3] Smを主とする希土類元素と、F
eを主とする遷移金属と、Nを主とする格子間元素とを
基本成分とするもの(以下、Sm−Fe−N系合金と言
う)。
[3] A rare earth element mainly composed of Sm and F
A transition metal mainly composed of e and an interstitial element mainly composed of N (hereinafter, referred to as Sm-Fe-N-based alloy).

【0028】[4] 前記[1]〜[3]の組成のもの
のうち、少なくとも2種を混合したもの。この場合、混
合する各磁石粉末の利点を併有することができ、より優
れた磁気特性を容易に得ることができる。
[4] A mixture of at least two of the compositions [1] to [3]. In this case, it is possible to have the advantages of each magnet powder to be mixed, and it is possible to easily obtain more excellent magnetic characteristics.

【0029】Sm−Co系合金の代表的なものとして
は、SmCo5 、Sm2 TM17(ただしTMは、遷移金
属)が挙げられる。
Typical examples of Sm-Co alloys include SmCo 5 and Sm 2 TM 17 (where TM is a transition metal).

【0030】R−Fe−B系合金の代表的なものとして
は、Nd−Fe−B系合金、Pr−Fe−B系合金、N
d−Pr−Fe−B系合金、Ce−Nd−Fe−B系合
金、Ce−Pr−Nd−Fe−B系合金、これらにおけ
るFeの一部をCo、Ni等の他の遷移金属で置換した
もの等が挙げられる。
Typical R-Fe-B alloys are Nd-Fe-B alloys, Pr-Fe-B alloys, and N-Fe-B alloys.
Substitution of d-Pr-Fe-B based alloy, Ce-Nd-Fe-B based alloy, Ce-Pr-Nd-Fe-B based alloy, and some of Fe in these with other transition metals such as Co and Ni The ones that have been made are listed.

【0031】Sm−Fe−N系合金の代表的なものとし
ては、Sm2 Fe17合金を窒化して作製したSm2 Fe
173 が挙げられる。
[0031] Typical examples of the Sm-Fe-N based alloy was prepared by nitriding the Sm 2 Fe 17 alloy Sm 2 Fe
17 N 3 .

【0032】磁石粉末における前記希土類元素として
は、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、
Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、ミ
ッシュメタルが挙げられ、これらを1種または2種以上
含むことができる。また、前記遷移金属としては、F
e、Co、Ni等が挙げられ、これらを1種または2種
以上含むことができる。また、磁気特性を向上させるた
めに、磁石粉末中には、必要に応じ、B、Al、Mo、
Cu、Ga、Si、Ti、Ta、Zr、Hf、Ag、Z
n等を含有することもできる。
The rare earth elements in the magnet powder include Y, La, Ce, Pr, Nd, Pm, Sm, Eu,
Examples thereof include Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and misch metal, and one or more of these may be included. The transition metal may be F
e, Co, Ni, etc. are mentioned, and these can be contained 1 type or 2 types or more. Further, in order to improve magnetic properties, B, Al, Mo,
Cu, Ga, Si, Ti, Ta, Zr, Hf, Ag, Z
It may also contain n and the like.

【0033】また、磁石粉末の平均粒径は、特に限定さ
れないが、0.5〜50μm 程度が好ましく、1〜30
μm 程度がより好ましい。また、後述するような少量の
結合樹脂で押出成形時の良好な成形性を得るために、磁
石粉末の粒径分布は、ある程度分散されている(バラツ
キがある)のが好ましい。これにより、得られたボンド
磁石の空孔率を低減することもできる。なお、前記
[4]の場合、混合する磁石粉末の組成毎に、その平均
粒径が異なっていてもよい。
The average particle size of the magnet powder is not particularly limited, but is preferably about 0.5 to 50 μm, and 1 to 30.
It is more preferably about μm. Further, in order to obtain a good moldability at the time of extrusion molding with a small amount of a binder resin as described later, it is preferable that the particle size distribution of the magnet powder is dispersed to some extent (varies). Thereby, the porosity of the obtained bonded magnet can also be reduced. In the case of the above [4], the average particle size may differ depending on the composition of the magnet powder to be mixed.

【0034】磁石粉末の製造方法は、特に限定されず、
例えば、溶解・鋳造により合金インゴットを作製し、こ
の合金インゴットを適度な粒度に粉砕し(さらに分級
し)て得られたもの、アモルファス合金を製造するのに
用いる急冷薄帯製造装置で、リボン状の急冷薄片(微細
な多結晶が集合)を製造し、この薄片(薄帯)を適度な
粒度に粉砕し(さらに分級し)て得られたもの等、いず
れでもよい。
The method for producing the magnet powder is not particularly limited,
For example, an alloy ingot is produced by melting and casting, and the alloy ingot is crushed to an appropriate particle size (classified), and a quenched ribbon manufacturing apparatus used to manufacture an amorphous alloy is used to form a ribbon. Quenched flakes (a collection of fine polycrystals) may be produced, and the flakes (ribbons) may be pulverized to an appropriate particle size (further classified), or any other material obtained.

【0035】このような希土類磁石粉末の含有量は、7
8.1〜83 vol%程度であり、特に、79.5〜83
vol%程度であるのが好ましく、81〜83 vol%程度
であるのがより好ましい。磁石粉末の含有量が少な過ぎ
ると、磁気特性(特に磁気エネルギー積)の向上が図れ
ず、また、磁石粉末の含有量が多過ぎると、相対的に結
合樹脂の含有量が少なくなるので、押出成形時における
流動性が低下し、成形が困難または不能となる。
The content of such rare earth magnet powder is 7
It is about 8.1 to 83 vol%, especially 79.5 to 83
It is preferably about vol%, and more preferably about 81 to 83 vol%. If the content of the magnet powder is too small, the magnetic properties (especially the magnetic energy product) cannot be improved, and if the content of the magnet powder is too large, the content of the binding resin becomes relatively small, so the extrusion The fluidity at the time of molding decreases, making molding difficult or impossible.

【0036】2.結合樹脂(バインダー) 結合樹脂(バインダー)としては、熱可塑性樹脂が用い
られる。結合樹脂として従来より用いられている例えば
エポキシ樹脂のような熱硬化性樹脂を用いた場合には、
成形時における流動性が悪いので、成形性が劣り、磁石
の空孔率が増大し、機械的強度および耐食性が低いが、
熱可塑性樹脂を用いた場合には、このような問題が解消
される。また、熱可塑性樹脂は、その種類、共重合化等
により、例えば成形性を重視したものや、耐熱性、機械
的強度を重視したものというように、広範囲の選択が可
能となる。
2. Binding resin (binder) As the binding resin (binder), a thermoplastic resin is used. When a thermosetting resin such as an epoxy resin which has been conventionally used as a binding resin is used,
Since the fluidity during molding is poor, the moldability is poor, the porosity of the magnet is increased, and the mechanical strength and corrosion resistance are low,
When a thermoplastic resin is used, such a problem is solved. Further, the thermoplastic resin can be selected in a wide range depending on its type, copolymerization and the like, for example, one in which moldability is emphasized, one in which heat resistance and mechanical strength are emphasized.

【0037】使用し得る熱可塑性樹脂としては、例え
ば、ポリアミド(例:ナイロン6、ナイロン66、ナイ
ロン610、ナイロン612、ナイロン11、ナイロン
12、ナイロン6−12、ナイロン6−66)、熱可塑
性ポリイミド、液晶ポリマー、ポリフェニレンオキサイ
ド、ポリフェニレンサルファイド、ポリエチレン、ポリ
プロピレン等のポリオレフィン、変性ポリオレフィン、
ポリエーテル、ポリアセタール等、またはこれらを主と
する共重合体、ブレンド体、ポリマーアロイ等が挙げら
れ、これらのうちの1種または2種以上を混合して用い
ることができる。
As the thermoplastic resin which can be used, for example, polyamide (eg nylon 6, nylon 66, nylon 610, nylon 612, nylon 11, nylon 12, nylon 6-12, nylon 6-66), thermoplastic polyimide , Liquid crystal polymers, polyphenylene oxide, polyphenylene sulfide, polyolefins such as polyethylene and polypropylene, modified polyolefins,
Examples thereof include polyethers, polyacetals, and the like, and copolymers, blends, and polymer alloys containing these as the main components, and one or more of these can be used as a mixture.

【0038】これらのうちでも、押出成形における成形
性の向上がより顕著であり、また機械的強度が強いこと
から、ポリアミド、耐熱性向上の点から、液晶ポリマ
ー、ポリフェニレンサルファイドを主とするものが好ま
しく、ポリアミド、ポリフェニレンサルファイドを主と
するものが特に好ましい。また、これらの熱可塑性樹脂
は、磁石粉末との混練性、混練の均一性にも優れてい
る。
Among them, those mainly composed of a liquid crystal polymer and polyphenylene sulfide are preferred from the viewpoint of polyamide and heat resistance improvement because the moldability in extrusion molding is more remarkable and the mechanical strength is strong. Of these, those mainly containing polyamide or polyphenylene sulfide are particularly preferable. Further, these thermoplastic resins are also excellent in kneading property with magnet powder and uniformity of kneading.

【0039】用いられる熱可塑性樹脂は、融点が400
℃以下のものであるのが好ましく、300℃以下のもの
であるのがより好ましい。融点が400℃を超えると、
成形時の温度が上昇し、磁石粉末等の酸化が生じ易くな
る。
The thermoplastic resin used has a melting point of 400.
It is preferably not higher than 300C, more preferably not higher than 300C. If the melting point exceeds 400 ° C,
The temperature at the time of molding rises, and the magnet powder or the like is easily oxidized.

【0040】また、流動性、成形性をより向上するため
に、用いられる熱可塑性樹脂の平均分子量(重合度)
は、10000〜60000程度であるのが好ましく、
12000〜30000程度であるのがより好ましい。
The average molecular weight (degree of polymerization) of the thermoplastic resin used to further improve the fluidity and moldability
Is preferably about 10,000 to 60,000,
It is more preferably about 12,000 to 30,000.

【0041】3.酸化防止剤 酸化防止剤は、後述する希土類ボンド磁石用組成物を混
練する際等に、希土類磁石粉末の酸化(劣化、変質)や
結合樹脂の酸化(希土類磁石粉末の金属成分が触媒とし
て働くことにより生じる)を防止するために該組成物中
に添加される添加剤である。この酸化防止剤の添加は、
希土類磁石粉末の酸化を防止し、磁石の磁気特性の向上
を図るのに寄与するとともに、希土類ボンド磁石用組成
物の混練時、成形時における熱的安定性の向上に寄与
し、少ない結合樹脂量で良好な成形性を確保する上で重
要な役割を果たしている。
3. Antioxidant The antioxidant is an oxide (deterioration, deterioration) of the rare earth magnet powder or an oxidation of the binding resin (the metal component of the rare earth magnet powder acts as a catalyst when mixing the composition for the rare earth bonded magnet described later). Caused by) are added in the composition to prevent the above. The addition of this antioxidant is
It contributes to prevent the oxidation of rare earth magnet powder and to improve the magnetic properties of the magnet, and also contributes to the improvement of thermal stability at the time of kneading and molding of the composition for rare earth bonded magnet, thus reducing the amount of binder resin. And plays an important role in ensuring good moldability.

【0042】この酸化防止剤は、希土類ボンド磁石用組
成物の混練時や成形時等の中間工程において揮発した
り、変質したりするので、製造された希土類ボンド磁石
中には、その一部が残留した状態で存在している。従っ
て、希土類ボンド磁石中の酸化防止剤の含有量は、希土
類ボンド磁石用組成物中の酸化防止剤の添加量に対し、
例えば10〜90%程度、特に20〜80%程度とな
る。
This antioxidant volatilizes or deteriorates in an intermediate step such as kneading or molding of the composition for a rare earth bonded magnet, so that a part thereof is produced in the manufactured rare earth bonded magnet. It exists in a residual state. Therefore, the content of the antioxidant in the rare earth bonded magnet is relative to the amount of the antioxidant added in the composition for the rare earth bonded magnet,
For example, it is about 10 to 90%, particularly about 20 to 80%.

【0043】酸化防止剤としては、希土類磁石粉末等の
酸化を防止または抑制し得るものであればいかなるのも
でもよく、例えば、アミン系化合物、アミノ酸系化合
物、ニトロカルボン酸類、ヒドラジン化合物、シアン化
合物、硫化物等の、金属イオン、特にFe成分に対しキ
レート化合物を生成するキレート化剤が好適に使用され
る。なお、酸化防止剤の種類、組成等については、これ
らのものに限定されないことは言うまでもない。
The antioxidant may be any one as long as it can prevent or suppress the oxidation of the rare earth magnet powder and the like, and examples thereof include amine compounds, amino acid compounds, nitrocarboxylic acids, hydrazine compounds and cyan compounds. A chelating agent that forms a chelate compound with respect to metal ions, particularly Fe component, such as sulfide, is preferably used. It goes without saying that the type, composition and the like of the antioxidant are not limited to these.

【0044】このような本発明の希土類ボンド磁石にお
いて、空孔率は、2 vol%以下であるのが好ましく、
1.5 vol%以下であるのがより好ましい。空孔率が2
vol%を超えると、磁石粉末の組成、含有量、熱可塑性
樹脂の組成等の他の条件によっては、磁石の機械的強度
および耐食性が低下するおそれがある。
In such a rare earth bonded magnet of the present invention, the porosity is preferably 2 vol% or less,
It is more preferably 1.5 vol% or less. Porosity is 2
If it exceeds vol%, the mechanical strength and corrosion resistance of the magnet may decrease depending on other conditions such as the composition and content of the magnet powder and the composition of the thermoplastic resin.

【0045】以上のような本発明の希土類ボンド磁石
は、磁石粉末の組成、磁石粉末の含有量の多さ等から、
等方性磁石であっても、優れた磁気特性を有する。
In the rare earth bonded magnet of the present invention as described above, the composition of the magnet powder, the large content of the magnet powder, etc.
Even an isotropic magnet has excellent magnetic properties.

【0046】すなわち、本発明の希土類ボンド磁石は、
無磁場中で成形されたものの場合、磁気エネルギー積(B
H)max が8MGOe以上であるのが好ましく、10MGOe以上
であるのがより好ましい。また、磁場中で成形されたも
のの場合、磁気エネルギー積(BH)max が12MGOe以上で
あるのが好ましく、14MGOe以上であるのがより好まし
い。
That is, the rare earth bonded magnet of the present invention is
In the case of those molded in a non-magnetic field, the magnetic energy product (B
H) max is preferably 8 MGOe or more, more preferably 10 MGOe or more. Further, in the case of molding in a magnetic field, the magnetic energy product (BH) max is preferably 12 MGOe or more, more preferably 14 MGOe or more.

【0047】なお、本発明の希土類ボンド磁石の形状、
寸法等は特に限定されず、例えば、形状に関しては、例
えば、円柱状、角柱状、円筒状、円弧状、平板状、湾曲
板状等のあらゆる形状のものが可能であり、その大きさ
も、大型のものから超小型のものまであらゆる大きさの
ものが可能である。
The shape of the rare earth bonded magnet of the present invention,
The size and the like are not particularly limited, and for example, regarding the shape, any shape such as a columnar shape, a prismatic shape, a cylindrical shape, an arc shape, a flat plate shape, and a curved plate shape can be used, and the size thereof is large. It can be of any size, from small to very small.

【0048】次に、本発明の希土類ボンド磁石用組成物
について説明する。
Next, the composition for rare earth bonded magnet of the present invention will be explained.

【0049】本発明の希土類ボンド磁石用組成物は、主
に、前述した希土類磁石粉末と、前述した熱可塑性樹脂
と、前述した酸化防止剤とで構成される。
The rare earth bonded magnet composition of the present invention is mainly composed of the above-mentioned rare earth magnet powder, the above-mentioned thermoplastic resin, and the above-mentioned antioxidant.

【0050】この場合、希土類ボンド磁石用組成物中の
希土類磁石粉末の含有量(添加量)は、77.6〜8
2.5 vol%程度とするのが好ましく、79〜82.5
vol%程度とするのがより好ましく、80.5〜82.
5 vol%程度とするのがさらに好ましい。磁石粉末の含
有量が少な過ぎると、磁気特性(特に磁気エネルギー
積)の向上が図れず、また、磁石粉末の含有量が多過ぎ
ると、相対的に結合樹脂の含有量が少なくなるので、押
出成形時における流動性が低下し、成形が困難または不
能となる。
In this case, the content (addition amount) of the rare earth magnet powder in the composition for rare earth bonded magnets is 77.6-8.
It is preferably about 2.5 vol%, 79 to 82.5
It is more preferable to set it to about vol%, and 80.5 to 82.
It is more preferable to set the content to about 5 vol%. If the content of the magnet powder is too small, the magnetic properties (especially the magnetic energy product) cannot be improved, and if the content of the magnet powder is too large, the content of the binding resin becomes relatively small, so the extrusion The fluidity at the time of molding decreases, making molding difficult or impossible.

【0051】また、希土類ボンド磁石用組成物中の熱可
塑性樹脂および酸化防止剤のそれぞれの含有量(添加
量)は、熱可塑性樹脂、酸化防止剤の種類、組成、成形
温度、圧力等の成形条件、成形物の形状、寸法等の諸条
件に応じて異なる。得られた希土類ボンド磁石の磁気特
性の向上のためには、希土類ボンド磁石用組成物中の熱
可塑性樹脂の添加量は、混練および成形が可能な範囲
で、できるだけ少ないのが好ましい。
The content (addition amount) of each of the thermoplastic resin and the antioxidant in the composition for a rare earth bonded magnet is such that the type, composition, molding temperature, pressure, etc. of the thermoplastic resin and the antioxidant are molded. It varies depending on various conditions such as conditions, shape and size of the molded product. In order to improve the magnetic properties of the obtained rare earth bonded magnet, the amount of the thermoplastic resin added to the composition for a rare earth bonded magnet is preferably as small as possible within the range where kneading and molding are possible.

【0052】また、希土類ボンド磁石用組成物中の酸化
防止剤の添加量は、2.0〜12.0 vol%程度である
のが好ましく、3.0〜10.0 vol%程度であるのが
より好ましい。この場合、酸化防止剤の添加量は、結合
樹脂の添加量に対し10〜150%程度であるのが好ま
しく、25〜90%程度であるのがより好ましい。
The amount of the antioxidant added to the rare earth bonded magnet composition is preferably about 2.0 to 12.0 vol%, and about 3.0 to 10.0 vol%. Is more preferable. In this case, the addition amount of the antioxidant is preferably about 10 to 150%, more preferably about 25 to 90% with respect to the addition amount of the binder resin.

【0053】なお、本発明では、酸化防止剤の添加量
は、前記範囲の下限値以下であってもよく、また、無添
加であってもよいことは、言うまでもない。
In the present invention, it goes without saying that the amount of the antioxidant added may be not more than the lower limit value of the above range, or may be no addition.

【0054】希土類ボンド磁石用組成物中の熱可塑性樹
脂の添加量が少な過ぎると、希土類ボンド磁石用組成物
を混練する際の混練物の粘度が高くなり混練トルクが増
大し、発熱により磁石粉末等の酸化が促進される傾向と
なるので、酸化防止剤等の添加量が少ない場合に、磁石
粉末等の酸化を十分に抑制することができなくなるとと
もに、混練物(樹脂溶融物)の粘度上昇等により成形性
が劣り、低空孔率、高機械的強度の磁石が得られない。
また、熱可塑性樹脂の添加量が多過ぎると、成形性は良
好であるが、得られた磁石中の結合樹脂含有量が多くな
り、磁気特性が低下する。
If the amount of the thermoplastic resin added to the composition for rare-earth bonded magnets is too small, the viscosity of the kneaded material when kneading the composition for rare-earth bonded magnets will increase and the kneading torque will increase, resulting in heat generation of the magnet powder. If the amount of antioxidants added is small, the oxidation of magnet powder cannot be sufficiently suppressed and the viscosity of the kneaded product (resin melt) increases. As a result, the moldability is poor, and a magnet with low porosity and high mechanical strength cannot be obtained.
Further, if the amount of the thermoplastic resin added is too large, the moldability is good, but the content of the binder resin in the obtained magnet is large and the magnetic properties are deteriorated.

【0055】一方、希土類ボンド磁石用組成物中の酸化
防止剤の添加量が少な過ぎると、酸化防止効果が少な
く、磁石粉末の含有量が多い場合に、磁石粉末等の酸化
を十分に抑制することができなくなる。また、酸化防止
剤の添加量が多過ぎると、相対的に樹脂量が減少し、成
形体の機械的強度が低下する傾向を示す。
On the other hand, when the amount of the antioxidant added to the composition for rare earth bonded magnet is too small, the antioxidant effect is small, and when the content of the magnet powder is large, the oxidation of the magnet powder or the like is sufficiently suppressed. Can't do it. Further, when the amount of the antioxidant added is too large, the amount of resin is relatively decreased, and the mechanical strength of the molded product tends to be lowered.

【0056】このように、熱可塑性樹脂の添加量が比較
的多ければ、酸化防止剤の添加量を少なくすることがで
き、逆に、熱可塑性樹脂の添加量が少なければ、酸化防
止剤の添加量を多くする必要がある。
As described above, if the amount of the thermoplastic resin added is relatively large, the amount of the antioxidant added can be reduced. Conversely, if the amount of the thermoplastic resin added is small, the amount of the antioxidant added is small. It is necessary to increase the amount.

【0057】従って、希土類ボンド磁石用組成物中の熱
可塑性樹脂と酸化防止剤との合計添加量は、15.0〜
22.4 vol%であるのが好ましく、15.0〜20.
5 vol%であるのがより好ましく、15.0〜18.5
vol%であるのがさらに好ましい。このような範囲とす
ることにより、押出成形時における流動性、成形性、磁
石粉末等の酸化防止の向上に寄与し、低空孔率、高機械
的強度、高磁気特性の磁石が得られる。
Therefore, the total amount of the thermoplastic resin and the antioxidant added in the rare earth bonded magnet composition is 15.0 to.
It is preferably 22.4 vol%, and 15.0 to 20.
5 vol% is more preferable, and 15.0 to 18.5
More preferably, it is vol%. When the content is in such a range, it contributes to improvement of fluidity and moldability during extrusion molding, and prevention of oxidation of magnet powder and the like, and a magnet having low porosity, high mechanical strength and high magnetic properties can be obtained.

【0058】また、希土類ボンド磁石用組成物には、必
要に応じ、例えば、結合樹脂を可塑化する可塑剤(例え
ば、ステアリン酸塩、脂肪酸)、潤滑剤(例えば、シリ
コーンオイル、各種ワックス、脂肪酸、アルミナ、シリ
カ、チタニア等の各種無機潤滑剤)、その他成形助剤等
の各種添加剤を添加することもできる。
In addition, the rare earth bonded magnet composition may include, for example, a plasticizer (eg, stearate, fatty acid) that plasticizes the binding resin, a lubricant (eg, silicone oil, various waxes, fatty acids), if necessary. , Various inorganic lubricants such as alumina, silica, and titania), and various additives such as molding aids can also be added.

【0059】可塑剤の添加は、成形時の流動性を向上さ
せるので、より少ない結合樹脂の添加量で同様の特性を
得ることができ、好ましい。潤滑剤の添加についても同
様である。可塑剤の添加量は、0.1〜2.0 vol%程
度であるのが好ましく、滑剤の添加量は、0.2〜2.
5 vol%程度であるのが好ましい。
Since the addition of the plasticizer improves the fluidity at the time of molding, the same characteristics can be obtained with a smaller amount of the binder resin added, which is preferable. The same applies to the addition of a lubricant. The addition amount of the plasticizer is preferably about 0.1 to 2.0 vol%, and the addition amount of the lubricant is 0.2 to 2.
It is preferably about 5 vol%.

【0060】次に、本発明の希土類ボンド磁石の製造方
法について説明する。本発明の希土類ボンド磁石の製造
方法は、前述した希土類ボンド磁石用組成物を用い、次
のようにして行われる。
Next, a method of manufacturing the rare earth bonded magnet of the present invention will be described. The method for producing a rare earth bonded magnet of the present invention is performed as follows using the composition for a rare earth bonded magnet described above.

【0061】希土類磁石粉末と熱可塑性樹脂と酸化防止
剤とを含む希土類ボンド磁石用組成物(混合物)を、単
独のまたは押出成形機に付属の混練機等を用いて十分に
混練する。このとき、混練温度は、150〜350℃程
度が好ましい。
A rare earth bonded magnet composition (mixture) containing rare earth magnet powder, a thermoplastic resin, and an antioxidant is sufficiently kneaded alone or by using a kneader attached to an extruder. At this time, the kneading temperature is preferably about 150 to 350 ° C.

【0062】得られた混練物(コンパウンド)を、押出
成形機のシリンダ内で、熱可塑性樹脂の溶融温度以上の
温度に加熱して溶融し、この溶融物を磁場中または無磁
場中(配向磁場が例えば10〜20kOe )で、押出成形
機のダイから押し出す。このとき、シリンダ内での材料
温度は、20〜330℃程度が好ましく、押出速度は、
0.1〜10mm/sec程度が好ましく、金型温度は、20
0〜350℃程度が好ましい。
The obtained kneaded product (compound) is heated in a cylinder of an extrusion molding machine to a temperature equal to or higher than the melting temperature of the thermoplastic resin and melted. Is, for example, 10 to 20 kOe) and is extruded from the die of the extruder. At this time, the material temperature in the cylinder is preferably about 20 to 330 ° C., and the extrusion speed is
0.1 to 10 mm / sec is preferable, and the mold temperature is 20
About 0 to 350 ° C. is preferable.

【0063】成形体は、例えばダイから押し出される際
に冷却されて固化する。押し出された長尺の成形体を適
宜切断することにより、所望の形状、寸法の希土類ボン
ド磁石を得る。
The molded body is cooled and solidified when it is extruded from a die, for example. The extruded long molded body is appropriately cut to obtain a rare earth bonded magnet having a desired shape and size.

【0064】希土類ボンド磁石の横断面形状は、ダイ
(内ダイおよび外ダイ)の形状の選定により決定され、
薄肉のものや異形断面のものでも容易に製造することが
できる。また、成形体の切断長さの調整により、長尺の
磁石を製造することもできる。
The cross-sectional shape of the rare earth bonded magnet is determined by selecting the shape of the die (inner die and outer die),
It can be easily manufactured even if it is thin or has an irregular cross section. Also, a long magnet can be manufactured by adjusting the cutting length of the molded body.

【0065】以上のような方法により、磁石の形状に対
する自由度が広く、少ない樹脂量でも流動性、成形性に
優れ、寸法精度が高く、また、連続的な製造が可能で、
量産に適した希土類ボンド磁石を製造することができ
る。
By the method as described above, the flexibility of the magnet shape is wide, the flowability and the moldability are excellent even with a small amount of resin, the dimensional accuracy is high, and the continuous production is possible.
A rare earth bonded magnet suitable for mass production can be manufactured.

【0066】なお、混練条件、成形条件等は、上記範囲
のものに限定されないことは、言うまでもない。
Needless to say, the kneading conditions and molding conditions are not limited to those in the above range.

【0067】[0067]

【実施例】以下、本発明の具体的実施例について説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments of the present invention will be described.

【0068】(実施例1〜12、比較例1、2)下記組
成、、、、、の6種の希土類磁石粉末と、
下記A、B、Cの3種の熱可塑性樹脂(結合樹脂)と、
酸化防止剤としてN,N−ジフェニルオキサミド(キレ
ート化剤)と、潤滑剤として脂肪酸と、可塑剤として金
属せっけんとを用意し、これらを下記表1に示す所定の
組み合わせおよび量で混合し、希土類ボンド磁石用組成
物を得た。
(Examples 1 to 12, Comparative Examples 1 and 2) Six kinds of rare earth magnet powders having the following compositions:
The following three types of thermoplastic resins (bonding resins) A, B and C,
Prepare N, N-diphenyloxamide (chelating agent) as an antioxidant, fatty acid as a lubricant, and metallic soap as a plasticizer, and mix them in a predetermined combination and amount shown in Table 1 below. A composition for a rare earth bonded magnet was obtained.

【0069】急冷Nd12Fe826 粉末(平均粒径=
18μm ) 急冷Nd8 Pr4 Fe826 粉末(平均粒径=17μ
m ) 急冷Nd12Fe78Co46 粉末(平均粒径=19μ
m ) Sm(Co0.604 Cu0.06Fe0.32Zr0.016)8.3
末(平均粒径=21μm) Sm2 Fe173 粉末(平均粒径=2μm ) HDDR法による異方性Nd13Fe69Co116 Ga
1 粉末(平均粒径=28μm ) A.ポリアミド(ナイロン12)、融点:175℃ B.液晶ポリマー、融点:180℃ C.ポリフェニレンサルファイド(PPS)、融点:2
80℃ 次に、表1に示す各希土類ボンド磁石用組成物をスクリ
ュー式混練機を用いて、十分に混練し、コンパウンドを
製造した後、該コンパウンドを用い、押出成形機により
押出成形して、希土類ボンド磁石を製造した。
Quenched Nd 12 Fe 82 B 6 powder (average particle size =
18 μm) Quenched Nd 8 Pr 4 Fe 82 B 6 powder (average particle size = 17 μm
m) Quenched Nd 12 Fe 78 Co 4 B 6 powder (average particle size = 19μ
m) Sm (Co 0.604 Cu 0.06 Fe 0.32 Zr 0.016 ) 8.3 powder (average particle size = 21 μm) Sm 2 Fe 17 N 3 powder (average particle size = 2 μm) Anisotropy according to HDDR method Nd 13 Fe 69 Co 11 B 6 Ga
1 powder (average particle size = 28 μm) A. Polyamide (nylon 12), melting point: 175 ° C. B.I. Liquid crystal polymer, melting point: 180 ° C. Polyphenylene sulfide (PPS), melting point: 2
80 ° C. Next, each composition for rare earth bonded magnets shown in Table 1 was sufficiently kneaded by using a screw-type kneader to produce a compound, and then extruded by an extruder using the compound, A rare earth bonded magnet was manufactured.

【0070】このときの混練条件および成形条件を下記
表2、表3に示す。また、得られた磁石の形状、寸法、
組成、外観(目視観察)、諸特性を下記表4、表5、表
6に示す。
The kneading conditions and molding conditions at this time are shown in Tables 2 and 3 below. Also, the shape, dimensions, and
The composition, appearance (visual observation), and various properties are shown in Tables 4, 5, and 6 below.

【0071】なお、表4〜表6中の機械的強度は、別途
に外径15mm、高さ3mmの試験片を無磁場で、表2、表
3に示す条件で押出成形し、この試験片を用い剪断打ち
抜き法により評価した。
The mechanical strengths shown in Tables 4 to 6 are obtained by separately extruding a test piece having an outer diameter of 15 mm and a height of 3 mm in the absence of a magnetic field under the conditions shown in Tables 2 and 3. Was evaluated by the shear punching method.

【0072】また、表4〜表6中の耐食性は、得られた
希土類ボンド磁石に対し、恒温恒湿槽により80℃、9
0%RHの条件で加速試験を行い、錆びの発生までの時間
により、◎、○、△、×の4段階で評価した。
The corrosion resistances shown in Tables 4 to 6 are 80 ° C. and 9 ° C. in a constant temperature and humidity chamber for the obtained rare earth bonded magnets.
An accelerated test was performed under the condition of 0% RH, and the time until rust was generated was evaluated in four grades of ⊚, ○, Δ and ×.

【0073】(比較例3)表1に示す各希土類ボンド磁
石用組成物をスクリュー式混練機を用いて、十分に混練
し、コンパウンドを製造した後、該コンパウンドを用
い、射出成形機により射出成形して、希土類ボンド磁石
を製造した。
(Comparative Example 3) The compositions for rare earth bonded magnets shown in Table 1 were sufficiently kneaded using a screw type kneader to produce a compound, which was then injection molded using an injection molding machine. Then, a rare earth bonded magnet was manufactured.

【0074】このときの混練条件および成形条件を下記
表3に示す。また、得られた磁石の形状、寸法、組成、
外観(目視観察)、諸特性を下記表6に示す。
The kneading conditions and molding conditions at this time are shown in Table 3 below. Also, the shape, size, composition of the obtained magnet,
The appearance (visual observation) and various properties are shown in Table 6 below.

【0075】(比較例4)磁石粉末とエポキシ樹脂
(熱硬化性樹脂)とを下記表1に示す比率で混合し、こ
の混合物を室温下で混練し、得られたコンパウンドによ
り下記表3に示す条件で圧縮成形(プレス成形)し、こ
の成形体を150℃で1時間熱処理して樹脂硬化を行
い、希土類ボンド磁石を得た。
(Comparative Example 4) Magnet powder and epoxy resin (thermosetting resin) were mixed in the ratio shown in Table 1 below, and this mixture was kneaded at room temperature. The compound obtained was shown in Table 3 below. Compression molding (press molding) was performed under the conditions, and the molded body was heat-treated at 150 ° C. for 1 hour to cure the resin to obtain a rare earth bonded magnet.

【0076】得られた磁石の形状、寸法、組成、外観
(目視観察)、諸特性を下記表6に示す。
The shape, dimensions, composition, appearance (visual observation) and various properties of the obtained magnet are shown in Table 6 below.

【0077】なお、表6中の機械的強度は、別途に外径
15mm、高さ3mmの試験片を無磁場で、表3に示す条件
で圧縮成形し、この試験片を用い剪断打ち抜き法により
評価した。また、耐食性の評価は、前記と同様にして行
った。
The mechanical strength shown in Table 6 was obtained by separately subjecting a test piece having an outer diameter of 15 mm and a height of 3 mm to compression molding under the conditions shown in Table 3 in the absence of a magnetic field, and using the test piece to perform a shear punching method. evaluated. The corrosion resistance was evaluated in the same manner as above.

【0078】[0078]

【表1】 [Table 1]

【0079】[0079]

【表2】 [Table 2]

【0080】[0080]

【表3】 [Table 3]

【0081】[0081]

【表4】 [Table 4]

【0082】[0082]

【表5】 [Table 5]

【0083】[0083]

【表6】 [Table 6]

【0084】各表に示すように、実施例1〜12の希土
類ボンド磁石は、いずれも、空孔率が低く、成形性、磁
気特性(磁気エネルギー積)、耐食性に優れ、機械的強
度も高いものであることが確認された。
As shown in each table, the rare earth bonded magnets of Examples 1 to 12 all have low porosity, excellent formability, magnetic characteristics (magnetic energy product), corrosion resistance, and high mechanical strength. It was confirmed to be a thing.

【0085】これに対し、比較例1の希土類ボンド磁石
は、希土類磁石粉末の含有量が多過ぎるため、希土類ボ
ンド磁石用組成物の混練が不能であった。
On the other hand, in the rare earth bonded magnet of Comparative Example 1, the content of the rare earth magnet powder was too large, so that the composition for the rare earth bonded magnet could not be kneaded.

【0086】また、比較例2では、酸化防止剤および潤
滑剤を添加したため、希土類ボンド磁石用組成物の混練
は可能であったが、やはり希土類磁石粉末の含有量が多
過ぎるため、押出成形の成形性が不良であった。
Further, in Comparative Example 2, since the antioxidant and the lubricant were added, it was possible to knead the composition for a rare earth bonded magnet, but since the content of the rare earth magnet powder was too large, the extrusion molding was performed. Moldability was poor.

【0087】また、比較例3では、射出成形に必要な流
動性が確保できないため、射出成形が不能であった。
In Comparative Example 3, injection molding was impossible because the fluidity required for injection molding could not be ensured.

【0088】また、比較例4では、磁石の外面に樹脂が
しみ出すという異常が発生した。
In Comparative Example 4, the resin exudes on the outer surface of the magnet, which is abnormal.

【0089】[0089]

【発明の効果】以上述べたように、本発明によれば、磁
石の形状や寸法に対する自由度が広く、寸法精度が高
く、量産に適するという押出成形の利点を享受しつつ、
少ない結合樹脂量で、成形性、耐食性に優れ、機械的強
度が高く、磁気特性に優れた希土類ボンド磁石を提供す
ることができる。
As described above, according to the present invention, while the advantages of extrusion molding that the magnet has a large degree of freedom in shape and size, high dimensional accuracy, and suitable for mass production,
It is possible to provide a rare earth bonded magnet having a small amount of binding resin, excellent moldability and corrosion resistance, high mechanical strength, and excellent magnetic properties.

【0090】特に、これらの特性は、射出成形により製
造された希土類ボンド磁石よりも優れている。
In particular, these characteristics are superior to the rare earth bonded magnet manufactured by injection molding.

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 希土類磁石粉末と熱可塑性樹脂とを含む
希土類ボンド磁石用組成物を用い、押出成形により製造
される希土類ボンド磁石であって、 希土類ボンド磁石中の前記希土類磁石粉末の含有量が、
78.1〜83 vol%であることを特徴とする希土類ボ
ンド磁石。
1. A rare earth bonded magnet produced by extrusion molding using a composition for a rare earth bonded magnet containing rare earth magnet powder and a thermoplastic resin, wherein the content of the rare earth magnet powder in the rare earth bonded magnet is ,
A rare earth bonded magnet characterized in that it is 78.1 to 83 vol%.
【請求項2】 空孔率が2 vol%以下である請求項1に
記載の希土類ボンド磁石。
2. The rare earth bonded magnet according to claim 1, which has a porosity of 2 vol% or less.
【請求項3】 前記熱可塑性樹脂は、融点が400℃以
下のものである請求項1または2に記載の希土類ボンド
磁石。
3. The rare earth bonded magnet according to claim 1, wherein the thermoplastic resin has a melting point of 400 ° C. or lower.
【請求項4】 前記熱可塑性樹脂は、ポリアミド、液晶
ポリマーまたはポリフェニレンサルファイドである請求
項1ないし3のいずれかに記載の希土類ボンド磁石。
4. The rare earth bonded magnet according to claim 1, wherein the thermoplastic resin is polyamide, liquid crystal polymer or polyphenylene sulfide.
【請求項5】 前記希土類磁石粉末は、Smを主とする
希土類元素と、Coを主とする遷移金属とを基本成分と
するものである請求項1ないし4のいずれかに記載の希
土類ボンド磁石。
5. The rare earth bonded magnet according to claim 1, wherein the rare earth magnet powder contains a rare earth element mainly containing Sm and a transition metal mainly containing Co as basic components. .
【請求項6】 前記希土類磁石粉末は、R(ただし、R
はYを含む希土類元素のうち少なくとも1種)と、Fe
を主とする遷移金属と、Bとを基本成分とするものであ
る請求項1ないし4のいずれかに記載の希土類ボンド磁
石。
6. The rare earth magnet powder is R (provided that R
Is at least one of rare earth elements including Y), and Fe
The rare earth bonded magnet according to any one of claims 1 to 4, which comprises a transition metal mainly containing B and B as a basic component.
【請求項7】 前記希土類磁石粉末は、Smを主とする
希土類元素と、Feを主とする遷移金属と、Nを主とす
る格子間元素とを基本成分とするものである請求項1な
いし4のいずれかに記載の希土類ボンド磁石。
7. The rare earth magnet powder contains a rare earth element mainly containing Sm, a transition metal mainly containing Fe, and an interstitial element mainly containing N as a basic component. 4. The rare earth bonded magnet according to any one of 4 above.
【請求項8】 前記希土類磁石粉末は、請求項5、6お
よび7に記載の希土類磁石粉末のうちの少なくとも2種
を混合したものである請求項1ないし4のいずれかに記
載の希土類ボンド磁石。
8. The rare earth bonded magnet according to claim 1, wherein the rare earth magnet powder is a mixture of at least two of the rare earth magnet powders according to claims 5, 6 and 7. .
【請求項9】 無磁場中で成形された場合の磁気エネル
ギー積(BH)max が8MGOe以上である請求項1ないし8の
いずれかに記載の希土類ボンド磁石。
9. The rare earth bonded magnet according to claim 1, which has a magnetic energy product (BH) max of 8 MGOe or more when molded in a non-magnetic field.
【請求項10】 磁場中で成形された場合の磁気エネル
ギー積(BH)max が12MGOe以上である請求項1ないし8
のいずれかに記載の希土類ボンド磁石。
10. The magnetic energy product (BH) max when molded in a magnetic field is at least 12 MGOe.
The rare earth bonded magnet according to any one of 1.
【請求項11】 希土類磁石粉末と熱可塑性樹脂と酸化
防止剤とを含み、押出成形に供される希土類ボンド磁石
用組成物であって、 前記希土類ボンド磁石用組成物中の前記希土類磁石粉末
の含有量が、77.6〜82.5 vol%であることを特
徴とする希土類ボンド磁石用組成物。
11. A composition for a rare earth bond magnet, which comprises rare earth magnet powder, a thermoplastic resin, and an antioxidant and is subjected to extrusion molding, wherein the rare earth magnet powder in the composition for the rare earth bond magnet is Content is 77.6-82.5 vol%, The composition for rare earth bonded magnets characterized by the above-mentioned.
【請求項12】 希土類磁石粉末と熱可塑性樹脂と酸化
防止剤とを含み、押出成形に供される希土類ボンド磁石
用組成物であって、 前記希土類ボンド磁石用組成物中の前記熱可塑性樹脂と
前記酸化防止剤との合計含有量が、15.0〜22.4
vol%であることを特徴とする希土類ボンド磁石用組成
物。
12. A composition for a rare earth bond magnet, which comprises rare earth magnet powder, a thermoplastic resin, and an antioxidant and is subjected to extrusion molding, wherein the thermoplastic resin in the composition for the rare earth bond magnet is The total content with the antioxidant is 15.0 to 22.4.
A composition for a rare earth bonded magnet, characterized in that it is vol%.
【請求項13】 前記希土類ボンド磁石用組成物中の前
記酸化防止剤の含有量が、2.0〜12.0 vol%であ
る請求項11または12に記載の希土類ボンド磁石用組
成物。
13. The composition for a rare earth bonded magnet according to claim 11, wherein the content of the antioxidant in the composition for a rare earth bonded magnet is 2.0 to 12.0 vol%.
【請求項14】 請求項11ないし13のいずれかに記
載の希土類ボンド磁石用組成物を混練し、該混練物を用
いて押出成形法により磁石形状に成形することを特徴と
する希土類ボンド磁石の製造方法。
14. A rare earth bonded magnet, characterized by kneading the composition for a rare earth bonded magnet according to claim 11 and molding the kneaded material into a magnet shape by an extrusion molding method. Production method.
JP33738695A 1995-11-06 1995-12-25 Rare earth bonded magnet manufacturing method Expired - Lifetime JP3729908B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP33738695A JP3729908B2 (en) 1995-12-25 1995-12-25 Rare earth bonded magnet manufacturing method
TW085112439A TW323374B (en) 1995-11-06 1996-10-11
DE69627610T DE69627610T2 (en) 1995-11-06 1996-11-05 Rare earth bonded magnet, rare earth magnetic composition and method of manufacture thereof
US08/744,014 US6143193A (en) 1995-11-06 1996-11-05 Rare earth bonded magnet, rare earth magnetic composition, and method for manufacturing rare earth bonded magnet
KR1019960052715A KR100238371B1 (en) 1995-11-06 1996-11-05 Rare-earth bonded magnet, rare-earth bonded magnetic composition and method for manufacturing rare-earth bonded magnet
CNB961219416A CN1135572C (en) 1995-11-06 1996-11-05 Rare earth bonded magnet, rare earth magnetic composition, and method for manufacturing rare earth bonded magnet
EP96117687A EP0772211B1 (en) 1995-11-06 1996-11-05 Rare earth bonded magnet, rare earth magnetic composition, and method for manufacturing rare earth bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33738695A JP3729908B2 (en) 1995-12-25 1995-12-25 Rare earth bonded magnet manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005235081A Division JP4301222B2 (en) 2005-08-12 2005-08-12 Rare earth bonded magnet manufacturing method and rare earth bonded magnet

Publications (2)

Publication Number Publication Date
JPH09180919A true JPH09180919A (en) 1997-07-11
JP3729908B2 JP3729908B2 (en) 2005-12-21

Family

ID=18308149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33738695A Expired - Lifetime JP3729908B2 (en) 1995-11-06 1995-12-25 Rare earth bonded magnet manufacturing method

Country Status (1)

Country Link
JP (1) JP3729908B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100368674B1 (en) * 1999-06-02 2003-01-24 세이코 엡슨 가부시키가이샤 Rare-earth bond magnet, composition for rare-earth bond magnet, and process for producing rare-earth bond magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100368674B1 (en) * 1999-06-02 2003-01-24 세이코 엡슨 가부시키가이샤 Rare-earth bond magnet, composition for rare-earth bond magnet, and process for producing rare-earth bond magnet

Also Published As

Publication number Publication date
JP3729908B2 (en) 2005-12-21

Similar Documents

Publication Publication Date Title
KR100238371B1 (en) Rare-earth bonded magnet, rare-earth bonded magnetic composition and method for manufacturing rare-earth bonded magnet
KR100435610B1 (en) METHOD OF MANUFACTURING RARE TIRE BOND MAGNET AND RARE TIRE BOND MAGNET
EP0769791B1 (en) Rare earth bonded magnet and composition therefor
EP0651402B1 (en) Rare earth bond magnet, composition therefor, and method of manufacturing the same
KR20010024183A (en) Composition for bonded rare-earth permanent magnet, bonded rare-earth permanent magnet and method for manufacturing bonded rare-earth permanent magnet
KR100368674B1 (en) Rare-earth bond magnet, composition for rare-earth bond magnet, and process for producing rare-earth bond magnet
JP3729904B2 (en) Rare earth bonded magnet manufacturing method
JP4433068B2 (en) Rare earth bonded magnet manufacturing method and rare earth bonded magnet
JPH09171917A (en) Rare earth bond magnet and composition thereof
JPH09312207A (en) Composition for rare-earth bonded magnet use, rare-earth bonded magnet and manufacture of rare-earth bonded magnet
JP3277933B2 (en) Magnet powder, method for producing bonded magnet, and bonded magnet
JP3658868B2 (en) Rare earth bonded magnet manufacturing method and rare earth bonded magnet
JPH09232132A (en) Rare-earth bonded magnet, composition for rare-earth bonded magnet and manufacture of rare-earth bonded magnet
JP4301222B2 (en) Rare earth bonded magnet manufacturing method and rare earth bonded magnet
JPH09180919A (en) Rare-earth bonded magnet, its composition and manufacturing method
JP4301221B2 (en) Rare earth bonded magnet manufacturing method and rare earth bonded magnet
JPH11283817A (en) Rare earth bonded magnet and composition thereof
JPH09260170A (en) Manufacture of rare earth bond magnet and composition for rare earth bond magnet
JPH09223616A (en) Rare earth bonded magnet
JP3653852B2 (en) Rare earth bonded magnet manufacturing method and rare earth bonded magnet
JP2000021615A (en) Composition for bond magnet and bond magnet
JPH11307378A (en) Manufacture of rare earth bonded magnet
JP2001267162A (en) Rare-earth bond magnet and method for manufacturing the same
JP2002299142A (en) Method of manufacturing bonded magnet and the bonded magnet

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050314

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050812

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051005

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131014

Year of fee payment: 8

EXPY Cancellation because of completion of term