JPH0917985A - Image pickup element and manufacturing method thereof - Google Patents

Image pickup element and manufacturing method thereof

Info

Publication number
JPH0917985A
JPH0917985A JP7165218A JP16521895A JPH0917985A JP H0917985 A JPH0917985 A JP H0917985A JP 7165218 A JP7165218 A JP 7165218A JP 16521895 A JP16521895 A JP 16521895A JP H0917985 A JPH0917985 A JP H0917985A
Authority
JP
Japan
Prior art keywords
silicon substrate
silicon nitride
nitride film
vertical transfer
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7165218A
Other languages
Japanese (ja)
Inventor
Junichi Furukawa
順一 古川
Atsushi Asai
淳 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP7165218A priority Critical patent/JPH0917985A/en
Publication of JPH0917985A publication Critical patent/JPH0917985A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE: To provide an image pickup element the smear characteristic of which is improved and manufacturing method thereof. CONSTITUTION: An image pickup element 21 has a light reception part 4 for performing the photoelectric conversion linearly formed on a surface layer of a Si substrate 21, vertical transfer part 22 disposed linearly on the side of the part 4 along the length thereof and screen film 15 opened just above the reception part on the Si substrate. The surface of the substrate 21 locate just above the reception part 4 is formed lower than the surfaced of the substrate 21 located just above a laterally central part of the transfer part 22 and the surface of the substrate 21 located between these surfaces of the substrate 21 is made curved. A manufacturing method of an image pickup element having such a constitution is provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光電変換を行う受光部
を有した撮像素子に係り、詳しくはスミア特性を改善し
た撮像素子とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image pickup device having a light receiving portion for photoelectric conversion, and more particularly to an image pickup device having improved smear characteristics and a method of manufacturing the same.

【0002】[0002]

【従来の技術】従来、CCD(Charge-Coupled Device
)型の撮像素子として、例えば図5に示す構造のもの
が知られている。図5において符号1は撮像素子であ
り、この撮像素子1は、シリコン基板2の表層部にオー
バーフローバリア3を形成し、これの上に受光部4をラ
イン状に配列形成し、さらにこの受光部4の上にホール
蓄積部5を形成したものである。受光部4の一方の側方
には読み出し部9を介してpウェル6が配設され、pウ
ェル6の上には垂直転送部7がライン状に配設されてい
る。また、受光部4の他方の側方にはチャネルストップ
8が配設され、該チャネルストップ8の側方には別の垂
直転送部7が形成され、さらに該垂直転送部7の側方に
は読み出し部9、受光部(図示略)が順次配設されてい
る。
2. Description of the Related Art Conventionally, CCD (Charge-Coupled Device)
) Type image pickup device having a structure shown in FIG. 5, for example, is known. In FIG. 5, reference numeral 1 is an image pickup device. In this image pickup device 1, an overflow barrier 3 is formed on a surface layer portion of a silicon substrate 2, light receiving portions 4 are linearly arranged on the overflow barrier 3, and the light receiving portion 4 is further formed. 4, the hole accumulating portion 5 is formed. A p-well 6 is arranged on one side of the light-receiving section 4 via a reading section 9, and a vertical transfer section 7 is arranged in a line on the p-well 6. Further, a channel stop 8 is arranged on the other side of the light receiving section 4, another vertical transfer section 7 is formed on the side of the channel stop 8, and further on the side of the vertical transfer section 7. A reading section 9 and a light receiving section (not shown) are sequentially arranged.

【0003】シリコン基板2の表面には絶縁膜10が形
成され、この絶縁膜10の上には、前記垂直転送部7の
直上位置を覆って転送電極11が形成されている。ま
た、該転送電極11の上にはこれを覆って酸化膜12が
形成され、さらに前記絶縁膜10上には酸化膜12を覆
って絶縁酸化膜13が形成されている。そして、該絶縁
酸化膜13の上には層間絶縁膜14が形成され、またこ
れの上には前記転送電極11を覆った状態でかつ前記受
光部4の直上部を開口した状態で遮光膜15が形成さ
れ、さらに該遮光膜15上には透明絶縁層(図示略)が
形成されている。
An insulating film 10 is formed on the surface of the silicon substrate 2, and a transfer electrode 11 is formed on the insulating film 10 so as to cover a position directly above the vertical transfer portion 7. An oxide film 12 is formed on the transfer electrode 11 so as to cover it, and an insulating oxide film 13 is formed on the insulating film 10 so as to cover the oxide film 12. An interlayer insulating film 14 is formed on the insulating oxide film 13, and the light shielding film 15 is formed on the insulating film 13 while covering the transfer electrode 11 and opening the upper portion of the light receiving portion 4. And a transparent insulating layer (not shown) is formed on the light shielding film 15.

【0004】そして、このような構成により撮像素子1
は、透明絶縁層(図示略)を透過してきた入射光をその
受光部4で受け、光電変換を行って電荷とする。する
と、得られた電荷は読み出し部9を経て垂直転送部7に
送られ、さらに転送電極11の駆動によって垂直転送部
7中を移動し、水平転送部(図示略)を経て信号として
出力される。
[0004] With such a configuration, the image pickup device 1
The incident light that has passed through the transparent insulating layer (not shown) is received by the light receiving section 4, and photoelectrically converted into electric charges. Then, the obtained charges are sent to the vertical transfer unit 7 via the readout unit 9, further moved in the vertical transfer unit 7 by driving the transfer electrode 11, and output as a signal via the horizontal transfer unit (not shown). .

【0005】また、このような構成の撮像素子1を製造
するには、まずシリコン基板2にオーバーフローバリア
3を形成し、次にこのシリコン基板2の表層部の所定位
置にp型の不純物を注入してチャネルストップ8と読み
出し部9とを所定間隔あけて形成し、かつpウェル6を
形成する。また、これとは別に、チャネルストップ8お
よび読み出し部9のそれぞれの外側の、pウェル6の上
にn型の不純物を注入し、垂直転送部7をライン状に形
成する。次いで、シリコン基板2の表面に熱酸化法によ
って絶縁膜10を形成し、続いて該絶縁膜10上にポリ
シリコン膜(図示略)を形成する。そして、このポリシ
リコン膜を公知のリソグラフィ技術、エッチング技術に
よってパターニングし、前記垂直転送部7の略直上の位
置にポリシリコンからなる転送電極11をライン状に形
成する。
In order to manufacture the image pickup device 1 having such a structure, first, the overflow barrier 3 is formed on the silicon substrate 2, and then p-type impurities are implanted at a predetermined position on the surface layer portion of the silicon substrate 2. Then, the channel stop 8 and the reading section 9 are formed with a predetermined space therebetween, and the p-well 6 is formed. Separately from this, an n-type impurity is implanted into the p-well 6 outside the channel stop 8 and the reading section 9 to form the vertical transfer section 7 in a line shape. Next, the insulating film 10 is formed on the surface of the silicon substrate 2 by a thermal oxidation method, and then a polysilicon film (not shown) is formed on the insulating film 10. Then, this polysilicon film is patterned by a well-known lithography technique and etching technique to form a transfer electrode 11 made of polysilicon in a line shape at a position substantially above the vertical transfer portion 7.

【0006】次いで、熱酸化法によって転送電極11の
表面にポリシリコン酸化膜12を形成し、続いて、形成
した転送電極11をマスクとしたセルフアラインによっ
てシリコン基板2表層部の比較的深い位置にn型の不純
物を注入し、読み出し部9とチャネルストップ8との間
に受光部4をライン状に配列形成する。さらに、同様に
転送電極11をマスクとしてシリコン基板2表層部の比
較的浅い位置にp型の不純物を注入し、受光部4の直上
にホール蓄積部5を形成する。そして、前記ポリシリコ
ン酸化膜12を覆って絶縁膜10上にCVD法等でSi
2 からなる絶縁酸化膜13を堆積形成する。
Next, a polysilicon oxide film 12 is formed on the surface of the transfer electrode 11 by a thermal oxidation method, and subsequently, a self-alignment is performed using the formed transfer electrode 11 as a mask so that the surface of the silicon substrate 2 is relatively deep. An n-type impurity is implanted, and the light receiving sections 4 are formed in a line between the read section 9 and the channel stop 8. Further, similarly, using the transfer electrode 11 as a mask, a p-type impurity is implanted at a relatively shallow position in the surface layer portion of the silicon substrate 2, and the hole accumulation portion 5 is formed immediately above the light receiving portion 4. Then, a Si film is formed on the insulating film 10 by CVD or the like so as to cover the polysilicon oxide film 12.
An insulating oxide film 13 made of O 2 is deposited and formed.

【0007】次いで、CVD法等によってPSG(リン
シリケートガラス)を堆積し、絶縁酸化膜13上に層間
絶縁膜14を形成する。その後、該層間絶縁膜14上に
Al膜(図示略)を形成し、さらにこれを公知のリソグ
ラフィ技術、エッチング技術によってパターニングし、
受光部4の略直上部を開口した状態にパターニングして
遮光膜15を形成する。そして、これら遮光膜15およ
び層間絶縁膜14を覆って透明樹脂等からなる透明絶縁
層(図示略)を形成し、さらにカラーフィルタ(図示
略)、オンチップレンズ(図示略)を公知の手法により
形成し、撮像素子1を得る。
Then, PSG (phosphosilicate glass) is deposited by the CVD method or the like to form an interlayer insulating film 14 on the insulating oxide film 13. After that, an Al film (not shown) is formed on the interlayer insulating film 14, and the Al film is further patterned by a known lithography technique or etching technique.
The light-shielding film 15 is formed by patterning the light-receiving portion 4 so that the upper portion thereof is open. Then, a transparent insulating layer (not shown) made of a transparent resin or the like is formed to cover the light shielding film 15 and the interlayer insulating film 14, and a color filter (not shown) and an on-chip lens (not shown) are formed by a known method. Then, the image pickup device 1 is obtained.

【0008】[0008]

【発明が解決しようとする課題】ところが、前記構成の
撮像素子1には以下に述べる不都合がある。前記撮像素
子1では、受光部4と垂直転送部7とがシリコン基板2
の表層部にて同一平面上に形成されているため、屈折及
び反射することによって受光部4に大きな入射角で入っ
てきた光の一部が、直接、または遮光膜15とシリコン
基板2表面との間で反射することによって垂直転送部7
あるいはその近傍に達し、そこで光電変換される。する
と、光電変換によって発生した電荷の一部が垂直転送部
7に取り込まれ、スミア信号電荷となることにより、ス
ミア特性が低下してしまう。本発明は前記事情に鑑みて
なされたもので、その目的とするところは、スミア特性
を改善した撮像素子とその製造方法を提供することにあ
る。
However, the image pickup device 1 having the above structure has the following disadvantages. In the image pickup device 1, the light receiving part 4 and the vertical transfer part 7 are formed on the silicon substrate 2.
Since it is formed on the same plane in the surface layer part of, the part of the light entering the light receiving part 4 at a large incident angle by being refracted and reflected is directly or directly on the light shielding film 15 and the surface of the silicon substrate 2. The vertical transfer unit 7 by reflecting between
Alternatively, it reaches its vicinity and is photoelectrically converted there. Then, a part of the charges generated by the photoelectric conversion is taken into the vertical transfer unit 7 and becomes smear signal charges, so that the smear characteristic deteriorates. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an image sensor having improved smear characteristics and a method for manufacturing the same.

【0009】[0009]

【課題を解決するための手段】本発明の撮像素子では、
シリコン基体の表層部に光電変換を行う受光部がライン
状に形成され、該受光部の側方にそのライン方向に沿っ
て垂直転送部がライン状に配設され、前記シリコン基体
上に前記受光部の略直上部を開口した状態で遮光膜が設
けられてなり、前記受光部の直上に位置するシリコン基
体表面が、前記垂直転送部における幅方向の中心部の直
上に位置するシリコン基体表面より低く形成され、これ
らシリコン基体表面間に位置する基体表面が湾曲して形
成されてなることを前記課題の解決手段とした。
According to the image pickup device of the present invention,
A light receiving portion for performing photoelectric conversion is formed in a line shape on the surface layer portion of the silicon substrate, and a vertical transfer portion is arranged in a line along the line direction on the side of the light receiving portion, and the light receiving portion is formed on the silicon substrate. A light-shielding film is provided in a state in which the light-shielding film is provided substantially directly above, and the silicon substrate surface located directly above the light-receiving portion is located above the silicon substrate surface immediately above the center portion in the width direction of the vertical transfer portion. It is a means for solving the above-mentioned problem that the substrate surface is formed low and the surface of the substrate located between these silicon substrate surfaces is curved.

【0010】本発明の撮像素子の製造方法では、シリコ
ン基体の表面上に酸化膜を形成する工程と、前記酸化膜
上に窒化ケイ素膜を形成し、これをライン状にパターニ
ングして複数の垂直転送部形成箇所直上位置にそれぞれ
窒化ケイ素膜パターンを形成する工程と、この窒化ケイ
素膜パターンを形成したシリコン基体の表面を酸化して
該窒化ケイ素膜パターンを形成した箇所以外の箇所の前
記酸化膜を成長させてその肉厚を厚くする工程と、前記
窒化ケイ素膜パターンを除去する工程と、前記シリコン
基体上の酸化膜を除去する工程と、前記シリコン基体表
層部の、前記窒化ケイ素膜パターンを形成した箇所にそ
れぞれ不純物を注入して垂直転送部をライン状に複数形
成する工程と、前記シリコン基体表面に第一の絶縁膜を
形成する工程と、前記第一の絶縁膜上の、前記垂直転送
部の略直上にそれぞれ転送電極を形成する工程と、前記
転送電極の表面に第二の絶縁膜を形成する工程と、前記
転送電極間に不純物を注入して受光部を形成する工程と
を備えてなることを前記課題の解決手段とした。
In the method of manufacturing an image pickup device of the present invention, a step of forming an oxide film on the surface of a silicon substrate, a silicon nitride film is formed on the oxide film, and the silicon nitride film is linearly patterned to form a plurality of vertical films. A step of forming a silicon nitride film pattern immediately above the transfer portion forming portion, and the oxide film at a portion other than the portion where the silicon nitride film pattern is formed by oxidizing the surface of the silicon substrate on which the silicon nitride film pattern is formed To increase the thickness thereof, a step of removing the silicon nitride film pattern, a step of removing an oxide film on the silicon substrate, and a step of removing the silicon nitride film pattern on the surface layer portion of the silicon substrate. A step of injecting an impurity into each of the formed portions to form a plurality of vertical transfer portions in a line, and a step of forming a first insulating film on the surface of the silicon substrate, A step of forming a transfer electrode on the first insulating film substantially directly above the vertical transfer portion, a step of forming a second insulating film on the surface of the transfer electrode, and an impurity between the transfer electrodes. And a step of forming a light receiving portion by injecting the solution.

【0011】[0011]

【作用】本発明の撮像素子によれば、受光部の直上に位
置するシリコン基体表面が、垂直転送部における幅方向
の中心部の直上に位置するシリコン基体表面より低く形
成され、これらシリコン基体表面間に位置するシリコン
基体表面が湾曲して形成されてなるので、受光部に対し
て大きな入射角で光が斜めに入ってきた場合、この光は
受光部より高い位置に形成された垂直転送部の下方に入
射する。したがって、ここで光電変換されて電荷が発生
しても、この電荷が垂直転送部に取り込まれることがほ
とんどなくなる。また、受光部の直上に位置するシリコ
ン基体表面と、垂直転送部における幅方向の中心部の直
上に位置するシリコン基体表面との間が湾曲して形成さ
れているので、従来のごとくこの間のシリコン基体表面
がフラットである場合に比較し、特に垂直転送部の上面
側における実質的な面積が増加し、これにより取扱い電
荷量が増大する。同様に、シリコン基体表面がフラット
である場合に比較して受光部から垂直転送部への読み出
し経路の長さ、すなわち読み出し部の幅が広くなり、し
たがって読み出し電位差マージンが増大する。
According to the image pickup device of the present invention, the surface of the silicon substrate directly above the light receiving portion is formed lower than the surface of the silicon substrate directly above the center portion in the width direction of the vertical transfer portion. Since the surface of the silicon substrate located between them is formed to be curved, when light enters the light receiving section at a large incident angle, this light is vertically transferred to a position higher than the light receiving section. Incident below. Therefore, even if photoelectric conversion is performed to generate charges, the charges are hardly taken into the vertical transfer unit. Further, since the silicon substrate surface located directly above the light receiving portion and the silicon substrate surface located directly above the center portion in the width direction of the vertical transfer portion are curved, the silicon between them is formed as in the conventional case. Compared with the case where the surface of the substrate is flat, the substantial area is increased particularly on the upper surface side of the vertical transfer portion, which increases the amount of charge handled. Similarly, the length of the read path from the light receiving portion to the vertical transfer portion, that is, the width of the read portion is widened as compared with the case where the surface of the silicon substrate is flat, and therefore the read potential difference margin is increased.

【0012】本発明の撮像素子の製造方法によれば、シ
リコン基体表面上の酸化膜の上に窒化ケイ素膜を形成
し、これをライン状にパターニングして窒化ケイ素膜パ
ターンを形成し、さらにこの窒化ケイ素膜パターンを形
成したシリコン基体の表面を酸化し、該窒化ケイ素膜パ
ターンを形成した箇所以外の箇所の前記酸化膜を成長さ
せてその肉厚を厚くし、その後前記窒化ケイ素膜パター
ン、前記酸化膜をそれぞれ除去するので、シリコン基体
の表面が窒化ケイ素膜パターンを形成した箇所を頂点と
して該箇所間で緩やかに湾曲した凹部を形成する。そし
て、前記頂点となる箇所のシリコン基体表層部に垂直転
送部を形成し、該垂直転送部間となる前記凹部形成箇所
に受光部を形成するので、前記撮像素子が得られる。
According to the method of manufacturing an image pickup device of the present invention, a silicon nitride film is formed on an oxide film on a surface of a silicon substrate, and the silicon nitride film is patterned in a line shape to form a silicon nitride film pattern. The surface of the silicon substrate on which the silicon nitride film pattern is formed is oxidized, and the oxide film is grown at a position other than the position where the silicon nitride film pattern is formed to increase its thickness, and then the silicon nitride film pattern, Since each of the oxide films is removed, a concave portion gently curved is formed between the portions of the surface of the silicon substrate where the silicon nitride film pattern is formed as apexes. Then, the vertical transfer portion is formed on the surface layer portion of the silicon substrate at the apex portion, and the light receiving portion is formed at the recess forming portion between the vertical transfer portions, so that the image pickup device is obtained.

【0013】[0013]

【実施例】以下、本発明を実施例により詳しく説明す
る。図1は本発明の撮像素子をCCD型撮像素子に適用
した場合の一実施例を示す図であり、この図において符
号20は撮像素子である。なお、図1に示した撮像素子
20において、図5に示した撮像素子1の構成要素と同
一の構成要素には同一の符号を付してその説明を省略す
る。この撮像素子20が、図5に示した撮像素子1と基
本的に異なるところは、シリコン基板(シリコン基体)
21の表面形状がフラットでなく湾曲している点にあ
る。すなわち、この撮像素子20においてそのシリコン
基板21は、ライン状に形成された受光部4、垂直転送
部22のライン方向と直交する方向に沿う平面形状が、
垂直転送部22の中心部の直上箇所を頂点とし、受光部
4の中心部の直上箇所を略最低点として湾曲したもので
あり、つまり、垂直転送部22の中心部の直上箇所を頂
点として該頂点間に緩やかに湾曲した凹部を形成したも
のである。
The present invention will be described below in more detail with reference to examples. FIG. 1 is a diagram showing an embodiment in which the image pickup device of the present invention is applied to a CCD type image pickup device, and in this figure, reference numeral 20 is an image pickup device. In the image sensor 20 shown in FIG. 1, the same components as those of the image sensor 1 shown in FIG. 5 are designated by the same reference numerals, and the description thereof will be omitted. This image pickup device 20 is basically different from the image pickup device 1 shown in FIG. 5 in that a silicon substrate (silicon substrate) is used.
The surface shape of 21 is not flat but curved. That is, in the image pickup device 20, the silicon substrate 21 has a planar shape along the direction orthogonal to the line direction of the light receiving portion 4 and the vertical transfer portion 22, which are formed in a linear shape.
The point directly above the center of the vertical transfer section 22 is the apex, and the point directly above the center of the light-receiving section 4 is curved as the lowest point, that is, the point directly above the center of the vertical transfer section 22 is the apex. A gently curved concave portion is formed between the vertices.

【0014】そして、この凹部の中心部の直下に前述し
たように受光部4が形成され、前記頂点の直下に垂直転
送部22が形成されていることから、該垂直転送部22
は受光部4に対し、従来のごとく単にその側方に位置す
るだけでなく、十分に高い位置に配置されたものとなっ
ている。また、この垂直転送部22の幅方向における中
心部の直上におけるシリコン基板2表面が前記頂点とな
っており、該シリコン基板2表面では該頂点から左右に
いくに連れて漸次湾曲して低くなることから、後述する
製造方法において示すように該垂直転送部22は、その
中心部を最上部とし、左右に行くに連れて漸次下方に湾
曲したものとなっている。
As described above, the light receiving portion 4 is formed immediately below the center of the concave portion, and the vertical transfer portion 22 is formed immediately below the apex, so that the vertical transfer portion 22 is formed.
Is not only located on the side of the light receiving portion 4 as in the conventional case, but is also arranged at a sufficiently high position. Further, the surface of the silicon substrate 2 immediately above the center portion in the width direction of the vertical transfer portion 22 is the apex, and the surface of the silicon substrate 2 gradually curves from the apex to the left and right and becomes lower. Therefore, as shown in a manufacturing method to be described later, the vertical transfer portion 22 has its central portion as the uppermost portion and is gradually curved downward as it goes to the left and right.

【0015】また、同様にこの垂直転送部22の直下に
形成されたpウェル23も、その中心部を最上部とし、
左右に行くに連れて漸次下方に湾曲したものとなってい
る。また、これとは逆に受光部4上に形成されたホール
蓄積部24は、その中心部を最下部とし、左右に行くに
連れて漸次上方に湾曲したものとなっている。さらに、
受光部4と一方の側の垂直転送部22との間に形成され
る読み出し部25、および受光部4と他方の側の垂直転
送部22との間に形成されるチャネルストップ26は、
いずれもその直上のシリコン基板2表面の湾曲形状に沿
って、転送電極22側から受光部4側に向かって下り勾
配をもって傾斜したものとなっている。また、このよう
に平面形状が湾曲してなるシリコン基板21の上に形成
された絶縁膜10、転送電極11、酸化膜12、絶縁酸
化膜13、層間絶縁膜14、遮光膜15等は、いずれも
シリコン基板21の表面形状に対応した形状に形成配置
されたものとなっている。
Similarly, the p-well 23 formed immediately below the vertical transfer portion 22 has its central portion as the uppermost portion,
It gradually curves downward as it goes to the left and right. On the contrary, the hole accumulating portion 24 formed on the light receiving portion 4 has its central portion as the lowermost portion and is gradually curved upward as it goes to the left and right. further,
The reading section 25 formed between the light receiving section 4 and the vertical transfer section 22 on one side, and the channel stop 26 formed between the light receiving section 4 and the vertical transfer section 22 on the other side,
In each case, the curved surface of the silicon substrate 2 immediately above is inclined with a downward slope from the transfer electrode 22 side toward the light receiving portion 4 side. In addition, the insulating film 10, the transfer electrode 11, the oxide film 12, the insulating oxide film 13, the interlayer insulating film 14, the light-shielding film 15, etc. formed on the silicon substrate 21 having the curved planar shape as described above are all Is also formed and arranged in a shape corresponding to the surface shape of the silicon substrate 21.

【0016】このような構成の撮像素子20を製造する
には、図2(a)に示すように従来と同様にオーバーフ
ローバリア(図示略)を形成したシリコン基板21を用
意し、これの表面に熱酸化法によって酸化膜30を形成
する。続いて、この酸化膜30の上に常圧CVD法等に
よって厚さ10〜1000nm程度の窒化ケイ素(Si
N)膜31を堆積形成する。次に、公知のリソグラフィ
技術、エッチング技術によって窒化ケイ素膜31をライ
ン状にパターニングし、図2(b)に示すように窒化ケ
イ素膜パターン31a…を形成する。ここで、窒化ケイ
素膜パターン31aについては、後に形成する垂直転送
部(22)の、形成予定箇所の直上位置に配置されるよ
うに形成するとともに、形成すべき垂直転送部(22)
の幅にも対応させて形成する。
In order to manufacture the image pickup device 20 having such a structure, as shown in FIG. 2A, a silicon substrate 21 having an overflow barrier (not shown) formed therein is prepared as in the conventional case, and the surface thereof is prepared. The oxide film 30 is formed by the thermal oxidation method. Then, on this oxide film 30, a silicon nitride (Si) film having a thickness of about 10 to 1000 nm is formed by atmospheric pressure CVD or the like.
N) A film 31 is deposited and formed. Next, the silicon nitride film 31 is linearly patterned by a known lithography technique and etching technique to form a silicon nitride film pattern 31a ... As shown in FIG. 2 (b). Here, the silicon nitride film pattern 31a is formed so as to be disposed immediately above the planned formation portion of the vertical transfer portion (22) to be formed later, and the vertical transfer portion (22) to be formed.
It is also formed to correspond to the width of.

【0017】次いで、この窒化ケイ素膜パターン31a
…を形成したシリコン基板21上の酸化膜30の表面を
強い酸化、例えばパイロジェニック酸化法によって温度
950〜1100℃程度で酸化することにより、図2
(c)に示すように窒化ケイ素膜パターン31aを形成
した箇所以外の箇所の酸化膜30を成長させ、窒化ケイ
素膜パターン31a、31a間の中心箇所の肉厚を10
0〜2000nm程度となるようにする。すなわち、こ
こまでの一連の処理工程はいわゆるLOCOSプロセス
と呼ばれる処理であり、本実施例では、シリコン基板2
1におけるセル面積の70%以上をLOCOS法によっ
て酸化成長させる。
Then, the silicon nitride film pattern 31a is formed.
2 is formed by strongly oxidizing the surface of the oxide film 30 on the silicon substrate 21 on which the ... Is formed, for example, by a pyrogenic oxidation method at a temperature of about 950 to 1100.degree.
As shown in (c), the oxide film 30 is grown at a portion other than the portion where the silicon nitride film pattern 31a is formed, and the thickness of the central portion between the silicon nitride film patterns 31a and 31a is set to 10
It should be about 0 to 2000 nm. That is, the series of processing steps up to this point are so-called LOCOS processing, and in this embodiment, the silicon substrate 2 is used.
70% or more of the cell area in No. 1 is oxidized and grown by the LOCOS method.

【0018】次いで、リン酸溶液等を用いて窒化ケイ素
膜パターン31a、31aを除去し、さらに適宜なエッ
チング材を用いて酸化膜30をエッチング除去する。す
ると、シリコン基板2は、その表面が図3(a)に示す
ように、窒化ケイ素膜パターン31aを形成した箇所の
中心部が頂点となり、該頂点間が湾曲して凹部を形成し
た形状となる。ここで、LOCOS法によって成長形成
させた前記酸化膜30の厚さを例えば100nmに設定
すると、受光部4の直上に位置するシリコン基板21表
面は垂直転送部22の直上に位置するシリコン基板21
表面より450nm程度凹み、また窒化ケイ素膜パター
ン31aの幅を1.0μm、その厚さを100nmに設
定すると、垂直転送部22の直上に位置するシリコン基
板21の表面においてはそのフラットな部分、すなわち
頂点となる部分が0.5μm程度の幅となる。
Next, the silicon nitride film patterns 31a, 31a are removed using a phosphoric acid solution or the like, and the oxide film 30 is removed by etching using an appropriate etching material. Then, as shown in FIG. 3A, the surface of the silicon substrate 2 has a shape in which the central portion of the portion where the silicon nitride film pattern 31a is formed has an apex and the apex is curved to form a concave portion. . Here, when the thickness of the oxide film 30 grown and formed by the LOCOS method is set to, for example, 100 nm, the surface of the silicon substrate 21 located directly above the light receiving portion 4 is located directly above the vertical transfer portion 22.
When the silicon nitride film pattern 31a is recessed from the surface by about 450 nm, the width of the silicon nitride film pattern 31a is set to 1.0 μm, and the thickness thereof is set to 100 nm, the flat portion of the surface of the silicon substrate 21 immediately above the vertical transfer portion 22, that is, The width at the apex is about 0.5 μm.

【0019】次いで、シリコン基板21表層部の、前記
窒化ケイ素膜パターンを形成した箇所にそれぞれイオン
注入法やドライブイン法によってn型の不純物を注入
し、図3(b)に示すように垂直転送部22をライン状
に複数形成する。また、これに先立ち、シリコン基板2
の表層部の所定位置にp型の不純物を注入し、チャネル
ストップ26と読み出し部25とを所定間隔あけて形成
し、かつpウェル23を形成しておく。
Then, n-type impurities are implanted into the surface of the silicon substrate 21 where the silicon nitride film pattern has been formed by ion implantation or drive-in, respectively, and vertical transfer is performed as shown in FIG. 3 (b). A plurality of parts 22 are formed in a line. Prior to this, the silicon substrate 2
A p-type impurity is implanted at a predetermined position in the surface layer portion of, the channel stop 26 and the reading portion 25 are formed with a predetermined gap, and the p well 23 is formed.

【0020】次いで、図3(b)に示すようにシリコン
基板21の表面に熱酸化法によってSiO2 からなる絶
縁膜(第一の絶縁膜)10を形成し、続いて、図3
(c)に示すように該絶縁膜10上に減圧CVD法等に
よってポリシリコン膜32を堆積形成する。そして、P
OCl3 等を1〜100cc加えたドライ酸化を850
〜1000℃程度の温度で行うことにより、該ポリシリ
コン膜32にリン(P)を注入する。次いで、このポリ
シリコン膜32を、従来と同様に公知のリソグラフィ技
術、さらにCHCl3 等をエッチャントとしたドライエ
ッチング技術によってパターニングし、図4(a)に示
すように前記垂直転送部22の略直上の位置にポリシリ
コンからなる転送電極11をライン状に形成する。
Next, as shown in FIG. 3B, an insulating film (first insulating film) 10 made of SiO 2 is formed on the surface of the silicon substrate 21 by a thermal oxidation method, and then, as shown in FIG.
As shown in (c), a polysilicon film 32 is deposited and formed on the insulating film 10 by a low pressure CVD method or the like. And P
850 for dry oxidation by adding 1-100 cc of OCl 3 etc.
Phosphorus (P) is implanted into the polysilicon film 32 by performing the process at a temperature of about 1000 ° C. Next, this polysilicon film 32 is patterned by a known lithography technique as in the conventional technique and a dry etching technique using CHCl 3 or the like as an etchant, and as shown in FIG. 4A, substantially directly above the vertical transfer portion 22. A transfer electrode 11 made of polysilicon is formed in a line shape at the position.

【0021】次いで、図4(b)に示すように例えばパ
イロジェニック酸化法によって温度850〜1000℃
程度で酸化することにより、転送電極11の表面にポリ
シリコン酸化膜(第二の絶縁膜)12を形成し、これに
より滑らかなポリシリコン/SiO2 界面を形成する。
続いて、形成した転送電極11をマスクとしたセルフア
ラインによってシリコン基板21表層部の比較的深い位
置にn型の不純物を注入し、読み出し部25とチャネル
ストップ26との間に受光部4をライン状に配列形成す
る。さらに、同様に転送電極11をマスクとしてシリコ
ン基板2表層部の比較的浅い位置にp型の不純物を注入
し、受光部4の直上にホール蓄積部24を形成する。そ
して、前記ポリシリコン酸化膜12を覆って絶縁膜10
上にCVD法等でSiO2 からなる絶縁酸化膜13を堆
積形成する。
Then, as shown in FIG. 4 (b), the temperature is 850 to 1000 ° C., for example, by the pyrogenic oxidation method.
The polysilicon oxide film (second insulating film) 12 is formed on the surface of the transfer electrode 11 by being oxidized to a certain degree, thereby forming a smooth polysilicon / SiO 2 interface.
Then, by self-alignment using the formed transfer electrode 11 as a mask, an n-type impurity is injected into a relatively deep position of the surface layer of the silicon substrate 21, and the light receiving section 4 is lined between the read section 25 and the channel stop 26. To form an array. Further, similarly, using the transfer electrode 11 as a mask, a p-type impurity is implanted at a relatively shallow position of the surface layer of the silicon substrate 2, and the hole accumulating portion 24 is formed immediately above the light receiving portion 4. Then, the insulating film 10 is covered to cover the polysilicon oxide film 12.
An insulating oxide film 13 made of SiO 2 is deposited and formed thereon by a CVD method or the like.

【0022】次いで、CVD法等によってPSG(リン
シリケートガラス)を堆積し、絶縁酸化膜13上に層間
絶縁膜14を形成する。その後、該層間絶縁膜14上に
Al膜(図示略)を形成し、さらにこれを公知のリソグ
ラフィ技術、エッチング技術によってパターニングし、
受光部4の略直上部を開口した状態にパターニングして
遮光膜15を形成する。そして、これら遮光膜15およ
び層間絶縁膜14を覆って透明樹脂等からなる透明絶縁
層(図示略)を形成し、さらにカラーフィルタ(図示
略)、オンチップレンズ(図示略)を公知の手法により
形成し、図1に示した撮像素子20を得る。
Next, PSG (phosphosilicate glass) is deposited by the CVD method or the like to form an interlayer insulating film 14 on the insulating oxide film 13. After that, an Al film (not shown) is formed on the interlayer insulating film 14, and the Al film is further patterned by a known lithography technique or etching technique.
The light-shielding film 15 is formed by patterning the light-receiving portion 4 so that the upper portion thereof is open. Then, a transparent insulating layer (not shown) made of a transparent resin or the like is formed to cover the light shielding film 15 and the interlayer insulating film 14, and a color filter (not shown) and an on-chip lens (not shown) are formed by a known method. Then, the image pickup device 20 shown in FIG. 1 is obtained.

【0023】このようにして得られた撮像素子20にあ
っては、受光部4の直上に位置するシリコン基板21表
面が、垂直転送部22における幅方向の中心部の直上に
位置するシリコン基板21表面より低く形成され、これ
らシリコン基板21の各表面間に位置するシリコン基板
21表面が湾曲して形成されてなるので、受光部4に対
して大きな入射角で光が斜めに入ってきた場合、この光
は受光部4より高い位置に形成された垂直転送部22の
下方に入射する。したがって、ここで光電変換されて電
荷が発生しても、この電荷が垂直転送部22に取り込ま
れることがほとんどなくなり、これにより優れたスミア
特性を得ることができる。
In the image pickup device 20 thus obtained, the surface of the silicon substrate 21 located directly above the light receiving portion 4 is located directly above the center portion of the vertical transfer portion 22 in the width direction. Since the surface of the silicon substrate 21 is formed to be lower than the surface and is located between the surfaces of the silicon substrate 21, the surface of the silicon substrate 21 is curved. Therefore, when the light enters the light receiving portion 4 at a large incident angle, This light enters below the vertical transfer portion 22 formed at a position higher than the light receiving portion 4. Therefore, even if charges are generated by photoelectric conversion here, the charges are hardly taken into the vertical transfer unit 22, and thus excellent smear characteristics can be obtained.

【0024】また、受光部4の直上に位置するシリコン
基板21表面と、垂直転送部22における幅方向の中心
部の直上に位置するシリコン基板21表面との間が湾曲
しているので、従来のごとくこの間のシリコン基板表面
がフラットである場合に比べ、特に垂直転送部22形成
に際して不純物を同じ条件で注入しても、形成された垂
直転送部22の上面側の実質的な面積が増加し、これに
より取扱い電荷量を増大させることができる。同様に、
シリコン基板21表面がフラットである場合に比べて受
光部4から垂直転送部への読み出し経路の長さ、すなわ
ち読み出し部25の幅が広くなり、したがって読み出し
電位差マージンを増大させることができる。
Further, since the surface of the silicon substrate 21 located directly above the light receiving section 4 and the surface of the silicon substrate 21 located directly above the center of the vertical transfer section 22 in the width direction are curved, As compared with the case where the surface of the silicon substrate is flat as described above, the substantial area on the upper surface side of the formed vertical transfer portion 22 increases even if impurities are injected under the same conditions particularly when the vertical transfer portion 22 is formed. This can increase the amount of charge handled. Similarly,
Compared with the case where the surface of the silicon substrate 21 is flat, the length of the read path from the light receiving section 4 to the vertical transfer section, that is, the width of the read section 25, becomes wider, and therefore the read potential difference margin can be increased.

【0025】また、受光部4の直上に位置するシリコン
基板21表面が緩いながらも下方に凹んだ状態で湾曲し
ているため、ホール蓄積部24の上面側の面積が増大
し、これにより暗電流が減少する。同様に、ホール蓄積
部24の直下に位置する受光部4も僅かではあるものの
その上面側の面積が増大し、これによりホール蓄積部2
4との接合面積が増大するため、蓄積電荷量、すなわち
Qs(Handled Chargein Sensor )が増加する。
Further, since the surface of the silicon substrate 21 located immediately above the light receiving portion 4 is loose but is curved in a state of being depressed downward, the area of the upper surface side of the hole accumulating portion 24 is increased, which results in dark current. Is reduced. Similarly, the light receiving portion 4 located immediately below the hole accumulating portion 24 also has a slight increase in the area on the upper surface side thereof, whereby the hole accumulating portion 2 is formed.
Since the junction area with 4 increases, the amount of accumulated charge, that is, Qs (Handled Chargein Sensor) increases.

【0026】[0026]

【発明の効果】以上説明したように本発明の撮像素子
は、受光部の直上に位置するシリコン基体表面を、垂直
転送部における幅方向の中心部の直上に位置するシリコ
ン基体表面より低く形成し、これらシリコン基体表面間
に位置するシリコン基体表面を湾曲させたものであるか
ら、受光部に対して大きな入射角で光が斜めに入ってき
た場合に、この光を受光部より高い位置に形成した垂直
転送部の下方に入射させることができ、したがってここ
で光電変換されて電荷が発生しても、この電荷が垂直転
送部に取り込まれることがほとんどなくすことができ、
これにより優れたスミア特性を得ることができる。ま
た、受光部の直上に位置するシリコン基体表面と、垂直
転送部における幅方向の中心部の直上に位置するシリコ
ン基体表面との間を湾曲させてているので、従来のごと
くこの間のシリコン基体表面がフラットである場合に比
較し、特に垂直転送部の上面側における実質的な面積を
増加させ、これにより取扱い電荷量を増大させることが
でき、同様に、シリコン基体表面がフラットである場合
に比較し、受光部から垂直転送部への読み出し経路の長
さ、すなわち読み出し部の幅を広くすることができ、し
たがって読み出し電位差マージンを増大させることがで
きる。本発明の撮像素子の製造方法は、シリコン基体表
面上の酸化膜の上に窒化ケイ素膜を形成し、これをライ
ン状にパターニングして窒化ケイ素膜パターンを形成
し、さらにこの窒化ケイ素膜パターンを形成したシリコ
ン基体の表面を酸化し、該窒化ケイ素膜パターンを形成
した箇所以外の箇所の前記酸化膜を成長させてその肉厚
を厚くし、その後前記窒化ケイ素膜パターン、前記酸化
膜をそれぞれ除去するものであるから、シリコン基体の
表面を、窒化ケイ素膜パターンを形成した箇所が頂点と
なり、該箇所間で緩やかに湾曲した凹部が形成される形
状とすることができる。そして、前記頂点となる箇所の
シリコン基体表層部に垂直転送部を形成し、該垂直転送
部間となる前記凹部形成箇所に受光部を形成するので、
前記の優れた効果を奏する撮像素子を確実に製造するこ
とができる。
As described above, in the image pickup device of the present invention, the surface of the silicon substrate directly above the light receiving portion is formed lower than the surface of the silicon substrate directly above the center portion in the width direction of the vertical transfer portion. Since the surface of the silicon substrate located between these silicon substrate surfaces is curved, when the light enters the light receiving portion at a large incident angle, this light is formed at a position higher than the light receiving portion. It is possible to make the charges incident below the vertical transfer unit, and thus even if photoelectric conversion is performed here to generate electric charges, it is possible to prevent the electric charges from being taken in by the vertical transfer units.
Thereby, excellent smear characteristics can be obtained. In addition, since the silicon substrate surface located directly above the light receiving portion and the silicon substrate surface located directly above the widthwise central portion of the vertical transfer portion are curved, the silicon substrate surface between them as in the conventional case. In comparison with the case where the surface of the silicon substrate is flat, in particular, the substantial area on the upper surface side of the vertical transfer portion can be increased, thereby increasing the amount of charges handled. However, it is possible to increase the length of the read path from the light receiving unit to the vertical transfer unit, that is, the width of the read unit, and thus to increase the read potential difference margin. A method for manufacturing an image pickup device according to the present invention comprises forming a silicon nitride film on an oxide film on a surface of a silicon substrate, patterning this in a line shape to form a silicon nitride film pattern, and further forming the silicon nitride film pattern on the silicon nitride film pattern. The surface of the formed silicon substrate is oxidized to grow the oxide film at a location other than the location where the silicon nitride film pattern is formed to increase its thickness, and then the silicon nitride film pattern and the oxide film are removed respectively. Therefore, the surface of the silicon substrate can have a shape in which the portions where the silicon nitride film pattern is formed serve as the apexes and the gently curved concave portions are formed between the portions. Then, the vertical transfer portion is formed on the surface layer portion of the silicon substrate at the apex portion, and the light receiving portion is formed at the concave portion formation portion between the vertical transfer portions.
It is possible to reliably manufacture the image pickup device having the above-mentioned excellent effects.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の撮像素子の一実施例の概略構成を示す
要部側断面図である。
FIG. 1 is a side sectional view of an essential part showing a schematic configuration of an embodiment of an image pickup device of the present invention.

【図2】(a)〜(c)は図1に示した撮像素子の製造
方法を工程順に説明するための要部側断面図である。
2A to 2C are side cross-sectional views of main parts for explaining the method of manufacturing the image pickup device shown in FIG. 1 in process order.

【図3】(a)〜(c)は図1に示した撮像素子の製造
方法を工程順に説明するための図であり、図2(c)に
示した工程に続く製造工程を説明するための要部側断面
図である。
3 (a) to 3 (c) are views for explaining a method of manufacturing the image pickup device shown in FIG. 1 in order of process steps, and for explaining a manufacturing process subsequent to the process shown in FIG. 2 (c). FIG.

【図4】(a)〜(c)は図1に示した撮像素子の製造
方法を工程順に説明するための図であり、図3(c)に
示した工程に続く製造工程を説明するための要部側断面
図である。
4A to 4C are views for explaining the method of manufacturing the image pickup device shown in FIG. 1 in the order of steps, and for explaining the manufacturing steps subsequent to the step shown in FIG. FIG.

【図5】従来の撮像素子の一例を示す要部側断面図であ
る。
FIG. 5 is a side sectional view of an essential part showing an example of a conventional image sensor.

【符号の説明】[Explanation of symbols]

4 受光部 10 絶縁膜(第一の絶縁膜) 11 転送電極 12 酸化膜(第二の絶縁膜) 15 遮光膜 20 撮像素子 21 シリコン基板(シリコン基体) 22 垂直転送部 30 酸化膜 31 窒化ケイ素膜 31a 窒化ケイ素膜パターン 4 Light-receiving part 10 Insulating film (first insulating film) 11 Transfer electrode 12 Oxide film (second insulating film) 15 Light-shielding film 20 Image sensor 21 Silicon substrate (silicon substrate) 22 Vertical transfer part 30 Oxide film 31 Silicon nitride film 31a Silicon nitride film pattern

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 シリコン基体の表層部に光電変換を行う
受光部がライン状に形成され、該受光部の側方にそのラ
イン方向に沿って垂直転送部がライン状に配設され、前
記シリコン基体上に前記受光部の略直上部を開口した状
態で遮光膜が設けられてなる撮像素子であって、 前記受光部の直上に位置するシリコン基体表面が、前記
垂直転送部における幅方向の中心部の直上に位置するシ
リコン基体表面より低く形成され、 これらシリコン基体表面間に位置するシリコン基体表面
が湾曲して形成されてなることを特徴とする撮像素子。
1. A light receiving portion for performing photoelectric conversion is formed in a line shape on a surface layer portion of a silicon substrate, and a vertical transfer portion is arranged in a line along the line direction on a side of the light receiving portion, An imaging device comprising a light-shielding film provided on a substrate in such a manner that the light-receiving unit is opened substantially directly above, and the silicon substrate surface located directly above the light-receiving unit has a center in the width direction of the vertical transfer unit. An image pickup device characterized in that it is formed lower than the surface of a silicon substrate located immediately above the portion, and the surface of the silicon substrate located between the surfaces of these silicon substrates is curved.
【請求項2】 シリコン基体の表面上に酸化膜を形成す
る工程と、 前記酸化膜上に窒化ケイ素膜を形成し、これをライン状
にパターニングして複数の垂直転送部形成箇所直上位置
にそれぞれ窒化ケイ素膜パターンを形成する工程と、 この窒化ケイ素膜パターンを形成したシリコン基体の表
面を酸化して該窒化ケイ素膜パターンを形成した箇所以
外の箇所の前記酸化膜を成長させてその肉厚を厚くする
工程と、 前記窒化ケイ素膜パターンを除去する工程と、 前記シリコン基体上の酸化膜を除去する工程と、 前記シリコン基体表層部の、前記窒化ケイ素膜パターン
を形成した箇所にそれぞれ不純物を注入して垂直転送部
をライン状に複数形成する工程と、 前記シリコン基体表面に第一の絶縁膜を形成する工程
と、 前記第一の絶縁膜上の、前記垂直転送部の略直上にそれ
ぞれ転送電極を形成する工程と、 前記転送電極の表面に第二の絶縁膜を形成する工程と、 前記転送電極間に不純物を注入して受光部を形成する工
程と、 を備えてなることを特徴とする撮像素子の製造方法。
2. A step of forming an oxide film on the surface of a silicon substrate, and forming a silicon nitride film on the oxide film, and patterning the silicon nitride film in a line shape so that the silicon nitride film is formed directly above a plurality of vertical transfer portion formation locations. A step of forming a silicon nitride film pattern, and oxidizing the surface of the silicon substrate on which the silicon nitride film pattern is formed to grow the oxide film at a place other than the place where the silicon nitride film pattern is formed to reduce its thickness. Thickening, removing the silicon nitride film pattern, removing an oxide film on the silicon substrate, and injecting impurities into the silicon substrate surface layer portion where the silicon nitride film pattern is formed. Forming a plurality of vertical transfer portions in a line shape, forming a first insulating film on the surface of the silicon substrate, and forming a first insulating film on the first insulating film, Forming a transfer electrode substantially directly above the direct transfer portion, forming a second insulating film on the surface of the transfer electrode, and implanting an impurity between the transfer electrodes to form a light receiving portion. An image pickup element manufacturing method comprising:
JP7165218A 1995-06-30 1995-06-30 Image pickup element and manufacturing method thereof Pending JPH0917985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7165218A JPH0917985A (en) 1995-06-30 1995-06-30 Image pickup element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7165218A JPH0917985A (en) 1995-06-30 1995-06-30 Image pickup element and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JPH0917985A true JPH0917985A (en) 1997-01-17

Family

ID=15808100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7165218A Pending JPH0917985A (en) 1995-06-30 1995-06-30 Image pickup element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0917985A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066537A (en) * 2004-08-25 2006-03-09 Hamamatsu Photonics Kk Optical detector and its manufacturing method
WO2011155009A1 (en) * 2010-06-08 2011-12-15 パナソニック株式会社 Solid-state image pickup device and method for manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066537A (en) * 2004-08-25 2006-03-09 Hamamatsu Photonics Kk Optical detector and its manufacturing method
WO2011155009A1 (en) * 2010-06-08 2011-12-15 パナソニック株式会社 Solid-state image pickup device and method for manufacturing same

Similar Documents

Publication Publication Date Title
KR0175175B1 (en) Solid state imaging device
US9111829B2 (en) Color-optimized image sensor
TWI830988B (en) Image sensor and method of forming same and method of fabricating a transistor for an image sensor
KR20040086200A (en) Solid image-taking element and its production method
JP2866328B2 (en) Solid-state imaging device
US5246875A (en) Method of making charge coupled device image sensor
JPH0964328A (en) Solid-state image pickup element and its preparation
JPH0917985A (en) Image pickup element and manufacturing method thereof
CN100468762C (en) Solid state image pickup device and its manufacture
KR0172849B1 (en) Solid state image sensing device and manufacturing method thereof
KR20220047465A (en) Image sensor and Method of fabricating the same
JPH0475383A (en) Solid-state image sensing element
JP3481654B2 (en) Solid-state imaging device
JP2000106425A (en) Solid-state image pickup device and manufacture thereof
JP2606834B2 (en) Solid-state imaging device and method of manufacturing the same
JP3673534B2 (en) CCD imaging device and manufacturing method thereof
JP2001237409A (en) Solid-state image pickup element and its manufacturing method
JP2002373980A (en) Solid state imaging device and its manufacturing method
JP3485304B2 (en) Solid-state imaging device
JPH0992813A (en) Solid state image pickup device and its manufacture
JP2980196B2 (en) Solid-state imaging device
WO2006080592A1 (en) Solid-state image pickup device using charged-coupled devices and method for fabricating the same
JPH0590551A (en) Solid-state image pick-up device
KR100262033B1 (en) Solid-state image sensor and method for manufacturing the same
JP3772920B6 (en) Manufacturing method of light receiving part of solid-state imaging device