JPH0918060A - Manufacture of thermoelectric conversion element - Google Patents

Manufacture of thermoelectric conversion element

Info

Publication number
JPH0918060A
JPH0918060A JP7163946A JP16394695A JPH0918060A JP H0918060 A JPH0918060 A JP H0918060A JP 7163946 A JP7163946 A JP 7163946A JP 16394695 A JP16394695 A JP 16394695A JP H0918060 A JPH0918060 A JP H0918060A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion element
firing
temperature
molded material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7163946A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Yoda
浩好 余田
Noboru Hashimoto
登 橋本
Takusane Ueda
卓実 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP7163946A priority Critical patent/JPH0918060A/en
Publication of JPH0918060A publication Critical patent/JPH0918060A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE: To remove impurity gas adhering to the surface of thermoelectric conversion material powder and to prevent the impurity gas from being diffused in the interior of a sintered body during the firing of a temporarily molded material by a methods wherein before the temporarily molded material is fired, the molded material is fired in a reduced pressure atmosphere and at a temperature lower than temperature for firing the molded material. CONSTITUTION: A little amount of a dopant is added to a raw material containing two kinds or more of elements among elements of bismuth(Bi), tellurium(Te), selenium(Se) or antimony(Sb), the dopant and the elements are fully mixed and/or are melted according to the need and after that, they are ground to obtain thermoelectric conversion material powder. This powder is temporarily molded into an optional shape by a normal uniaxial press molding method, for example. A binder of the temporarily molded material is removed by heating as needed. Before the molded material is burned, the molded material is burned in a reduced pressure atmosphere and at a temperature lower than temperature for firing the molded material. Thereby, impurity gas adhering to the surface of the thermoelectric conversion material powder is removed, and the gas is prevented from being diffused in the interior of a sintered body.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ペルチエ効果を利用し
た熱電変換素子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a thermoelectric conversion element utilizing the Peltier effect.

【0002】[0002]

【従来の技術】ペルチエ効果を利用した熱電変換モジュ
ールは、熱電変換素子であるP型半導体素子とN型半導
体素子とを交互に2枚の絶縁層の間に並べて電気的に直
列に接続したペルチエ素子群に直流電圧を印加すること
によって、絶縁層の表面に発熱又は吸熱を生じさせるも
のであり、熱電発電及び熱電冷却における種々の分野に
おいて幅広く利用されている。
2. Description of the Related Art A thermoelectric conversion module utilizing the Peltier effect is a Peltier device in which P-type semiconductor elements and N-type semiconductor elements which are thermoelectric conversion elements are alternately arranged between two insulating layers and electrically connected in series. By applying a DC voltage to the element group, heat or heat is generated on the surface of the insulating layer, and it is widely used in various fields in thermoelectric power generation and thermoelectric cooling.

【0003】この熱電変換素子を製造する方法としては
一般に、特開平1−202343号公報に開示されてい
るように、原料粉末を溶解させ単結晶に近い棒状インゴ
ットを成長させる単結晶法及び特開平1−106478
号公報に開示されているように原料粉末をホットプレス
によりインゴットを作製するホットプレス法を用いて、
バルク状の熱電変換材料インゴットを作製し、これを用
途に応じて切断し、小さな熱電変換素子とし、絶縁基板
状にP型半導体素子とN型半導体素子とを交互にハンダ
を用いて直列に接続させて、熱電変換モジュールを作製
していた。したがって、単結晶法及びホットプレス法に
よる熱電変換素子の製造方法では、熱電変換素子を得る
ために、高価な焼成装置を必要としたり、用途に応じた
熱電変換素子切断工程で、切りしろによる材料ロスが多
く、1mm平方の熱電変換素子を作製するためには約5
0%以上の材料ロスが発生していた。また、材料が脆い
ため切断時に割れやチッピング等の問題が生じ、熱電変
換素子の歩留りが悪いという問題が生じていた。しか
も、最近の熱電変換モジュールの小型化に伴い、熱電変
換素子も薄型化及び小型化されていく傾向にあり、切断
工程を伴う熱電変換素子の製造方法では、割れやチッピ
ング等の問題に対して十分対応できる段階に至っていな
かった。さらに、自動化や省力化が不可能な多くの作業
工程を必要としていた。また、前記のような焼成操作を
行わない場合、緻密化を達成することは非常に難しく、
そのために熱電変換素子の強度が非常に低くなり、信頼
性も損なわれるのが現状であった。
As a method for producing this thermoelectric conversion element, generally, as disclosed in JP-A-1-202343, a single crystal method in which a raw material powder is melted to grow a rod-shaped ingot close to a single crystal and JP-A-Hei-Hei. 1-106478
Using a hot press method of producing an ingot by hot pressing raw material powder as disclosed in Japanese Patent No.
A bulk thermoelectric conversion material ingot is produced, cut into small thermoelectric conversion elements according to the application, and P-type semiconductor elements and N-type semiconductor elements are alternately connected in series on an insulating substrate using solder. Then, the thermoelectric conversion module was produced. Therefore, in the method for producing a thermoelectric conversion element by the single crystal method and the hot pressing method, in order to obtain the thermoelectric conversion element, an expensive firing device is required, or in the thermoelectric conversion element cutting step according to the application, the material by the cutting margin is used. There is a lot of loss, and about 5 mm is required to manufacture a thermoelectric conversion element of 1 mm square.
Material loss of 0% or more occurred. In addition, since the material is brittle, problems such as cracking and chipping occur during cutting, and the yield of thermoelectric conversion elements is poor. Moreover, with the recent miniaturization of thermoelectric conversion modules, thermoelectric conversion elements tend to be thinned and downsized, and in a method of manufacturing a thermoelectric conversion element that involves a cutting step, problems such as cracking and chipping are solved. We have not reached the stage where we can fully respond. Furthermore, many work processes that cannot be automated or labor-saving were required. Further, if the firing operation as described above is not performed, it is very difficult to achieve densification,
Therefore, the strength of the thermoelectric conversion element is extremely low, and the reliability is also impaired.

【0004】以上の事が、熱電変換素子作製コストを押
し上げ、高性能な熱電変換モジュールを得ることが非常
に難しいという大きな要因となっていた。特別な焼成操
作を伴わず、熱電変換性能に優れた熱電変換素子が得ら
れる熱電変換素子の製造方法の開発が望まれている。
The above factors have been a major factor in increasing the cost for producing thermoelectric conversion elements and making it very difficult to obtain a high-performance thermoelectric conversion module. It is desired to develop a method for producing a thermoelectric conversion element that can obtain a thermoelectric conversion element having excellent thermoelectric conversion performance without a special firing operation.

【0005】[0005]

【発明が解決しようとする課題】本発明は前記の事実に
鑑みてなされたもので、その目的とするところは、熱電
変換性能に優れた熱電変換素子が得られる熱電変換素子
の製造方法を提供することにある。
The present invention has been made in view of the above facts, and an object of the present invention is to provide a method for manufacturing a thermoelectric conversion element capable of obtaining a thermoelectric conversion element excellent in thermoelectric conversion performance. To do.

【0006】[0006]

【課題を解決するための手段】本発明の請求項1に係る
熱電変換素子の製造方法は、Bi、Te、Se及びSb
元素からなる群より選択される少なくとも2種類以上の
元素を含有した熱電変換材料を所定の形状に仮成形し、
この仮成形体を焼成して熱電変換素子にする熱電変換素
子の製造方法において、前記仮成形体を焼成する前に、
減圧雰囲気で、かつ、前記仮成形体を焼成する焼成温度
より低い温度で仮焼成することを特徴とする。
According to a first aspect of the present invention, there is provided a method for manufacturing a thermoelectric conversion element comprising the steps of Bi, Te, Se and Sb.
Temporarily forming a thermoelectric conversion material containing at least two kinds of elements selected from the group consisting of elements into a predetermined shape,
In the method for manufacturing a thermoelectric conversion element, which is obtained by firing this temporary molded body to form a thermoelectric conversion element, before firing the temporary molded body,
It is characterized in that the preliminary firing is performed in a reduced pressure atmosphere and at a temperature lower than the firing temperature for firing the temporary molded body.

【0007】本発明の請求項2に係る熱電変換素子の製
造方法は、前記仮成形体を250〜380℃で仮焼成す
ることを特徴とする。
A method of manufacturing a thermoelectric conversion element according to a second aspect of the present invention is characterized in that the temporary molded body is temporarily fired at 250 to 380 ° C.

【0008】本発明の請求項3に係る熱電変換素子の製
造方法は、前記仮成形体を仮焼成した後、焼成する前
に、水素を含む還元ガス雰囲気で、かつ、前記焼成温度
より低い温度で予備焼成することを特徴とする。
According to a third aspect of the present invention, there is provided a method for manufacturing a thermoelectric conversion element, which comprises, after calcination of the temporary molded body, before the calcination, in a reducing gas atmosphere containing hydrogen and at a temperature lower than the calcination temperature. It is characterized in that it is pre-baked in.

【0009】本発明の請求項4に係る熱電変換素子の製
造方法は、前記仮成形体を加圧雰囲気で、かつ、焼成温
度410〜590℃で焼成することを特徴とする。
A method for manufacturing a thermoelectric conversion element according to a fourth aspect of the present invention is characterized in that the temporary molded body is fired in a pressurized atmosphere at a firing temperature of 410 to 590 ° C.

【0010】以下、本発明を詳述する。本発明に係る熱
電変換素子の製造方法は、P型半導体素子とN型半導体
素子とを交互に2枚の絶縁層の間に並べて銅電極等の電
極により電気的に直列に接続したペルチエ素子群に直流
電圧を印加することによって、いわゆるペルチエ効果で
一方の絶縁層が発熱されるとともに、他方の絶縁層が吸
熱される熱電変換モジュールに用いられるP型半導体素
子又はN型半導体素子である熱電変換素子の製造方法で
ある。
Hereinafter, the present invention will be described in detail. A method of manufacturing a thermoelectric conversion element according to the present invention is a Peltier element group in which P-type semiconductor elements and N-type semiconductor elements are alternately arranged between two insulating layers and electrically connected in series by electrodes such as copper electrodes. When a DC voltage is applied to the insulating layer, one insulating layer generates heat by the so-called Peltier effect, and the other insulating layer absorbs heat, which is a P-type semiconductor element or N-type semiconductor element used in the thermoelectric conversion module. It is a method of manufacturing an element.

【0011】まず、成形体の作製方法について説明す
る。本発明に係る熱電変換素子の構成元素としては、少
なくとも、ビスマス(Bi)、テルル(Te)、セレン
(Se)又はアンチモン(Sb)元素のうち、2種類以
上の元素が必要である。これらの構成元素を含んだ原料
に、N型半導体又はP型半導体の熱電変換素子になるよ
うに微量のドーパントを加え、十分に混合及び/又は必
要に応じて溶融した後、粉砕して熱電変換材料の粉末を
得る。熱電変換材料としては、例えば、Bi−Te合
金、Bi−Sb合金、Bi−Te−Sb合金、Bi−T
e−Se合金又はBi−Te−Sb−Se合金等を用い
ることができるが、上記組み合わせに限定される物では
ない。
First, a method for producing a molded body will be described. As a constituent element of the thermoelectric conversion element according to the present invention, at least two kinds of elements among bismuth (Bi), tellurium (Te), selenium (Se) or antimony (Sb) elements are required. A small amount of a dopant is added to a raw material containing these constituent elements so as to be a thermoelectric conversion element of an N-type semiconductor or a P-type semiconductor, sufficiently mixed and / or melted if necessary, and then pulverized for thermoelectric conversion. Obtain a powder of material. Examples of the thermoelectric conversion material include Bi-Te alloy, Bi-Sb alloy, Bi-Te-Sb alloy, Bi-T.
An e-Se alloy, a Bi-Te-Sb-Se alloy, or the like can be used, but the combination is not limited to the above combination.

【0012】この熱電変換材料の粉末を、例えば、通常
の一軸プレス成形方法により任意の形状に成形すること
ができる。また、バインダーや溶剤を用いてペースト状
にし、このペースト状の熱電変換材料を基板上の所定の
位置にスクリーン印刷法によって印刷成形し、厚みが不
足する場合は複数回重ね塗りすることにより、所定の厚
みにして熱電変換素子の仮成形体を作製することもでき
る。また、前記ペースト状の熱電変換材料をドクターブ
レード法により、シート状に成形した後、必要とする形
状に加工して、熱電変換素子の仮成形体を作製してもよ
い。さらには、ペーストの粘度を上げ、ハイド状にした
後、通常の押し出し法、射出成形方法によって熱電変換
素子の仮成形体を作製することも可能である。
The powder of the thermoelectric conversion material can be molded into an arbitrary shape by, for example, a usual uniaxial press molding method. In addition, a binder or a solvent is used to form a paste, and the paste-like thermoelectric conversion material is print-molded at a predetermined position on the substrate by a screen printing method. It is also possible to prepare a temporary molded body of the thermoelectric conversion element with a thickness of. Further, the paste-like thermoelectric conversion material may be formed into a sheet by a doctor blade method and then processed into a required shape to prepare a temporary formed body of the thermoelectric conversion element. Further, it is also possible to increase the viscosity of the paste to make it into a hide shape, and then produce a temporary molded body of the thermoelectric conversion element by a usual extrusion method or injection molding method.

【0013】前記に示した方法で作製した仮成形体のバ
インダーを、必要に応じて、加熱除去する。前記仮成形
体を焼成する前に、減圧雰囲気で、かつ、前記仮成形体
を焼成する焼成温度より低い温度で仮焼成することが必
須である。この仮成形体を減圧雰囲気で仮焼成すること
により、熱電変換材料粉末表面に付着していた、例え
ば、水分、酸素、炭酸ガス等の不純物ガスを除去し、焼
成中に不純物ガスが焼結体内部へ拡散することを防止で
きる。この減圧雰囲気での仮焼成工程が重要であり、こ
の仮焼成工程で表面吸着不純物を十分に除去することに
より、熱電変換性能に優れた良好な熱電変換素子を得る
ことが可能となる。
If necessary, the binder of the temporary molded body produced by the above-mentioned method is removed by heating. Before firing the temporary molded body, it is essential to perform the preliminary firing in a reduced pressure atmosphere and at a temperature lower than the firing temperature for firing the temporary molded body. By pre-baking this pre-formed body in a reduced pressure atmosphere, the impurity gas such as water, oxygen, carbon dioxide gas, etc. adhering to the surface of the thermoelectric conversion material powder is removed, and the impurity gas is converted into a sintered body during firing. It can be prevented from spreading inside. This calcination step in the reduced pressure atmosphere is important, and by sufficiently removing the surface-adsorbed impurities in this calcination step, it becomes possible to obtain a good thermoelectric conversion element having excellent thermoelectric conversion performance.

【0014】熱電変換素子は半導体であり、微量の不純
物の影響により、その電気的特性が大きく影響を受け
る。特に、不純物酸素はその影響が大きく、外部からの
微量の固溶により電気的性能が大きく悪化することが知
られている。(日本金属学会誌53-9-1989 p958-963
) この粒子表面に付着している不純物成分を除去するため
には、非酸化性雰囲気中で、焼成温度より低い温度で仮
焼成することが必要である。すなわち、仮焼成する場合
に、焼成温度以上の温度を加えると、付着している不純
物の一部が熱電変換素子の内部にまで熱拡散し、性能を
劣化させる危険性があるので、好ましくない。前記仮成
形体を250〜380℃で仮焼成することが好ましい。
The thermoelectric conversion element is a semiconductor, and its electrical characteristics are greatly affected by the influence of a trace amount of impurities. In particular, it is known that the impurity oxygen has a great influence, and that a small amount of solid solution from the outside causes a great deterioration in electrical performance. (Journal of the Japan Institute of Metals 53-9-1989 p958-963
) In order to remove the impurity components adhering to the surface of the particles, it is necessary to perform calcination in a non-oxidizing atmosphere at a temperature lower than the calcination temperature. That is, in the case of pre-baking, if a temperature higher than the baking temperature is applied, there is a risk that some of the attached impurities will be thermally diffused into the thermoelectric conversion element and the performance will be deteriorated. It is preferable to temporarily calcine the temporary molded body at 250 to 380 ° C.

【0015】前記仮成形体を仮焼成した後、焼成する前
に、水素を含む還元ガス雰囲気で、かつ、前記焼成温度
より低い温度で予備焼成することが、さらに好ましい。
すなわち、熱電変換材料の粉末表面で化学吸着している
不純物酸素を、水素により還元し、拡散を防ぐことによ
って、熱電変換素子の熱電特性が向上する。
It is more preferable to pre-fire the pre-formed body after the pre-baking and before firing in a reducing gas atmosphere containing hydrogen and at a temperature lower than the firing temperature.
That is, the impurity oxygen chemically adsorbed on the surface of the powder of the thermoelectric conversion material is reduced by hydrogen to prevent diffusion, so that the thermoelectric characteristics of the thermoelectric conversion element are improved.

【0016】本発明に係る熱電変換素子の製造方法は、
前記仮成形体を加圧雰囲気で、かつ、焼成温度410〜
590℃で焼成することが好ましい。すなわち、Bi、
Te、Se、Sb元素は揮発しやすく、容易に組成ずれ
を生じるが、加圧雰囲気で焼成することにより、高温で
焼成しても、成分の飛散を防ぐことができ、揮発による
組成ずれを防ぎ、高性能な熱電変換素子を得ることがで
きる。加圧雰囲気の圧力としては、2気圧以上であるこ
とが好ましい。さらに、組成ずれの防止ができるので、
高温で焼成することが可能となり、常圧焼成方法等で問
題となっていた焼結密度を向上させることができる。
The method of manufacturing a thermoelectric conversion element according to the present invention comprises:
The temporary molded body is under a pressure atmosphere and at a firing temperature of 410 to 410.
Baking at 590 ° C is preferable. That is, Bi,
The elements Te, Se, and Sb easily volatilize and easily cause compositional deviations. However, by firing in a pressurized atmosphere, it is possible to prevent the components from scattering even when firing at high temperatures, and prevent compositional variations due to volatilization. Therefore, a high-performance thermoelectric conversion element can be obtained. The pressure of the pressurized atmosphere is preferably 2 atm or more. Furthermore, because composition deviation can be prevented,
It becomes possible to fire at a high temperature, and it is possible to improve the sintering density which has been a problem in the atmospheric pressure firing method and the like.

【0017】酸化雰囲気中で焼成を行うと、焼成中に酸
化してしまい、熱電変換材料の熱電特性が悪くなってし
まうので好ましくない。したがって、前記焼成をN2
Ar、N2+Ar又はこれらの不活性ガスとH2 ガスとの
混合ガスの雰囲気で行うことが好ましい。すなわち、材
料の酸化を抑え、さらには還元作用も得られる。以上の
ような操作によって、高性能で信頼性の高い熱電変換素
子が得られる。
Firing in an oxidizing atmosphere is not preferable because it is oxidized during firing and the thermoelectric properties of the thermoelectric conversion material deteriorate. Therefore, the firing is N 2 ,
It is preferable to carry out in an atmosphere of Ar, N 2 + Ar or a mixed gas of an inert gas and H 2 gas. That is, the oxidation of the material is suppressed, and further the reducing action is obtained. By the above operation, a high performance and highly reliable thermoelectric conversion element can be obtained.

【0018】[0018]

【作用】本発明の請求項1及び請求項2に係る熱電変換
素子の製造方法は、Bi、Te、Se及びSb元素から
なる群より選択される少なくとも2種類以上の元素を含
有した熱電変換材料を所定の形状に仮成形し、この仮成
形体を焼成して熱電変換素子にする熱電変換素子の製造
方法において、前記仮成形体を焼成する前に、減圧雰囲
気で、かつ、前記仮成形体を焼成する焼成温度より低い
温度で仮焼成するので、熱電変換材料粉末表面に付着し
ている、例えば、水分、酸素、炭酸ガス等の不純物ガス
を除去し、焼成中に不純物ガスが焼結体内部へ拡散する
ことを防止できる。
The method of manufacturing a thermoelectric conversion element according to claim 1 and claim 2 of the present invention is a thermoelectric conversion material containing at least two elements selected from the group consisting of Bi, Te, Se and Sb elements. In a method for manufacturing a thermoelectric conversion element, which comprises temporarily forming a predetermined shape into a thermoelectric conversion element by firing the preformed body, in a reduced pressure atmosphere and before firing the preformed body, Since the calcination is performed at a temperature lower than the calcination temperature, the impurity gas adhering to the surface of the thermoelectric conversion material powder, for example, moisture, oxygen, carbon dioxide gas, etc. is removed, and the impurity gas is sintered during the calcination. It can be prevented from spreading inside.

【0019】本発明の請求項3に係る熱電変換素子の製
造方法は、前記仮成形体を仮焼成した後、焼成する前
に、水素を含む還元ガス雰囲気で、かつ、前記焼成温度
より低い温度で予備焼成するので、熱電変換材料の粉末
表面で化学吸着している不純物酸素を、水素により還元
し、拡散を防ぐ。
According to a third aspect of the present invention, there is provided a method for manufacturing a thermoelectric conversion element, which comprises, after calcination of the temporary molded body, before the calcination, in a reducing gas atmosphere containing hydrogen and at a temperature lower than the calcination temperature. Since the pre-baking is performed in step 1, the oxygen that is chemically adsorbed on the surface of the powder of the thermoelectric conversion material is reduced by hydrogen to prevent diffusion.

【0020】本発明の請求項4に係る熱電変換素子の製
造方法は、前記仮成形体を加圧雰囲気で、かつ、焼成温
度410〜590℃で焼成するので、成分の飛散を防ぐ
ことができ、揮発による組成ずれが防止できる。
In the method for manufacturing a thermoelectric conversion element according to claim 4 of the present invention, since the temporary molded body is fired in a pressurized atmosphere at a firing temperature of 410 to 590 ° C., it is possible to prevent the components from scattering. , Compositional deviation due to volatilization can be prevented.

【0021】[0021]

【実施例】以下、本発明を実施例及び比較例によって具
体的に説明する。
EXAMPLES The present invention will be specifically described below with reference to Examples and Comparative Examples.

【0022】(実施例1〜実施例7及び比較例1〜比較
例5)微量のSbI3 等のドーパントを添加した、N型
−Bi2 Te2.85Se0.15の組成を持つ熱電変換材料の
インゴットを作製した。このインゴットを、ボールミル
を用いて粉砕し、熱電変換材料の粉末とした。この粉末
をφ20mm×20mmの大きさに仮成形し、1.5t
on/cm2 の圧力で、CIP成形を行った。以上の作
業を不活性雰囲気下にて行った。
(Examples 1 to 7 and Comparative Examples 1 to 5) A thermoelectric conversion material ingot having a composition of N-type-Bi 2 Te 2.85 Se 0.15 , to which a trace amount of a dopant such as SbI 3 was added, was used. It was made. This ingot was crushed using a ball mill to obtain a thermoelectric conversion material powder. This powder is tentatively molded into a size of φ20mm × 20mm, 1.5t
CIP molding was performed at a pressure of on / cm 2 . The above work was performed in an inert atmosphere.

【0023】このようにして得られた仮成形体を、実施
例については、約0.1torrの減圧雰囲気で、30
0℃の仮焼成温度で5時間仮焼成した。次いで、実施例
5及び実施例6については、焼成を行う前に、水素を含
む還元ガス雰囲気で、かつ、300℃で予備焼成した。
For the examples, the temporary molded body thus obtained was subjected to a reduced pressure atmosphere of about 0.1 torr for 30 minutes.
It was calcined at a calcination temperature of 0 ° C. for 5 hours. Next, in Examples 5 and 6, before firing, preliminary firing was performed at 300 ° C. in a reducing gas atmosphere containing hydrogen.

【0024】引き続いて、窒素ガスを導入し、表1に示
した圧力及び温度で5時間焼成して、N型−BiTeS
e熱電変換材料を得た。
Subsequently, nitrogen gas was introduced, and firing was performed at the pressure and temperature shown in Table 1 for 5 hours to obtain N-type-BiTeS.
e The thermoelectric conversion material was obtained.

【0025】熱電変換素子のゼーベック係数α、熱伝導
度κ、電気抵抗ρをそれぞれ測定し、熱電性能指数Z=
α2 /(κ・ρ)を計算により算出した。
The Seebeck coefficient α, thermal conductivity κ, and electric resistance ρ of the thermoelectric conversion element were measured, and the thermoelectric performance index Z =
α 2 / (κ · ρ) was calculated.

【0026】なお、ゼーベック係数αは、室温20℃で
熱電変換素子の一端の温度を20℃に、他端を30℃に
して両端の温度差を10℃にしたときに、両端に発生す
る起電力を測定することにより求めた。熱伝導度κはレ
ーザーフラッシュ法、電気抵抗ρは四端子法で測定し、
表1に示した。
The Seebeck coefficient α is generated at both ends when the temperature at one end of the thermoelectric conversion element is 20 ° C. and the other end is 30 ° C. and the temperature difference between both ends is 10 ° C. at room temperature of 20 ° C. It was determined by measuring the power. The thermal conductivity κ is measured by the laser flash method, the electrical resistance ρ is measured by the four-terminal method,
The results are shown in Table 1.

【0027】[0027]

【表1】 [Table 1]

【0028】以上の結果、表1から、実施例は比較例に
比べて、熱電変換性能に優れた熱電変換素子が得られる
ことが分かった。
As a result of the above, it was found from Table 1 that the thermoelectric conversion element of Example was superior in thermoelectric conversion performance to the Comparative Example.

【0029】[0029]

【発明の効果】本発明の請求項1及び請求項2に係る熱
電変換素子の製造方法によると、熱電変換材料粉末表面
に付着している不純物ガスを除去し、焼成中に不純物ガ
スが焼結体内部へ拡散することを防止できるので、熱電
変換性能に優れた熱電変換素子が得られる。
According to the method of manufacturing a thermoelectric conversion element according to claims 1 and 2 of the present invention, the impurity gas adhering to the surface of the thermoelectric conversion material powder is removed, and the impurity gas is sintered during firing. Since it can be prevented from diffusing into the body, a thermoelectric conversion element having excellent thermoelectric conversion performance can be obtained.

【0030】本発明の請求項3に係る熱電変換素子の製
造方法によると、熱電変換材料の粉末表面で化学吸着し
ている不純物酸素を、水素により還元し、拡散を防ぐの
で、熱電変換素子の熱電特性が向上する。
According to the method of manufacturing a thermoelectric conversion element according to claim 3 of the present invention, the impurity oxygen chemically adsorbed on the surface of the powder of the thermoelectric conversion material is reduced by hydrogen to prevent diffusion. Thermoelectric properties are improved.

【0031】本発明の請求項4に係る熱電変換素子の製
造方法によると、成分の飛散を防ぐことができ、揮発に
よる組成ずれが防止できるので、さらに、高性能な熱電
変換素子が得られる。
According to the thermoelectric conversion element manufacturing method of the fourth aspect of the present invention, the components can be prevented from scattering and the composition shift due to volatilization can be prevented, so that a high performance thermoelectric conversion element can be obtained.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Bi、Te、Se及びSb元素からなる
群より選択される少なくとも2種類以上の元素を含有し
た熱電変換材料を所定の形状に仮成形し、この仮成形体
を焼成して熱電変換素子にする熱電変換素子の製造方法
において、前記仮成形体を焼成する前に、減圧雰囲気
で、かつ、前記仮成形体を焼成する焼成温度より低い温
度で仮焼成することを特徴とする熱電変換素子の製造方
法。
1. A thermoelectric conversion material containing at least two kinds of elements selected from the group consisting of Bi, Te, Se and Sb elements is preformed into a predetermined shape, and the preformed body is fired to obtain the thermoelectric conversion material. In the method for producing a thermoelectric conversion element to be a conversion element, before the calcining of the temporary molded body, the calcining is performed in a reduced pressure atmosphere and at a temperature lower than a calcining temperature at which the temporary molded body is calcined. Method for manufacturing conversion element.
【請求項2】 前記仮成形体を250〜380℃で仮焼
成することを特徴とする請求項1記載の熱電変換素子の
製造方法。
2. The method for manufacturing a thermoelectric conversion element according to claim 1, wherein the temporary molded body is prebaked at 250 to 380 ° C.
【請求項3】 前記仮成形体を仮焼成した後、焼成する
前に、水素を含む還元ガス雰囲気で、かつ、前記焼成温
度より低い温度で予備焼成することを特徴とする請求項
1又は請求項2記載の熱電変換素子の製造方法。
3. The method according to claim 1, wherein after the preliminary molded body is pre-baked, it is pre-fired in a reducing gas atmosphere containing hydrogen and at a temperature lower than the firing temperature before firing. Item 3. A method for manufacturing a thermoelectric conversion element according to item 2.
【請求項4】 前記仮成形体を加圧雰囲気で、かつ、焼
成温度410〜590℃で焼成することを特徴とする請
求項1乃至請求項3いずれかに記載の熱電変換素子の製
造方法。
4. The method for manufacturing a thermoelectric conversion element according to claim 1, wherein the temporary molded body is fired in a pressurized atmosphere at a firing temperature of 410 to 590 ° C.
JP7163946A 1995-06-29 1995-06-29 Manufacture of thermoelectric conversion element Withdrawn JPH0918060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7163946A JPH0918060A (en) 1995-06-29 1995-06-29 Manufacture of thermoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7163946A JPH0918060A (en) 1995-06-29 1995-06-29 Manufacture of thermoelectric conversion element

Publications (1)

Publication Number Publication Date
JPH0918060A true JPH0918060A (en) 1997-01-17

Family

ID=15783829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7163946A Withdrawn JPH0918060A (en) 1995-06-29 1995-06-29 Manufacture of thermoelectric conversion element

Country Status (1)

Country Link
JP (1) JPH0918060A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002344034A (en) * 2001-05-18 2002-11-29 Kyocera Corp Method of manufacturing thermoelectric device
US8035026B2 (en) 2003-08-26 2011-10-11 Kyocera Corporation Thermoelectric material, thermoelectric element, thermoelectric module and methods for manufacturing the same
JP2014099634A (en) * 2014-01-08 2014-05-29 Denso Corp Method of manufacturing thermoelectric conversion element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002344034A (en) * 2001-05-18 2002-11-29 Kyocera Corp Method of manufacturing thermoelectric device
JP4601206B2 (en) * 2001-05-18 2010-12-22 京セラ株式会社 Method for manufacturing thermoelectric element
US8035026B2 (en) 2003-08-26 2011-10-11 Kyocera Corporation Thermoelectric material, thermoelectric element, thermoelectric module and methods for manufacturing the same
US8519256B2 (en) 2003-08-26 2013-08-27 Kyocera Corporation Thermoelectric material, thermoelectric element, thermoelectric module and method for manufacturing the same
JP2014099634A (en) * 2014-01-08 2014-05-29 Denso Corp Method of manufacturing thermoelectric conversion element

Similar Documents

Publication Publication Date Title
JP4876501B2 (en) Thermoelectric conversion material and manufacturing method thereof
US11647674B2 (en) Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and method for manufacturing thermoelectric conversion material
JP2011528849A (en) Thermoelectric materials and chalcogenide compounds
WO2021153550A1 (en) Thermoelectric conversion module
US20020062853A1 (en) Method of manufacturing a thermoelectric element and a thermoelectric module
JP2012231024A (en) Thermoelectric conversion module
JP2013197265A (en) Thermoelectric conversion module
JPH07202274A (en) Thermoelectric device and its manufacture
JPH0918060A (en) Manufacture of thermoelectric conversion element
JP3580778B2 (en) Thermoelectric conversion element and method of manufacturing the same
JP4467584B2 (en) Thermoelectric material manufacturing method
JP3929880B2 (en) Thermoelectric material
JP6467740B2 (en) Thermoelectric conversion element and manufacturing method thereof
EP4215633A1 (en) Thermoelectric material, method for producing same, and thermoelectric power generation element
JP3562296B2 (en) P-type thermoelectric conversion material and method for producing the same
JP3526563B2 (en) Thermoelectric element, method of manufacturing the same, and thermoelectric module
JP4666841B2 (en) Method for manufacturing thermoelectric material
CN114402445A (en) Thermoelectric conversion element, thermoelectric conversion module, joining material, and method for manufacturing thermoelectric conversion element
JPH09307146A (en) Manufacture of thermoelectric conversion element
JP3605366B2 (en) Thermoelectric element manufacturing method, thermoelectric element and thermoelectric module manufactured using the same
JP4601206B2 (en) Method for manufacturing thermoelectric element
JPH09289339A (en) Thermoelectric transducer material and manufacture thereof
JPH09116199A (en) Manufacture of thermoelectric transfer element
JPH0832123A (en) Manufacture of thermoelectric conversion device
JPH0832124A (en) Manufacture of thermoelectric conversion element

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020903