JPH0917848A - Magnetic levitation type stage - Google Patents
Magnetic levitation type stageInfo
- Publication number
- JPH0917848A JPH0917848A JP16634595A JP16634595A JPH0917848A JP H0917848 A JPH0917848 A JP H0917848A JP 16634595 A JP16634595 A JP 16634595A JP 16634595 A JP16634595 A JP 16634595A JP H0917848 A JPH0917848 A JP H0917848A
- Authority
- JP
- Japan
- Prior art keywords
- stage
- electromagnet
- force
- coil
- moving
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Control Of Position Or Direction (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Machine Tool Units (AREA)
- Non-Mechanical Conveyors (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、半導体露光装置や、光
電子分光装置、X線顕微鏡、電子顕微鏡に代表される試
料解析装置などに用いる位置決めステージに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positioning stage used in a semiconductor exposure apparatus, a photoelectron spectroscopy apparatus, an X-ray microscope, a sample analysis apparatus typified by an electron microscope, and the like.
【0002】[0002]
【従来の技術】半導体露光装置で露光する際には、ウエ
ハをX、Y、Z、α(ピッチング)、β(ローリン
グ)、θ(ヨーイング)の6自由度で精密に位置決めす
る必要がある。また、光電子分光装置、X線顕微鏡、電
子顕微鏡は解析試料を同様に6自由度で位置決めする必
要がある。従来、この分野では、1軸駆動、2軸駆動ま
たは3軸駆動のステージを必要に応じて組合せて段重ね
にし、6軸のステージとして使用している。このステー
ジはボールねじ、遊星ねじ、リニアねじ、てこなどのリ
ンク機構と、歯車などの駆動・減速機構と、クロスロー
ラガイド、V−フラット溝滑りガイドなどの摩擦軸受け
を適宜組合せて所望の位置決め精度を達成するようにし
ている。2. Description of the Related Art When a semiconductor exposure apparatus is used for exposure, it is necessary to precisely position a wafer in six degrees of freedom of X, Y, Z, α (pitching), β (rolling) and θ (yawing). Further, the photoelectron spectroscopic device, the X-ray microscope, and the electron microscope must similarly position the analysis sample with 6 degrees of freedom. Conventionally, in this field, one-axis drive, two-axis drive, or three-axis drive stages are combined and stacked as needed to be used as a six-axis stage. This stage is equipped with link mechanism such as ball screw, planetary screw, linear screw and lever, drive / deceleration mechanism such as gear, friction roller bearing such as cross roller guide and V-flat groove slide guide, and desired positioning accuracy. To achieve.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、従来の
ステージはステージ全体の体積が大きくなり軽量化が困
難である。したがって移動ステージの慣性力が大きくな
り駆動の高速化が妨げられるとともに位置決め精度を高
めることも難しい。また、固定ステージと移動ステージ
の間に機械的接触面を有するため、移動機構からの発塵
によりステージの置かれた雰囲気のクリーン度を低下さ
せる。また、接触面に潤滑剤を使用するため、高真空中
の使用時には真空度を低下させるという問題点がある。However, in the conventional stage, the volume of the entire stage is large and it is difficult to reduce the weight. Therefore, the inertial force of the moving stage becomes large, which hinders high-speed driving and it is difficult to improve the positioning accuracy. In addition, since the fixed stage and the moving stage have a mechanical contact surface, the cleanliness of the atmosphere in which the stage is placed is reduced by the dust generated by the moving mechanism. Further, since a lubricant is used for the contact surface, there is a problem that the degree of vacuum is lowered when used in a high vacuum.
【0004】ステージの非接触駆動を実現させるために
エアーベアリングにより移動ステージを浮上させリニア
モータにより駆動することもできるが、エアーベアリン
グのエアーが塵を舞上げるのでクリーン度を低下させ、
例えば半導体工程での歩留りを悪化させる。さらに、エ
アーを利用するため真空中での使用は原理的に不可能で
ある。In order to realize the non-contact drive of the stage, the moving stage can be levitated by the air bearing and driven by the linear motor, but the air of the air bearing causes dust to fly, thus lowering the cleanliness.
For example, the yield in the semiconductor process is deteriorated. Furthermore, since it uses air, it cannot be used in a vacuum in principle.
【0005】本発明の目的は、移動ステージを軽量化し
て移動ステージの高速駆動および高精度な位置決めを可
能とするとともに、クリーン度を低下させず、真空中で
も使用可能な磁気浮上型ステージを提供することにあ
る。An object of the present invention is to provide a magnetic levitation type stage which can be used even in a vacuum without reducing the cleanliness while enabling the moving stage to be lightened to drive the moving stage at high speed and to perform highly accurate positioning. Especially.
【0006】[0006]
【課題を解決するための手段】請求項1に記載の発明
は、直交座標系の3軸をX、Y、Zとし、各軸回りの回
転角をα、β、θで表すとき、固定ステージ1と、固定
ステージ1に沿ってXY平面内の任意の位置に駆動され
る移動ステージ4とを有する磁気浮上型ステージに適用
される。そして、移動ステージ4および固定ステージ1
のいずれか一方のステージに設けた磁石群5により形成
された磁束中で他方のステージに設けた電線に電流を流
すことにより移動ステージ4にZ方向の力を付与するよ
うにすることにより上述の目的が達成される。請求項2
に記載の発明は、請求項1に記載の磁気浮上型ステージ
において、電線をZ方向と直交する方向の軸を中心に巻
き回されたコイル24の一部としたものである。請求項
3に記載の発明は、直交座標系の3軸をX、Y、Zと
し、各軸回りの回転角をα、β、θで表すとき、固定ス
テージ1と、固定ステージ1に沿ってXY平面内の任意
の位置に駆動される移動ステージ4とを有する磁気浮上
型ステージにおいて、移動ステージ4および固定ステー
ジ1のいずれか一方のステージに設けた磁石群5と、他
のステージに設けられX方向またはY方向の軸を中心に
巻き回された第1のコイル124と、第1のコイル12
4と同一の巻芯に巻付けられ第1のコイル124の軸方
向およびZ方向の双方に直交する方向の軸に巻き回され
た第2のコイル125とを備え、第1のコイル124お
よび第2のコイル125に電流を流すことにより移動ス
テージ4にZ方向の力を付与するようにすることにより
上述の目的が達成される。請求項4に記載の発明は、請
求項1〜3のいずれか1項に記載の磁気浮上型ステージ
において、磁石群5は他方のステージに対してN極を向
けて取付けられた第1の磁石5dと他方のステージに対
してS極を向けて取付けられた第2の磁石5eとの組合
せからなり、第1の磁石5dと第2の磁石5eとの間で
Z方向と直交する方向に磁束8を形成するようにしたも
のである。請求項5に記載の発明は、請求項1〜4のい
ずれか1項に記載の磁気浮上型ステージにおいて、一方
のステージまたは他方のステージに取付けられ移動ステ
ージ4のZ方向の移動量およびα方向、β方向の回転量
に応じた計測値を出力する計測手段6と、計測手段6か
らの計測値を受けて電流を制御する制御手段30とをさ
らに備えるものである。請求項6に記載の発明は、請求
項1〜5のいずれか1項に記載の磁気浮上型ステージに
おいて、一方のステージを移動ステージ4とし、他方の
ステージを固定ステージ1としたものである。請求項7
に記載の発明は、請求項1〜6のいずれか1項に記載の
磁気浮上型ステージにおいて、磁石群5と他方に設けた
電磁石群2との間の吸引力または反発力により移動ステ
ージ4にZ方向の力を付与するようにしたものである。According to a first aspect of the present invention, when the three axes of the Cartesian coordinate system are X, Y and Z and the rotation angles around the respective axes are represented by α, β and θ, a fixed stage is provided. 1 and a movable stage 4 driven along the fixed stage 1 to an arbitrary position in the XY plane. Then, the moving stage 4 and the fixed stage 1
By applying a current in the magnetic flux formed by the magnet group 5 provided on one of the stages to the electric wire provided on the other stage, a force in the Z direction is applied to the moving stage 4 as described above. The purpose is achieved. Claim 2
In the magnetic levitation stage according to the first aspect of the invention, the wire is a part of the coil 24 wound around the axis in the direction orthogonal to the Z direction. In the invention according to claim 3, when the three axes of the Cartesian coordinate system are X, Y, and Z, and the rotation angles around the respective axes are represented by α, β, and θ, the fixed stage 1 and the fixed stage 1 In a magnetic levitation stage having a moving stage 4 driven to an arbitrary position in the XY plane, a magnet group 5 provided on one of the moving stage 4 and the fixed stage 1 and another stage provided on another stage. A first coil 124 wound around an axis in the X direction or the Y direction, and the first coil 12
4 and a second coil 125 that is wound around the same winding core as that of the first coil 124 and is wound around an axis in a direction orthogonal to both the axial direction and the Z direction of the first coil 124. The above-described object is achieved by applying a current to the second coil 125 to apply a force in the Z direction to the moving stage 4. The invention according to claim 4 is the magnetic levitation type stage according to any one of claims 1 to 3, wherein the magnet group 5 is attached to the other stage with the N pole facing the first magnet. 5d and a second magnet 5e attached with the S pole facing the other stage, and a magnetic flux is generated between the first magnet 5d and the second magnet 5e in a direction orthogonal to the Z direction. 8 is formed. According to a fifth aspect of the present invention, in the magnetic levitation stage according to any one of the first to fourth aspects, the movement amount in the Z direction and the α direction of the moving stage 4 attached to one stage or the other stage. Further, it further comprises a measuring unit 6 for outputting a measured value according to the rotation amount in the β direction, and a control unit 30 for receiving the measured value from the measuring unit 6 and controlling the current. A sixth aspect of the present invention is the magnetic levitation type stage according to any one of the first to fifth aspects, wherein one stage is a moving stage 4 and the other stage is a fixed stage 1. Claim 7
In the magnetic levitation stage according to any one of claims 1 to 6, the invention described in (1) is applied to the moving stage 4 by the attraction force or repulsive force between the magnet group 5 and the electromagnet group 2 provided on the other side. The force is applied in the Z direction.
【0007】[0007]
【作用】請求項1に記載の発明では、磁石群5により作
り出された磁束中で電線に電流を流すと、ローレンツ力
により移動ステージ4にZ方向の力が付与される。請求
項2に記載の発明では、電線をZ方向と直交する方向の
軸を中心に巻き回されたコイル24に電流を流すと、ロ
ーレンツ力により移動ステージ4にZ方向の力が付与さ
れる。請求項3に記載の発明では、X方向またはY方向
の軸を中心に巻き回された第1のコイル124に電流を
流すと、ローレンツ力により移動ステージ4にZ方向の
力が付与される。また、第1のコイル124と同一の巻
芯に巻付けられ第1のコイル124の軸方向およびZ方
向の双方に直交する方向の軸に巻き回された第2のコイ
ル125に電流を流すと、ローレンツ力により移動ステ
ージ4にZ方向の力が付与される。請求項4に記載の発
明では、N極を向けて取付けられた第1の磁石5eと他
にS極を向けて取付けられた第2の磁石5dとの間でZ
方向と直交する方向に磁束8が作り出される。請求項5
に記載の発明では、計測手段3、6、7は移動ステージ
4のZ方向の移動量およびα方向、β方向の回転量に応
じた計測値を出力し、計測手段3、6、7からの計測値
を受けた制御手段30が電流I5を制御する。請求項7
に記載の発明では、磁石群5と他方に設けた電磁石群2
との間の吸引力または反発力により移動ステージ4にZ
方向の力が付与される。According to the first aspect of the present invention, when a current is passed through the electric wire in the magnetic flux created by the magnet group 5, a force in the Z direction is applied to the moving stage 4 by the Lorentz force. According to the second aspect of the invention, when an electric current is passed through the coil 24 wound around the axis of the electric wire which is orthogonal to the Z direction, the Z-direction force is applied to the moving stage 4 by the Lorentz force. In the invention according to claim 3, when a current is passed through the first coil 124 wound around the axis in the X direction or the Y direction, a force in the Z direction is applied to the moving stage 4 by the Lorentz force. In addition, when a current is applied to the second coil 125 that is wound around the same core as the first coil 124 and is wound around the axis in the direction orthogonal to both the axial direction and the Z direction of the first coil 124. , Z-direction force is applied to the moving stage 4 by the Lorentz force. In the invention according to claim 4, Z is provided between the first magnet 5e attached with the N pole facing and the second magnet 5d attached with the S pole facing the other.
A magnetic flux 8 is created in a direction orthogonal to the direction. Claim 5
In the invention described in (1), the measuring means 3, 6, 7 output measured values according to the movement amount of the moving stage 4 in the Z direction and the rotation amounts of the α direction and the β direction, and the measuring means 3, 6, 7 output the measured values. The control means 30 which has received the measured value controls the current I5. Claim 7
In the invention described in the paragraph 1, the magnet group 5 and the electromagnet group 2 provided on the other side
To the moving stage 4 due to the attraction or repulsion between
Directional force is applied.
【0008】なお、本発明の構成を説明する上記課題を
解決するための手段と作用の項では、本発明を分かり易
くするために実施例の図を用いたが、これにより本発明
が実施例に限定されるものではない。[0008] In the means and means for solving the above-mentioned problems which explain the constitution of the present invention, the drawings of the embodiments are used to make the present invention easy to understand. It is not limited to.
【0009】[0009]
−第1の実施例− 図1〜図7は本実施例による磁気浮上型ステージの第1
の実施例を示す。なお、図1に示すように本実施例では
直交座標系の3軸をそれぞれX、Y、Zで表し、各軸回
りの回転角をα、β、θで表す。また、αをピッチン
グ、βをローリング、θをヨーイングと呼ぶ。図1に示
すように、矩形の固定ステージ1には複数の電磁石2が
配列されている。図2に示すように、この電磁石2は直
方体形状のコア21と、コア21の上部に重ねられた高
透磁率の部材22と、Z方向の軸を中心にしてコア21
に巻付けられたコイル23と、コイル23の軸と直交す
る軸を中心にしてコア21に巻付けられたコイル24と
からなる。図1において各電磁石2を示す正方形の領域
中に引かれた平行線は、各電磁石2のコイル24の向き
を模式的に表したものである。このように、電磁石2は
コイル24の軸がX方向に向いたものとY方向に向いた
ものとが交互にマトリックス状に配置されている。図3
に示すように、隣り合った電磁石2の間にはコイル24
の上面よりも上部に突出してホール素子3が取付けられ
ている。-First Embodiment- FIGS. 1 to 7 show a first magnetic levitation stage according to the present embodiment.
The following shows an example. As shown in FIG. 1, in this embodiment, the three axes of the Cartesian coordinate system are represented by X, Y, and Z, and the rotation angles around the axes are represented by α, β, and θ. Further, α is called pitching, β is rolling, and θ is yawing. As shown in FIG. 1, a plurality of electromagnets 2 are arranged on a rectangular fixed stage 1. As shown in FIG. 2, the electromagnet 2 includes a core 21 having a rectangular parallelepiped shape, a high-permeability member 22 stacked on the upper portion of the core 21, and a core 21 centered on an axis in the Z direction.
And a coil 24 wound around the core 21 around an axis orthogonal to the axis of the coil 23. In FIG. 1, the parallel lines drawn in the square region showing each electromagnet 2 schematically represent the orientation of the coil 24 of each electromagnet 2. As described above, the electromagnets 2 are arranged in a matrix in which the axes of the coils 24 are oriented in the X direction and those oriented in the Y direction. FIG.
As shown in FIG.
The Hall element 3 is attached so as to project above the upper surface of the.
【0010】図1および図3に示すように、固定ステー
ジ1の上方にはわずかな間隙を介して固定ステージ1よ
りも小さい矩形の移動ステージ4が浮上している。図1
および図4に示すように、移動ステージ4の下面には永
久磁石5a、5b、5c、5d、5e、5f、5g、5
h、5i、5j、5k、5lが設けられている。このう
ち永久磁石5b、5c、5e、5f、5g、5i、5k
は図1においてN極を下向きに、永久磁石5a、5d、
5h、5j、5lはS極を下向きにしてそれぞれ取付け
られている。また、移動ステージ4の下面には移動ステ
ージ4と固定ステージ1との間隙を計測する3つのギャ
ップセンサ6が取付けられている。3つのギャップセン
サにより移動ステージ4のZ方向の移動量およびピッチ
ングα方向、ローリングβ方向を計測する。As shown in FIG. 1 and FIG. 3, a rectangular moving stage 4 smaller than the fixed stage 1 floats above the fixed stage 1 with a slight gap. FIG.
Further, as shown in FIG. 4, permanent magnets 5a, 5b, 5c, 5d, 5e, 5f, 5g, 5 are provided on the lower surface of the moving stage 4.
h, 5i, 5j, 5k, and 5l are provided. Of these, permanent magnets 5b, 5c, 5e, 5f, 5g, 5i, 5k
Is the permanent magnet 5a, 5d, with the N pole facing downward in FIG.
5h, 5j, and 5l are attached with the S poles facing downward. Further, three gap sensors 6 for measuring the gap between the moving stage 4 and the fixed stage 1 are attached to the lower surface of the moving stage 4. The three gap sensors measure the amount of movement of the moving stage 4 in the Z direction, the pitching α direction, and the rolling β direction.
【0011】図1に示すように、固定ステージ1の周囲
には3台のレーザ干渉計7が設けられている。レーザ干
渉計7から発射されたレーザ光7aは移動ステージ4の
側面4Aおよび4Bの反射ミラーで反射されて再びレー
ザ干渉計7に戻る。3台のレーザ干渉計7により移動ス
テージ4のX方向、Y方向の移動量およびθ方向の回転
量を計測する。As shown in FIG. 1, three laser interferometers 7 are provided around the fixed stage 1. The laser light 7 a emitted from the laser interferometer 7 is reflected by the reflection mirrors on the side surfaces 4 A and 4 B of the moving stage 4 and returns to the laser interferometer 7 again. The three laser interferometers 7 measure the movement amount of the moving stage 4 in the X and Y directions and the rotation amount of the θ direction.
【0012】次に、以上のように構成された第1の実施
例の磁気浮上型ステージの駆動原理を図3および図5を
用いて説明する。なお、図3は図4のIII−III線
に沿って見た図、図5は図4のV−V線に沿って見た図
である。図3において電磁石2jはコア21jと部材2
2jとコイル23jとコイル24jとから、電磁石2k
はコア21kと部材22kとコイル23kとコイル24
kとから、それぞれ構成されている。また、永久磁石5
jは電磁石2jと、永久磁石5kは電磁石2kと、それ
ぞれ対向している。Next, the driving principle of the magnetic levitation type stage of the first embodiment constructed as described above will be explained with reference to FIG. 3 and FIG. 3 is a view taken along the line III-III of FIG. 4, and FIG. 5 is a view taken along the line VV of FIG. In FIG. 3, the electromagnet 2j includes a core 21j and a member 2
2j, coil 23j, and coil 24j, electromagnet 2k
Is the core 21k, the member 22k, the coil 23k, and the coil 24.
k and k respectively. Also, the permanent magnet 5
j is opposed to the electromagnet 2j, and the permanent magnet 5k is opposed to the electromagnet 2k.
【0013】図3において、電磁石2jのコイル23j
には下方向から見て時計回り方向の電流I1が流れてい
る。したがって、電磁石2j(コア21j)は上側がN
極となるので、対向する永久磁石5j(下側がS極)と
の間で吸引力を生ずる。電磁石2kのコイル23kには
下方向から見て反時計回り方向の電流I2が流れてお
り、電磁石2kおよびこれと対向する永久磁石5k(下
側がN極)の間にも同様に吸引力が生ずる。In FIG. 3, the coil 23j of the electromagnet 2j is shown.
A current I1 flowing in a clockwise direction when viewed from below. Therefore, the upper side of the electromagnet 2j (core 21j) is N
Since it is a pole, an attractive force is generated between the permanent magnets 5j (the lower side is the S pole) facing each other. A current I2 in the counterclockwise direction when viewed from below flows in the coil 23k of the electromagnet 2k, and an attractive force is similarly generated between the electromagnet 2k and the permanent magnet 5k (N pole on the lower side) facing the electromagnet 2k. .
【0014】図5において、永久磁石5dは電磁石2d
と、永久磁石5eは電磁石2eとそれぞれ対向してい
る。また、電磁石2dと電磁石2eとの間には電磁石2
deが挟まれて設けられている。電磁石2dはコア21
dと部材22dとコイル23dとコイル24dとから、
電磁石2deはコア21deと部材22deとコイル2
3deとコイル24deとから、電磁石2eはコア21
eと部材22eとコイル23eとコイル24eとから、
それぞれ構成されている。In FIG. 5, the permanent magnet 5d is an electromagnet 2d.
, And the permanent magnet 5e faces the electromagnet 2e. Further, the electromagnet 2 is placed between the electromagnets 2d and 2e.
de is sandwiched and provided. The electromagnet 2d is the core 21
From d, the member 22d, the coil 23d, and the coil 24d,
The electromagnet 2de includes a core 21de, a member 22de, and a coil 2
3 de and coil 24 de, electromagnet 2e is core 21
From e, the member 22e, the coil 23e, and the coil 24e,
Each is configured.
【0015】電磁石2dのコイル23dには下方向から
見て反時計回り方向の電流I3が流れており、電磁石2
d(コア21d)は上側がS極となるので、対向する永
久磁石5d(下側がS極)との間で反発力を生ずる。電
磁石2eのコイル23eには下方向から見て時計回り方
向の電流I4が流れており、電磁石2eおよびこれと対
向する永久磁石5e(下側がN極)の間にも同様に反発
力が生ずる。A current I3 in the counterclockwise direction when viewed from below flows in the coil 23d of the electromagnet 2d.
Since the d (core 21d) has the S pole on the upper side, a repulsive force is generated between the permanent magnet 5d (the S pole on the lower side) facing the d. A current I4 in the clockwise direction when viewed from below flows in the coil 23e of the electromagnet 2e, and a repulsive force similarly occurs between the electromagnet 2e and the permanent magnet 5e (lower side is the N pole) facing the electromagnet 2e.
【0016】図5において、8は永久磁石5dおよび永
久磁石5eによる磁束を示す。9は上述のように電流I
3および電流I4を流した電磁石2dおよび電磁石2e
によって発生する磁束を示す。コイル24deには図5
の右側から見て時計回り方向に電流I5が流れており、
コイル24deの上部にはローレンツ力により移動ステ
ージ4に接近しようとする方向(上方向)への力が働
く。コイル24deは固定ステージ1に固定されている
ので、移動ステージ4にはこのローレンツ力と同じ大き
さで下向きの力(吸引力)Fdeが加えられることにな
る。コイル24deの電流を逆向きにすることでFde
の方向を反転し反発力を発生させることもできる。In FIG. 5, reference numeral 8 indicates the magnetic flux generated by the permanent magnets 5d and 5e. 9 is the current I as described above.
3 and the electromagnet 2d and the electromagnet 2e that have passed the current I4
Shows the magnetic flux generated by. The coil 24de is shown in FIG.
Current I5 is flowing clockwise from the right side of
The Lorentz force acts on the upper part of the coil 24de in a direction (upward direction) in which it approaches the moving stage 4. Since the coil 24de is fixed to the fixed stage 1, a downward force (suction force) Fde having the same magnitude as the Lorentz force is applied to the moving stage 4. Fde by reversing the current of coil 24de
It is also possible to reverse the direction of and generate repulsive force.
【0017】以上述べたように、互いに対向する電磁石
2d、2eと永久磁石5d、5eとの間には反発力が、
電磁石2j、2kと永久磁石5j、5kとの間には吸引
力が生ずる。また、電磁石2deのコイル24deに流
す電流I5により移動ステージ4と固定ステージ1の間
には吸引力またはローレンツ力が生ずる。したがって、
これらの吸引力や反発力を通電する電流によって制御す
れば移動ステージ4のZ方向の位置、α方向、β方向の
傾きを制御することができる。As described above, the repulsive force is generated between the electromagnets 2d and 2e and the permanent magnets 5d and 5e which face each other.
An attractive force is generated between the electromagnets 2j and 2k and the permanent magnets 5j and 5k. Further, a current I5 flowing through the coil 24de of the electromagnet 2de causes an attractive force or Lorentz force between the movable stage 4 and the fixed stage 1. Therefore,
If the attraction force and the repulsive force are controlled by the applied electric current, the position of the moving stage 4 in the Z direction, the inclination in the α direction, and the inclination in the β direction can be controlled.
【0018】次にX方向、Y方向の移動量およびθ方向
の回転量の制御について説明する。上述のように、電磁
石2jのコイル23jには電流I1が流れ、電磁石2j
と永久磁石5jとの間には吸引力が生じている(図
3)。この状態で、さらにコイル24jには右方向から
見て時計回り方向の電流I6が流れている。したがっ
て、コイル24jのうち部材22jよりも上側にある部
分では紙面の手前側から奥側に向って電流I6が流れて
おり、この部分では永久磁石5jから右方向の力(ロー
レンツ力)を受ける。すなわち、移動ステージ4(永久
磁石5j)はこの力と逆向き(左向き)で同じ大きさの
力Fj1を固定ステージ1(電磁石2j)から受けるこ
とになる。移動ステージ4が受ける力Fj1の向きと大
きさはコイル24jに流す電流I6の向きと大きさによ
り制御することができる。また、コイル23jに流す電
流I1を増減させることにより、電磁石2jと永久磁石
5jとの間の吸引力を変化させて(磁束密度を変化させ
て)Fj1を制御することもできる。Next, the control of the amount of movement in the X and Y directions and the amount of rotation in the θ direction will be described. As described above, the current I1 flows through the coil 23j of the electromagnet 2j, and the electromagnet 2j
An attractive force is generated between the magnet and the permanent magnet 5j (FIG. 3). In this state, a current I6 in the clockwise direction when viewed from the right further flows through the coil 24j. Therefore, in the portion of the coil 24j above the member 22j, the current I6 flows from the front side to the back side of the paper surface, and in this portion, the force (Lorentz force) in the right direction is received from the permanent magnet 5j. That is, the moving stage 4 (permanent magnet 5j) receives a force Fj1 in the opposite direction (to the left) and the same magnitude as this force from the fixed stage 1 (electromagnet 2j). The direction and magnitude of the force Fj1 received by the moving stage 4 can be controlled by the direction and magnitude of the current I6 flowing through the coil 24j. Further, by increasing / decreasing the current I1 flowing through the coil 23j, the attractive force between the electromagnet 2j and the permanent magnet 5j can be changed (the magnetic flux density can be changed) to control Fj1.
【0019】一方、上述のように電磁石2kのコイル2
3kには電流I2が流れ電磁石2kと永久磁石5kとの
間には吸引力が生じている。この状態で、さらにコイル
24kに反時計回り方向の電流I7を流すと、上述と同
様の原理により移動ステージ4には紙面の奥に向かう方
向の力Fk1が加わる。移動ステージ4が受ける力Fk
1はコイル24kに流す電流I7およびコイル23kに
流す電流I2により同様に制御することができる。以上
のように発生するちからFj1とFk1によりX方向、
Y方向の移動量およびθ方向の回転量が制御される。On the other hand, as described above, the coil 2 of the electromagnet 2k
A current I2 flows through 3k, and an attractive force is generated between the electromagnet 2k and the permanent magnet 5k. In this state, when a counterclockwise current I7 is further applied to the coil 24k, a force Fk1 in the direction toward the back of the paper is applied to the moving stage 4 by the same principle as described above. Force Fk received by the moving stage 4
1 can be similarly controlled by the current I7 flowing through the coil 24k and the current I2 flowing through the coil 23k. Since it occurs as described above, Fj1 and Fk1 cause the X direction,
The amount of movement in the Y direction and the amount of rotation in the θ direction are controlled.
【0020】図4において、永久磁石5aは電磁石2a
(図示せず)と、永久磁石5bは電磁石2b(図示せ
ず)と、永久磁石5cは電磁石2c(図示せず)と、永
久磁石5dは電磁石2dと、永久磁石5eは電磁石2e
と、永久磁石5fは電磁石2f(図示せず)と、永久磁
石5gは電磁石2g(図示せず)と、永久磁石5hは電
磁石2h(図示せず)と、永久磁石5iは電磁石2i
(図示せず)と、永久磁石5jは電磁石2jと、永久磁
石5kは電磁石2kと、永久磁石5lは電磁石2lと、
それぞれ対向している。また、電磁石2aと電磁石2b
との間には電磁石2ab(図示せず)が、電磁石2aと
電磁石2cとの間には電磁石2ac(図示せず)が、電
磁石2dと電磁石2fとの間には電磁石2df(図示せ
ず)が、電磁石2dと電磁石2eとの間には電磁石2d
eが、電磁石2gと電磁石2hとの間には電磁石2gh
(図示せず)が、電磁石2hと電磁石2iとの間には電
磁石2hi(図示せず)が、それぞれ設けられている。In FIG. 4, the permanent magnet 5a is an electromagnet 2a.
(Not shown), the permanent magnet 5b is an electromagnet 2b (not shown), the permanent magnet 5c is an electromagnet 2c (not shown), the permanent magnet 5d is an electromagnet 2d, and the permanent magnet 5e is an electromagnet 2e.
, Permanent magnet 5f is electromagnet 2f (not shown), permanent magnet 5g is electromagnet 2g (not shown), permanent magnet 5h is electromagnet 2h (not shown), and permanent magnet 5i is electromagnet 2i.
(Not shown), the permanent magnet 5j is an electromagnet 2j, the permanent magnet 5k is an electromagnet 2k, and the permanent magnet 5l is an electromagnet 2l.
They are facing each other. Also, the electromagnet 2a and the electromagnet 2b
Between the electromagnet 2ab (not shown), the electromagnet 2ac (not shown) between the electromagnets 2a and 2c, and the electromagnet 2df (not shown) between the electromagnets 2d and 2f. However, the electromagnet 2d is placed between the electromagnets 2d and 2e.
e is an electromagnet 2gh between the electromagnets 2g and 2h.
(Not shown), electromagnets 2hi (not shown) are respectively provided between the electromagnets 2h and 2i.
【0021】図6は移動ステージ4に加えられる力を示
している。永久磁石5a、5b、5c、5d、5e、5
f、5g、5h、5iはそれぞれZ方向の力(反発力)
Fa、Fb、Fc、Fd、Fe、Ff、Fg、Fh、F
iを受ける。これらの反発力はそれぞれの永久磁石が対
向する電磁石2a、2b、2c、2d、2e、2f、2
g、2h、2iのコイル23a、23b、23c、23
d、23e、23f、23g、23h、23iに流す電
流により制御される。また、永久磁石5j、5k、5l
はZ方向の力(吸引力)Fj2、Fk2、Fl2を受け
る。これらの吸引力は電磁石2j、2k、2lのコイル
23j、23k、23lに流す電流により制御される。
さらに、図4で説明したように電磁石2deのコイル2
4deの電流により永久磁石5d、5eを介してステー
ジ4はZ方向の力Fde(吸引力または反発力)を受け
る。電磁石2acのコイル24acの上部は永久磁石5
aおよび永久磁石5cにより作られる磁束と直交してい
るので、コイル24acの電流によりステージ4はZ方
向の力Fac(吸引力または反発力)を受ける。電磁石
2hiのコイル24hiの電流により同様にステージ4
はZ方向の力Fhi(吸引力または反発力)を受ける。
このように、移動ステージ4はZ方向の力Fa、Fb、
Fc、Fd、Fe、Ff、Fg、Fh、Fi、Fde、
Fac、Fhiを受け、Z方向の移動量およびα方向、
β方向の回転量が制御される。なお、図6では力Fd
e、Fac、Fhiが吸引力の場合を示しているが、電
流の方向を逆にすれば反発力としても働く。FIG. 6 shows the force applied to the moving stage 4. Permanent magnets 5a, 5b, 5c, 5d, 5e, 5
f, 5g, 5h, and 5i are forces in the Z direction (repulsive force), respectively.
Fa, Fb, Fc, Fd, Fe, Ff, Fg, Fh, F
receive i. These repulsive forces are generated by the electromagnets 2a, 2b, 2c, 2d, 2e, 2f, 2 facing the respective permanent magnets.
g, 2h, 2i coils 23a, 23b, 23c, 23
It is controlled by the currents passed through d, 23e, 23f, 23g, 23h and 23i. Also, permanent magnets 5j, 5k, 5l
Receives a force (suction force) Fj2, Fk2, Fl2 in the Z direction. These attractive forces are controlled by the currents flowing through the coils 23j, 23k, 23l of the electromagnets 2j, 2k, 2l.
Further, as described in FIG. 4, the coil 2 of the electromagnet 2de is
The stage 4 receives a force Fde (attracting force or repulsive force) in the Z direction via the permanent magnets 5d and 5e by the current of 4 de. The permanent magnet 5 is located above the coil 24ac of the electromagnet 2ac.
Since it is orthogonal to the magnetic flux generated by a and the permanent magnet 5c, the current in the coil 24ac causes the stage 4 to receive the force Fac in the Z direction (attracting force or repulsive force). Similarly, the stage 4 is driven by the current of the coil 24hi of the electromagnet 2hi.
Receives a force Fhi (suction force or repulsion force) in the Z direction.
In this way, the moving stage 4 moves in the Z-direction forces Fa, Fb,
Fc, Fd, Fe, Ff, Fg, Fh, Fi, Fde,
In response to Fac and Fhi, the movement amount in the Z direction and the α direction,
The amount of rotation in the β direction is controlled. In FIG. 6, the force Fd
The case where e, Fac, and Fhi are attraction forces is shown, but if the directions of the currents are reversed, they also act as repulsive forces.
【0022】図6に示す状態では電磁石2abのコイル
24ab、電磁石2dfのコイル24dfおよび電磁石
2ghのコイル24ghは、それぞれの電磁石を両側か
ら挟み込む永久磁石により作られる磁束と平行な方向に
巻線が巻付けられているのでローレンツ力を発生しな
い。しかし、移動ステージ4が固定ステージ1の電磁石
一個分の距離だけX方向またはY方向に移動すると、こ
れらのコイル24ab、24df、24ghの巻線がこ
れらを挟み込む永久磁石が作り出す磁束と直交すること
になる。したがって、これらのコイルの電流により移動
ステージ4にZ方向の力(吸着力)を付与することがで
きる。なお、この場合には、図6において吸引力に寄与
した電磁石2ac、2de、2hiのコイル24ac、
24de、24hiは磁束と平行になるので吸引力を発
生させることはできない。In the state shown in FIG. 6, the coil 24ab of the electromagnet 2ab, the coil 24df of the electromagnet 2df and the coil 24gh of the electromagnet 2gh have windings wound in a direction parallel to the magnetic flux created by the permanent magnets sandwiching the respective electromagnets from both sides. Since it is attached, it does not generate Lorentz force. However, when the moving stage 4 moves in the X direction or the Y direction by the distance of one electromagnet of the fixed stage 1, the windings of these coils 24ab, 24df, and 24gh become orthogonal to the magnetic flux generated by the permanent magnets sandwiching them. Become. Therefore, a force in the Z direction (adsorption force) can be applied to the moving stage 4 by the currents of these coils. In this case, in FIG. 6, the coils 24ac of the electromagnets 2ac, 2de, 2hi that contribute to the attraction force,
Since 24de and 24hi are parallel to the magnetic flux, it is not possible to generate an attractive force.
【0023】図6に示すように、永久磁石5jはY方向
の力Fj1を、永久磁石5kはX方向の力Fk1を、永
久磁石5lはX方向の力Fl1を、それぞれ受ける。こ
れらの力は電磁石2jのコイル23j、24j、電磁石
2kのコイル23k、24kおよび電磁石2lのコイル
23l、24lに流す電流により制御される。なお、移
動ステージ4がX方向またはY方向に移動し永久磁石5
j、5k、5lに対向する電磁石が変るとコイル24の
向きが変るため、力Fj2、Fk2、Fl2の方向も変
化することになる。As shown in FIG. 6, the permanent magnet 5j receives a force Fj1 in the Y direction, the permanent magnet 5k receives a force Fk1 in the X direction, and the permanent magnet 5l receives a force Fl1 in the X direction. These forces are controlled by the currents flowing through the coils 23j and 24j of the electromagnet 2j, the coils 23k and 24k of the electromagnet 2k, and the coils 23l and 24l of the electromagnet 2l. The moving stage 4 moves in the X direction or the Y direction to move the permanent magnets 5.
When the electromagnets facing j, 5k, and 51 change, the direction of the coil 24 changes, so that the directions of the forces Fj2, Fk2, and Fl2 also change.
【0024】図7に示すように、制御装置30はホール
素子3、ギャップセンサ6、レーザ干渉計7からの情報
を受けて、電磁石2の各コイルに電流を供給する電流供
給装置40を制御する。ここで、ホール素子3は移動ス
テージ4の永久磁石5の磁場を検出して永久磁石5の位
置や磁極を計測し、この情報を受けた制御装置30が電
流を流すコイルおよびその電流の方向を決定する。移動
ステージ4が電磁石2のピッチを越えて移動した場合で
も、常に永久磁石が対向している電磁石に適切な電流が
供給され、移動ステージ4は適切に制御される。また、
ギャップセンサ6は移動ステージ4と固定ステージ1の
間のギャップを計測し、この情報を受けた制御装置Cが
電流の強さを制御する。これにより移動ステージ4のZ
方向の移動量およびα方向、β方向の回転量が制御され
る。さらに、レーザ干渉計7は移動ステージ4のX方
向、Y方向の移動量およびθ方向の回転量を計測し、こ
の情報を受けた制御装置30が電磁石のコイルに流す電
流の方向および強さを制御する。これにより移動ステー
ジ4のX方向、Y方向の移動量およびθ方向の回転量が
制御される。制御装置30で行われる制御の方式として
は、PD制御(比例微分制御)、PI制御(比例積分制
御)、PID制御(比例積分微分制御)、ファジー制
御、ロバスト制御などが適用できる。As shown in FIG. 7, the control device 30 receives information from the hall element 3, the gap sensor 6, and the laser interferometer 7 and controls the current supply device 40 which supplies a current to each coil of the electromagnet 2. . Here, the Hall element 3 detects the magnetic field of the permanent magnet 5 of the moving stage 4 to measure the position and magnetic pole of the permanent magnet 5, and the controller 30 receiving this information determines the coil through which the current flows and the direction of the current. decide. Even when the moving stage 4 moves beyond the pitch of the electromagnet 2, an appropriate current is always supplied to the electromagnets facing the permanent magnets, and the moving stage 4 is appropriately controlled. Also,
The gap sensor 6 measures the gap between the movable stage 4 and the fixed stage 1, and the controller C which receives this information controls the intensity of the current. As a result, Z of the moving stage 4
The amount of movement in the direction and the amount of rotation in the α and β directions are controlled. Further, the laser interferometer 7 measures the amount of movement of the moving stage 4 in the X and Y directions and the amount of rotation in the θ direction, and the controller 30 receiving this information determines the direction and strength of the current flowing through the coil of the electromagnet. Control. As a result, the amount of movement of the moving stage 4 in the X and Y directions and the amount of rotation of the θ direction are controlled. As a control method performed by the controller 30, PD control (proportional differential control), PI control (proportional integral control), PID control (proportional integral differential control), fuzzy control, robust control, or the like can be applied.
【0025】以上ではギャップセンサ6を3個用いるこ
とによりZ方向の移動量およびα方向、β方向の回転量
を計測するようにしたが、精度を高めるために4個以上
のギャップセンサを用いてもよい。ギャップセンサ6の
種類として、静電容量センサ、渦電流センサ、レーザ干
渉計などがあり、これらを単独でまたは2種以上を組合
せて使用してもよい。第1の実施例ではギャップセンサ
6を移動ステージ4に取付けたが固定ステージ1に取付
けてもよい。固定ステージ1と移動ステージ4のギャッ
プをより精密に測定するために、固定ステージ1の上面
または移動ステージ4の下面(ギャップセンサと対向す
る面)に平面性が良好で透磁性の高い板を設けてもよ
い。Although the amount of movement in the Z direction and the amount of rotation in the α direction and β direction are measured by using three gap sensors 6 in the above, four or more gap sensors are used to improve accuracy. Good. As the types of the gap sensor 6, there are a capacitance sensor, an eddy current sensor, a laser interferometer, and the like, and these may be used alone or in combination of two or more kinds. Although the gap sensor 6 is attached to the movable stage 4 in the first embodiment, it may be attached to the fixed stage 1. In order to measure the gap between the fixed stage 1 and the moving stage 4 more precisely, a plate having good flatness and high magnetic permeability is provided on the upper surface of the fixed stage 1 or the lower surface of the moving stage 4 (the surface facing the gap sensor). May be.
【0026】第1の実施例ではレーザ干渉計7を用いて
移動ステージ4のX方向、Y方向の移動量およびθ方向
の回転量を計測しているが、レーザ干渉計に代えて、静
電容量センサ、渦電流センサなどを用いることもでき
る。また、第1の実施例では3個のレーザ干渉計を用い
ているが、算出精度を高めるため4個以上のセンサを使
用してもよい。In the first embodiment, the laser interferometer 7 is used to measure the amount of movement of the moving stage 4 in the X and Y directions and the amount of rotation in the θ direction. It is also possible to use a capacitance sensor, an eddy current sensor, or the like. In addition, although three laser interferometers are used in the first embodiment, four or more sensors may be used to improve calculation accuracy.
【0027】第1の実施例においては、固定ステージ1
に取付けられたホール素子3により永久磁石5の磁場を
検出し、電流を供給する電磁石の選択および電流の方向
を決定しているが、ホール素子3を用いる代りにレーザ
干渉計7を用いてもよい。レーザ干渉計7からの情報に
よって、移動ステージ4のX方向、Y方向の移動量およ
びθ方向の回転量が算出できるので、これらの移動量と
回転量から電磁石の選択および電流の方向を決定するこ
とができる。In the first embodiment, the fixed stage 1
Although the magnetic field of the permanent magnet 5 is detected by the Hall element 3 attached to, the selection of the electromagnet that supplies the current and the direction of the current are determined. However, instead of using the Hall element 3, a laser interferometer 7 may be used. Good. Since the amount of movement of the moving stage 4 in the X and Y directions and the amount of rotation in the θ direction can be calculated from the information from the laser interferometer 7, the selection of the electromagnet and the direction of the current are determined from these amounts of movement and rotation. be able to.
【0028】移動ステージ4の永久磁石5の配置は第1
の実施例のものに限定されない。また、第1の実施例で
は互いに隣接する電磁石2のコイル22の向きが直交す
るように配置されているが、このような配置に限定され
るものではなく、電磁石2の配置に合わせて移動ステー
ジ4の永久磁石5の配置を適宜選択すればよい。また、
コイル22および23の巻数、巻線の密度などは任意に
選択できる。さらに、永久磁石5または電磁石2から発
生する漏れ磁束を捕獲、シールドするための電磁石を別
途設けてもよい。あるいはまた、固定ステージに永久磁
石を移動ステージに電磁石を設けたり、両ステージに電
磁石を設けてもよいが、本実施例のように移動ステージ
に永久磁石を設けると移動ステージへの配線が不要にな
り、また移動ステージが軽量化される利点がある。The arrangement of the permanent magnets 5 on the moving stage 4 is the first.
The present invention is not limited to the example. Further, in the first embodiment, the coils 22 of the electromagnets 2 adjacent to each other are arranged so that the directions thereof are orthogonal to each other, but the present invention is not limited to such an arrangement, and a moving stage is arranged according to the arrangement of the electromagnets 2. The arrangement of the permanent magnets 4 of 4 may be appropriately selected. Also,
The number of turns of the coils 22 and 23, the winding density, and the like can be arbitrarily selected. Further, an electromagnet for capturing and shielding the leakage magnetic flux generated from the permanent magnet 5 or the electromagnet 2 may be separately provided. Alternatively, a permanent magnet may be provided on the fixed stage, an electromagnet may be provided on the moving stage, or an electromagnet may be provided on both stages. However, if the permanent magnet is provided on the moving stage as in the present embodiment, wiring to the moving stage becomes unnecessary. In addition, there is an advantage that the moving stage is lightened.
【0029】第1の実施例において、永久磁石5j、5
k、5lを用いたが、これらの代りに磁性材を用いても
よい。この場合、コイル23j、23k、23lの電流
により磁性材を磁化させ(吸引力を生じさせ)た状態
で、コイル22j、22k、22lに電流を流すことに
より、第1の実施例と同様に移動ステージのX方向、Y
方向の移動量およびθ方向の回転量を制御することがで
きる。In the first embodiment, the permanent magnets 5j, 5j
Although k and 5 are used, a magnetic material may be used instead of these. In this case, the magnetic material is magnetized by the currents of the coils 23j, 23k, 23l (attracting force is generated), and the current is passed through the coils 22j, 22k, 22l, so that the coils move like the first embodiment. Stage X direction, Y
The amount of movement in the direction and the amount of rotation in the θ direction can be controlled.
【0030】以上の説明では永久磁石と電磁石が正対し
た場合についてのみ説明しているが、正対しない状態に
おいてはそれぞれの永久磁石に近接する単数または複数
の電磁石に電流を供給するようにすればよい。また、永
久磁石の磁束が届く範囲に設けられた他の電磁石を利用
して移動ステージに力を加えるようにしてもよい。In the above description, only the case where the permanent magnets and the electromagnets face each other has been described. However, in the state where the permanent magnets and the electromagnets do not face each other, a current may be supplied to one or a plurality of electromagnets close to the respective permanent magnets. Good. Further, a force may be applied to the moving stage by using another electromagnet provided within a range where the magnetic flux of the permanent magnet reaches.
【0031】第1の実施例においては、固定ステージ上
に浮上する移動ステージが駆動される場合について説明
したが、固定ステージ移動ステージとの間の吸引力によ
って移動ステージが固定ステージの下で浮上するように
してもよい。In the first embodiment, the case where the movable stage that floats on the fixed stage is driven has been described. However, the movable stage floats below the fixed stage by the suction force between the fixed stage and the movable stage. You may do it.
【0032】−第2の実施例− 以下、本発明による磁気浮上型ステージの第2の実施例
について第1の実施例との相違点を中心にして説明す
る。第1の実施例と同一の部分には同一の符号を付して
その説明を省略する。図8に示すように、矩形の固定ス
テージ101には複数の電磁石102がX方向およびY
方向に配列されている。図9に示すように、この電磁石
102は直方体形状のコア121と、コア121の上部
に重ねられた高透磁率の部材122と、コア121にZ
方向の軸を中心に巻付けられたコイル123と、コア1
21にY方向の軸を中心に巻付けられたコイル124
と、コア121にX方向の軸を中心に巻付けられたコイ
ル125とからなる。図11に示すように、隣り合った
電磁石102の間にはホール素子3が取付けられてい
る。-Second Embodiment- Hereinafter, a second embodiment of the magnetic levitation type stage according to the present invention will be described focusing on the difference from the first embodiment. The same parts as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted. As shown in FIG. 8, a plurality of electromagnets 102 are arranged in a rectangular fixed stage 101 in the X direction and the Y direction.
Are arranged in the direction. As shown in FIG. 9, the electromagnet 102 includes a rectangular parallelepiped core 121, a high-permeability member 122 stacked on the core 121, and a Z-shaped core 121.
The coil 123 wound around the axis of the direction and the core 1
21 is a coil 124 wound around the Y-direction axis
And a coil 125 wound around the core 121 around the axis in the X direction. As shown in FIG. 11, the Hall element 3 is attached between the adjacent electromagnets 102.
【0033】図8および図10に示すように、移動ステ
ージ104の下面には永久磁石105a、105b、1
05c、105d、105e、105f、105g、1
05h、105iが設けられている。このうち永久磁石
105a、105d、105e、105g、105iは
N極を下向きに、永久磁石105b、105c、105
f、105hはS極を下向きにしてそれぞれ取付けられ
ている。As shown in FIGS. 8 and 10, permanent magnets 105a, 105b, 1 are provided on the lower surface of the moving stage 104.
05c, 105d, 105e, 105f, 105g, 1
05h and 105i are provided. Of these, the permanent magnets 105a, 105d, 105e, 105g, and 105i face the N pole downward, and the permanent magnets 105b, 105c, and 105
f and 105h are attached with the south pole facing down.
【0034】次に、以上のように構成された第2の実施
例の磁気浮上型ステージの駆動原理を図11および図1
2を用いて説明する。図11において、電磁石102h
のコイル123hには下方向から見て時計回り方向の電
流I1が流れている。したがって、電磁石102h(コ
ア121h)は上側がN極となるので、対向する永久磁
石105h(下側がS極)との間で吸引力を生ずる。電
磁石102gのコイル123gには下方向から見て反時
計回り方向の電流I2が流れており、電磁石102gお
よびこれと対向する永久磁石105g(下側がN極)の
間にも同様に吸引力が生ずる。Next, the driving principle of the magnetic levitation type stage of the second embodiment having the above-mentioned structure will be described with reference to FIGS.
2 will be described. In FIG. 11, the electromagnet 102h
A current I1 in a clockwise direction when viewed from below flows in the coil 123h. Therefore, since the upper side of the electromagnet 102h (core 121h) has the N pole, an attractive force is generated between the opposing permanent magnet 105h (the lower side has the S pole). A current I2 in the counterclockwise direction when viewed from below flows through the coil 123g of the electromagnet 102g, and an attractive force is similarly generated between the electromagnet 102g and the permanent magnet 105g (the lower side is the N pole) facing the electromagnet 102g. .
【0035】図12において、永久磁石105fは電磁
石102fと、永久磁石105eは電磁石102eとそ
れぞれ対向している。また、電磁石102fと電磁石1
02eとの間には電磁石102efが挟まれている。電
磁石102fのコイル123fには下方向から見て反時
計回り方向の電流I3が流れている。したがって、電磁
石102f(コア121f)は上側がS極となるので、
対向する永久磁石105f(下側がS極)との間で反発
力を生ずる。電磁石102eのコイル123eには下方
向から見て時計回り方向の電流I4が流れており、電磁
石102eおよびこれと対向する永久磁石105e(下
側がN極)の間にも同様に反発力が生ずる。108は永
久磁石105fおよび永久磁石105eによる磁束を示
す。109は上述のように電流I3および電流I4を流
した電磁石102fおよび電磁石102eにより発生す
る磁束を示す。コイル125efには図12の右側から
見て時計回り方向に電流I5が流れており、コイル12
5efの上側の部分にはローレンツ力により移動ステー
ジ104に接近しようとする方向(上方向)の力が働
く。コイル125efは固定ステージ1に固定されてい
るので、移動ステージ104にはこのローレンツ力と同
じ大きさで下向きの力(吸引力)Fefが加わることに
なる。コイル125efの電流を逆向きにすることで力
Fefの方向を反転し反発力を発生させることもでき
る。In FIG. 12, the permanent magnet 105f faces the electromagnet 102f, and the permanent magnet 105e faces the electromagnet 102e. Also, the electromagnet 102f and the electromagnet 1
An electromagnet 102ef is sandwiched between 02e. A current I3 in the counterclockwise direction when viewed from below flows in the coil 123f of the electromagnet 102f. Therefore, since the upper side of the electromagnet 102f (core 121f) is the S pole,
A repulsive force is generated between the opposing permanent magnets 105f (the lower side is the S pole). A current I4 in the clockwise direction when viewed from below flows in the coil 123e of the electromagnet 102e, and a repulsive force is similarly generated between the electromagnet 102e and the permanent magnet 105e (N pole on the lower side) facing the electromagnet 102e. Reference numeral 108 denotes a magnetic flux generated by the permanent magnets 105f and 105e. Reference numeral 109 denotes a magnetic flux generated by the electromagnets 102f and 102e in which the current I3 and the current I4 have flown as described above. A current I5 is flowing in the coil 125ef in a clockwise direction when viewed from the right side of FIG.
The Lorentz force acts on the upper portion of 5ef in the direction (upward direction) toward the moving stage 104. Since the coil 125ef is fixed to the fixed stage 1, a downward force (suction force) Fef having the same magnitude as the Lorentz force is applied to the moving stage 104. By reversing the current of the coil 125ef, the direction of the force Fef can be reversed to generate a repulsive force.
【0036】以上述べたように、互いに対向する電磁石
102fと永久磁石105fとの間および電磁石102
eと永久磁石105eとの間には反発力が、電磁石10
2hと永久磁石105h、電磁石102gと永久磁石1
05gとの間には吸引力が生ずる。また、電磁石102
efのコイル125efに流す電流I5により移動ステ
ージ104と固定ステージ101との間には吸引力が生
ずる。したがって、これらの吸引力や反発力を通電する
電流によって制御すれば移動ステージ104のZ方向の
位置、α方向、β方向の傾きを制御することができる。As described above, between the electromagnet 102f and the permanent magnet 105f facing each other and the electromagnet 102.
e and the permanent magnet 105e, a repulsive force is generated between the electromagnet 10 and
2h and permanent magnet 105h, electromagnet 102g and permanent magnet 1
A suction force is generated between 05g. Also, the electromagnet 102
An attractive force is generated between the moving stage 104 and the fixed stage 101 by the current I5 flowing through the ef coil 125ef. Therefore, if the attraction force and the repulsive force are controlled by the current to be passed, the position of the moving stage 104 in the Z direction and the inclinations in the α direction and the β direction can be controlled.
【0037】次にX方向、Y方向の移動量およびθ方向
の回転量の制御について説明する。電磁石102hのコ
イル123hには電流I1が流れ電磁石102hと永久
磁石105hとの間には吸引力が生じている(図1
1)。この状態で、さらにコイル125hには右方向か
ら見て時計回り方向の電流I6が流れている。したがっ
て、第1の実施例において説明したように、移動ステー
ジ104は左方向の力Fh1を受ける。Next, the control of the movement amount in the X and Y directions and the rotation amount in the θ direction will be described. A current I1 flows through the coil 123h of the electromagnet 102h, and an attractive force is generated between the electromagnet 102h and the permanent magnet 105h (FIG. 1).
1). In this state, the current I6 in the clockwise direction when viewed from the right further flows through the coil 125h. Therefore, as described in the first embodiment, the moving stage 104 receives the leftward force Fh1.
【0038】一方、上述のように電磁石102gのコイ
ル123gには電流I2が流れ電磁石102gと永久磁
石105gとの間には吸引力が生じている。この状態
で、さらにコイル124gに反時計回り方向の電流I7
を流すと、上述と同様の原理により移動ステージ4は紙
面の奥に向かう方向の力Fg1を受ける。以上のような
力Fh1およびFg1によりX方向、Y方向の移動量お
よびθ方向の回転量が制御される。On the other hand, as described above, the current I2 flows through the coil 123g of the electromagnet 102g, and an attractive force is generated between the electromagnet 102g and the permanent magnet 105g. In this state, the current I7 in the counterclockwise direction is further applied to the coil 124g.
Then, the moving stage 4 receives a force Fg1 in the direction toward the back of the paper surface according to the same principle as described above. The forces Fh1 and Fg1 as described above control the amount of movement in the X and Y directions and the amount of rotation in the θ direction.
【0039】図13は移動ステージ104に加えられる
力を示している。永久磁石105aは電磁石102a
と、永久磁石105bは電磁石102bと、永久磁石1
05cは電磁石102cと、永久磁石105dは電磁石
102dと、永久磁石105eは電磁石102eと、永
久磁石105fは電磁石102fと、永久磁石105g
は電磁石102gと、永久磁石105hは電磁石102
hと、永久磁石105iは電磁石102iと、それぞれ
対向している。また、電磁石102aと電磁石102b
との間には電磁石102abが、電磁石102cと電磁
石102dとの間には電磁石2cdが、電磁石102e
と電磁石102fとの間には電磁石102efが、それ
ぞれ設けられている。FIG. 13 shows the force applied to the moving stage 104. The permanent magnet 105a is the electromagnet 102a.
, The permanent magnet 105b is the electromagnet 102b, and the permanent magnet 1 is
05c is an electromagnet 102c, permanent magnet 105d is an electromagnet 102d, permanent magnet 105e is an electromagnet 102e, permanent magnet 105f is an electromagnet 102f, and permanent magnet 105g.
Is the electromagnet 102g and the permanent magnet 105h is the electromagnet 102.
The h and the permanent magnet 105i face the electromagnet 102i, respectively. Also, the electromagnet 102a and the electromagnet 102b
Between the electromagnet 102ab, the electromagnet 2cd between the electromagnets 102c and 102d, and the electromagnet 102e.
Electromagnets 102ef are respectively provided between and the electromagnets 102f.
【0040】永久磁石105a、105b、105c、
105d、105e、105fはそれぞれZ方向の力
(反発力)Fa、Fb、Fc、Fd、Fe、Ffを受け
る。また、永久磁石105g、105h、105iはそ
れぞれZ方向の力(吸引力)Fg2、Fh2、Fi2
を、それぞれ受ける。さらに、電磁石102abのコイ
ル125abの電流によりZ方向の力Fab(吸引力ま
たは反発力)を、電磁石102cdのコイル124cd
の電流によりZ方向の力Fcd(吸引力または反発力)
を、電磁石102efのコイル125efの電流により
Z方向の力Fef(吸引力または反発力)を、それぞれ
受ける。The permanent magnets 105a, 105b, 105c,
105d, 105e, and 105f receive Z-direction forces (repulsive forces) Fa, Fb, Fc, Fd, Fe, and Ff, respectively. In addition, the permanent magnets 105g, 105h, and 105i respectively exert forces (attraction forces) in the Z direction Fg2, Fh2, and Fi2.
Respectively. Further, the force Fab (attracting force or repulsive force) in the Z direction is generated by the current of the coil 125ab of the electromagnet 102ab, and the coil 124cd of the electromagnet 102cd.
Force Fcd in the Z direction (suction force or repulsive force)
Are respectively subjected to a force Fef (attracting force or repulsive force) in the Z direction by the current of the coil 125ef of the electromagnet 102ef.
【0041】図13に示すように、永久磁石105gは
Y方向の力Fg1を、永久磁石105hはX方向の力F
h1を、永久磁石105iはY方向の力Fi1を、それ
ぞれ受ける。As shown in FIG. 13, the permanent magnet 105g exerts a force Fg1 in the Y direction, and the permanent magnet 105h exerts a force Fg in the X direction.
The permanent magnet 105i receives the force Fi1 in the Y direction.
【0042】第2の実施例においては、電磁石2はX方
向、Y方向およびZ方向の各軸を中心にそれぞれ巻き回
された3つのコイルを備えている。このため磁石同士の
吸引力、反発力およびローレンツ力を移動ステージの位
置に関係なく有効に利用することができ、移動ステージ
の永久磁石の個数を減らすことができる。したがって、
移動ステージが軽量となり駆動の高速化が図れる。In the second embodiment, the electromagnet 2 has three coils wound around respective axes in the X, Y and Z directions. Therefore, the attraction force, repulsion force, and Lorentz force between the magnets can be effectively used regardless of the position of the moving stage, and the number of permanent magnets on the moving stage can be reduced. Therefore,
The moving stage becomes light in weight and the driving speed can be increased.
【0043】本明細書の特許請求の範囲において、「磁
石」とは移動ステージの駆動時に磁化されることが可能
な磁性材を含む概念であり、永久磁石に限定されない。In the claims of the present specification, the "magnet" is a concept including a magnetic material that can be magnetized when the moving stage is driven, and is not limited to a permanent magnet.
【0044】[0044]
【発明の効果】請求項1に記載の発明では、移動ステー
ジおよび固定ステージのいずれか一方のステージに磁石
群を設け、磁石群により生じた磁束中で他方のステージ
に設けた電線に電流を流したときのローレンツ力を利用
して移動ステージにZ方向の力を付与するようにしてい
る。したがって、移動ステージと固定ステージの機械的
な接触を避けることができるので、塵を発生させず精密
に移動ステージの位置決めをすることができる。また、
エアーを用いないで移動ステージが駆動できるので真空
中でも使用することができる。請求項5に記載の発明で
は、移動ステージの姿勢を計測する計測手段と、計測手
段の計測値を受けてワイヤーに供給する電流を制御する
制御手段とを備えるので、移動ステージが円滑に制御さ
れる。請求項6に記載の発明では、移動ステージに磁石
群を設け固定ステージに電磁石を設けるようにしたの
で、移動ステージへの配線の引き回しが不要になる。ま
た、電磁石の冷却が容易にできる。According to the invention described in claim 1, a magnet group is provided on one of the moving stage and the fixed stage, and a current is caused to flow through an electric wire provided on the other stage in the magnetic flux generated by the magnet group. The Lorentz force at that time is used to apply a force in the Z direction to the moving stage. Therefore, since it is possible to avoid mechanical contact between the moving stage and the fixed stage, it is possible to accurately position the moving stage without generating dust. Also,
Since the moving stage can be driven without using air, it can be used even in vacuum. In the invention according to claim 5, since the measuring means for measuring the posture of the moving stage and the controlling means for controlling the current supplied to the wire by receiving the measured value of the measuring means are provided, the moving stage is smoothly controlled. It In the invention according to claim 6, since the movable stage is provided with the magnet group and the fixed stage is provided with the electromagnet, it is not necessary to route the wiring to the movable stage. Further, the electromagnet can be easily cooled.
【図1】本発明による磁気浮上型ステージの第1の実施
例を示す斜視図。FIG. 1 is a perspective view showing a first embodiment of a magnetic levitation stage according to the present invention.
【図2】第1の実施例の電磁石を示す斜視図。FIG. 2 is a perspective view showing an electromagnet of the first embodiment.
【図3】第1の実施例の動作原理を示す図。FIG. 3 is a diagram showing the operating principle of the first embodiment.
【図4】第1の実施例の移動ステージの底面図。FIG. 4 is a bottom view of the moving stage according to the first embodiment.
【図5】第1の実施例の動作原理を示す図。FIG. 5 is a diagram showing the operating principle of the first embodiment.
【図6】図4の移動ステージが受ける力を示す移動ステ
ージの底面図。FIG. 6 is a bottom view of the moving stage showing a force received by the moving stage of FIG.
【図7】第1の実施例の移動ステージの制御ブロック
図。FIG. 7 is a control block diagram of the moving stage according to the first embodiment.
【図8】本発明による磁気浮上型ステージの第2の実施
例を示す斜視図。FIG. 8 is a perspective view showing a second embodiment of the magnetic levitation stage according to the present invention.
【図9】第2の実施例の電磁石を示す斜視図。FIG. 9 is a perspective view showing an electromagnet of a second embodiment.
【図10】第1の実施例の移動ステージの底面図。FIG. 10 is a bottom view of the moving stage according to the first embodiment.
【図11】第1の実施例の動作原理を示す図。FIG. 11 is a diagram showing the operating principle of the first embodiment.
【図12】第1の実施例の動作原理を示す図。FIG. 12 is a diagram showing the operating principle of the first embodiment.
【図13】図4の移動ステージが受ける力を示す移動ス
テージの底面図。13 is a bottom view of the moving stage showing a force received by the moving stage of FIG. 4. FIG.
1 固定ステージ 3 ホール素子 4 移動ステージ 5 磁石群 5e 第1の磁石 5d 第2の磁石 6 ギャップセンサ 7 レーザ干渉計 8 磁束 24 コイル 30 制御装置 124 第1のコイル 125 第2のコイル I5 電流 1 Fixed Stage 3 Hall Element 4 Moving Stage 5 Magnet Group 5e First Magnet 5d Second Magnet 6 Gap Sensor 7 Laser Interferometer 8 Magnetic Flux 24 Coil 30 Controller 124 First Coil 125 Second Coil I5 Current
Claims (7)
軸回りの回転角をα、β、θで表すとき、固定ステージ
と、前記固定ステージに沿ってXY平面内の任意の位置
に駆動される移動ステージとを有する磁気浮上型ステー
ジにおいて、 前記移動ステージおよび前記固定ステージのいずれか一
方のステージに設けた磁石群により形成された磁束中で
他方のステージに設けた電線に電流を流すことにより前
記移動ステージにZ方向の力を付与することを特徴とす
る磁気浮上型ステージ。1. When the three axes of the Cartesian coordinate system are X, Y, and Z, and the rotation angles around the respective axes are represented by α, β, and θ, a fixed stage and an arbitrary XY plane along the fixed stage. In a magnetic levitation stage having a moving stage driven to the position of, a wire provided on the other stage in a magnetic flux formed by a magnet group provided on any one of the moving stage and the fixed stage. A magnetic levitation stage characterized in that a force in the Z direction is applied to the moving stage by passing an electric current.
中心に巻き回されたコイルの一部であることを特徴とす
る請求項1に記載の磁気浮上型ステージ。2. The magnetic levitation stage according to claim 1, wherein the electric wire is a part of a coil wound around an axis in a direction orthogonal to the Z direction.
軸回りの回転角をα、β、θで表すとき、固定ステージ
と、前記固定ステージに沿ってXY平面内の任意の位置
に駆動される移動ステージとを有する磁気浮上型ステー
ジにおいて、 前記移動ステージおよび前記固定ステージのいずれか一
方のステージに設けた磁石群と、前記他のステージに設
けられX方向またはY方向と直交する方向の軸を中心に
巻き回された第1のコイルと、前記第1のコイルと同一
の巻芯に巻付けられ前記第1のコイルの軸方向およびZ
方向の双方に直交する方向の軸に巻き回された第2のコ
イルとを備え、 前記第1のコイルおよび前記第2のコイルに電流を流す
ことにより前記移動ステージにZ方向の力を付与するこ
とを特徴とする磁気浮上型ステージ。3. When the three axes of the Cartesian coordinate system are X, Y, and Z and the rotation angles around the axes are represented by α, β, and θ, a fixed stage and an arbitrary point in the XY plane along the fixed stage. In a magnetic levitation type stage having a moving stage driven to the position, a magnet group provided on one of the moving stage and the fixed stage, and an X direction or a Y direction provided on the other stage. A first coil wound around an axis in a direction orthogonal to each other, and a first coil wound around the same winding core as the first coil and an axial direction of the first coil and Z
A second coil wound around an axis in a direction orthogonal to both directions, and applying a current in the first coil and the second coil to apply a force in the Z direction to the moving stage. A magnetically levitated stage characterized in that
てN極を向けて取付けられた第1の磁石と前記他方のス
テージに対してS極を向けて取付けられた第2の磁石と
の組合せからなり、前記第1の磁石と前記第2の磁石と
の間でZ方向と直交する方向に前記磁束が形成されるこ
とを特徴とする請求項1〜3のいずれか1項に記載の磁
気浮上型ステージ。4. The magnet group includes a first magnet attached to the other stage with an N pole facing the second magnet and a second magnet attached to the other stage with an S pole oriented. It consists of a combination and the said magnetic flux is formed between the said 1st magnet and the said 2nd magnet in the direction orthogonal to Z direction, The magnetic flux of any one of Claims 1-3 characterized by the above-mentioned. Magnetically levitated stage.
テージに取付けられ前記移動ステージのZ方向の移動量
およびα方向、β方向の回転量に応じた計測値を出力す
る計測手段と、 前記計測手段からの前記計測値を受けて前記電流を制御
する制御手段とをさらに備えることを特徴とする請求項
1〜4のいずれか1項に記載の磁気浮上型ステージ。5. A measuring unit which is attached to the one stage or the other stage and outputs a measured value according to a moving amount in the Z direction and a rotating amount in the α direction and β direction of the moving stage, and the measuring unit. 5. The magnetic levitation type stage according to claim 1, further comprising a control unit that receives the measured value from the control unit and controls the current.
であり、前記他方のステージは前記固定ステージである
ことを特徴とする請求項1〜5のいずれか1項に記載の
磁気浮上型ステージ。6. The magnetic levitation type stage according to claim 1, wherein the one stage is the movable stage and the other stage is the fixed stage.
との間の吸引力または反発力により前記移動ステージに
Z方向の力を付与することを特徴とする請求項1〜6の
いずれか1項に記載の磁気浮上型ステージ。7. The Z-direction force is applied to the moving stage by an attractive force or a repulsive force between the magnet group and an electromagnet group provided on the other side. The magnetically levitated stage according to item 1.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16634595A JPH0917848A (en) | 1995-06-30 | 1995-06-30 | Magnetic levitation type stage |
US08/672,551 US5925956A (en) | 1995-06-30 | 1996-06-28 | Stage construction incorporating magnetically levitated movable stage |
US08/998,038 US6184596B1 (en) | 1995-06-30 | 1997-12-23 | Stage construction incorporating magnetically levitated movable stage |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16634595A JPH0917848A (en) | 1995-06-30 | 1995-06-30 | Magnetic levitation type stage |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0917848A true JPH0917848A (en) | 1997-01-17 |
Family
ID=15829662
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16634595A Pending JPH0917848A (en) | 1995-06-30 | 1995-06-30 | Magnetic levitation type stage |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0917848A (en) |
Cited By (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1017155A1 (en) * | 1997-08-21 | 2000-07-05 | Nikon Corporation | Positioning device, driving unit, and aligner equipped with the device |
JP2008509495A (en) * | 2004-08-12 | 2008-03-27 | シーメンス アクチエンゲゼルシヤフト | Machine with electrical positioning drive |
JP2008072100A (en) * | 2006-08-25 | 2008-03-27 | Asml Netherlands Bv | Lithography equipment and device manufacturing method |
JP2014123778A (en) * | 2012-05-23 | 2014-07-03 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
CN105984707A (en) * | 2015-03-23 | 2016-10-05 | 豪夫迈·罗氏有限公司 | Laboratory sample distribution system and laboratory automation system |
US9939455B2 (en) | 2014-11-03 | 2018-04-10 | Roche Diagnostics Operations, Inc. | Laboratory sample distribution system and laboratory automation system |
US9952242B2 (en) | 2014-09-12 | 2018-04-24 | Roche Diagnostics Operations, Inc. | Laboratory sample distribution system and laboratory automation system |
US9969570B2 (en) | 2010-05-07 | 2018-05-15 | Roche Diagnostics Operations, Inc. | System for transporting containers between different stations and a container carrier |
US9989547B2 (en) | 2014-07-24 | 2018-06-05 | Roche Diagnostics Operations, Inc. | Laboratory sample distribution system and laboratory automation system |
US10006927B2 (en) | 2015-05-22 | 2018-06-26 | Roche Diagnostics Operations, Inc. | Method of operating a laboratory automation system and a laboratory automation system |
US10012666B2 (en) | 2014-03-31 | 2018-07-03 | Roche Diagnostics Operations, Inc. | Sample distribution system and laboratory automation system |
US10031150B2 (en) | 2011-11-04 | 2018-07-24 | Roche Diagnostics Operations, Inc. | Laboratory sample distribution system, laboratory system and method of operating |
US10119982B2 (en) | 2015-03-16 | 2018-11-06 | Roche Diagnostics Operations, Inc. | Transport carrier, laboratory cargo distribution system, and laboratory automation system |
US10160609B2 (en) | 2015-10-13 | 2018-12-25 | Roche Diagnostics Operations, Inc. | Laboratory sample distribution system and laboratory automation system |
US10175259B2 (en) | 2015-09-01 | 2019-01-08 | Roche Diagnostics Operations, Inc. | Laboratory cargo distribution system, laboratory automation system and method of operating a laboratory cargo distribution system |
US10197586B2 (en) | 2015-10-06 | 2019-02-05 | Roche Diagnostics Operations, Inc. | Method of determining a handover position and laboratory automation system |
US10197555B2 (en) | 2016-06-21 | 2019-02-05 | Roche Diagnostics Operations, Inc. | Method of setting a handover position and laboratory automation system |
US10228384B2 (en) | 2015-10-14 | 2019-03-12 | Roche Diagnostics Operations, Inc. | Method of rotating a sample container carrier, laboratory sample distribution system and laboratory automation system |
US10239708B2 (en) | 2014-09-09 | 2019-03-26 | Roche Diagnostics Operations, Inc. | Laboratory sample distribution system and laboratory automation system |
US10352953B2 (en) | 2015-05-22 | 2019-07-16 | Roche Diagnostics Operations, Inc. | Method of operating a laboratory sample distribution system, laboratory sample distribution system and a laboratory automation system |
US10416183B2 (en) | 2016-12-01 | 2019-09-17 | Roche Diagnostics Operations, Inc. | Laboratory sample distribution system and laboratory automation system |
US10436808B2 (en) | 2016-12-29 | 2019-10-08 | Roche Diagnostics Operations, Inc. | Laboratory sample distribution system and laboratory automation system |
US10450151B2 (en) | 2011-11-04 | 2019-10-22 | Roche Diagnostics Operations, Inc. | Laboratory sample distribution system and corresponding method of operation |
US10495657B2 (en) | 2017-01-31 | 2019-12-03 | Roche Diagnostics Operations, Inc. | Laboratory sample distribution system and laboratory automation system |
US10509049B2 (en) | 2014-09-15 | 2019-12-17 | Roche Diagnostics Operations, Inc. | Method of operating a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system |
US10520520B2 (en) | 2016-02-26 | 2019-12-31 | Roche Diagnostics Operations, Inc. | Transport device with base plate modules |
US10564170B2 (en) | 2015-07-22 | 2020-02-18 | Roche Diagnostics Operations, Inc. | Sample container carrier, laboratory sample distribution system and laboratory automation system |
US10578632B2 (en) | 2016-02-26 | 2020-03-03 | Roche Diagnostics Operations, Inc. | Transport device unit for a laboratory sample distribution system |
US10605819B2 (en) | 2016-02-26 | 2020-03-31 | Roche Diagnostics Operations, Inc. | Transport device having a tiled driving surface |
US10962557B2 (en) | 2017-07-13 | 2021-03-30 | Roche Diagnostics Operations, Inc. | Method of operating a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system |
US10989726B2 (en) | 2016-06-09 | 2021-04-27 | Roche Diagnostics Operations, Inc. | Laboratory sample distribution system and method of operating a laboratory sample distribution system |
US10989725B2 (en) | 2017-06-02 | 2021-04-27 | Roche Diagnostics Operations, Inc. | Method of operating a laboratory sample distribution system, laboratory sample distribution system, and laboratory automation system |
US10996233B2 (en) | 2016-06-03 | 2021-05-04 | Roche Diagnostics Operations, Inc. | Laboratory sample distribution system and laboratory automation system |
US11092613B2 (en) | 2015-05-22 | 2021-08-17 | Roche Diagnostics Operations, Inc. | Method of operating a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system |
US11112421B2 (en) | 2016-08-04 | 2021-09-07 | Roche Diagnostics Operations, Inc. | Laboratory sample distribution system and laboratory automation system |
US11110463B2 (en) | 2017-09-13 | 2021-09-07 | Roche Diagnostics Operations, Inc. | Sample container carrier, laboratory sample distribution system and laboratory automation system |
US11110464B2 (en) | 2017-09-13 | 2021-09-07 | Roche Diagnostics Operations, Inc. | Sample container carrier, laboratory sample distribution system and laboratory automation system |
US11204361B2 (en) | 2017-02-03 | 2021-12-21 | Roche Diagnostics Operations, Inc. | Laboratory automation system |
US11226348B2 (en) | 2015-07-02 | 2022-01-18 | Roche Diagnostics Operations, Inc. | Storage module, method of operating a laboratory automation system and laboratory automation system |
US11709171B2 (en) | 2018-03-16 | 2023-07-25 | Roche Diagnostics Operations, Inc. | Laboratory system, laboratory sample distribution system and laboratory automation system |
US11747356B2 (en) | 2020-12-21 | 2023-09-05 | Roche Diagnostics Operations, Inc. | Support element for a modular transport plane, modular transport plane, and laboratory distribution system |
US11971420B2 (en) | 2018-03-07 | 2024-04-30 | Roche Diagnostics Operations, Inc. | Method of operating a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system |
US12000850B2 (en) | 2020-06-19 | 2024-06-04 | Roche Diagnostics Operations, Inc. | Laboratory sample distribution system and corresponding method of operation |
US12000851B2 (en) | 2020-07-15 | 2024-06-04 | Roche Diagnostics Operations, Inc. | Laboratory sample distribution system and method for operating the same |
-
1995
- 1995-06-30 JP JP16634595A patent/JPH0917848A/en active Pending
Cited By (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1017155A4 (en) * | 1997-08-21 | 2007-05-02 | Nikon Corp | Positioning device, driving unit, and aligner equipped with the device |
EP1017155A1 (en) * | 1997-08-21 | 2000-07-05 | Nikon Corporation | Positioning device, driving unit, and aligner equipped with the device |
JP2008509495A (en) * | 2004-08-12 | 2008-03-27 | シーメンス アクチエンゲゼルシヤフト | Machine with electrical positioning drive |
JP2008072100A (en) * | 2006-08-25 | 2008-03-27 | Asml Netherlands Bv | Lithography equipment and device manufacturing method |
JP4668248B2 (en) * | 2006-08-25 | 2011-04-13 | エーエスエムエル ネザーランズ ビー.ブイ. | Lithographic apparatus and device manufacturing method |
US9969570B2 (en) | 2010-05-07 | 2018-05-15 | Roche Diagnostics Operations, Inc. | System for transporting containers between different stations and a container carrier |
US10450151B2 (en) | 2011-11-04 | 2019-10-22 | Roche Diagnostics Operations, Inc. | Laboratory sample distribution system and corresponding method of operation |
US10126317B2 (en) | 2011-11-04 | 2018-11-13 | Roche Diagnostics Operations, Inc. | Laboratory sample distribution system, laboratory system and method of operating |
US10031150B2 (en) | 2011-11-04 | 2018-07-24 | Roche Diagnostics Operations, Inc. | Laboratory sample distribution system, laboratory system and method of operating |
JP2014123778A (en) * | 2012-05-23 | 2014-07-03 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
US9811005B2 (en) | 2012-05-23 | 2017-11-07 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US10012666B2 (en) | 2014-03-31 | 2018-07-03 | Roche Diagnostics Operations, Inc. | Sample distribution system and laboratory automation system |
US9989547B2 (en) | 2014-07-24 | 2018-06-05 | Roche Diagnostics Operations, Inc. | Laboratory sample distribution system and laboratory automation system |
US10239708B2 (en) | 2014-09-09 | 2019-03-26 | Roche Diagnostics Operations, Inc. | Laboratory sample distribution system and laboratory automation system |
US9952242B2 (en) | 2014-09-12 | 2018-04-24 | Roche Diagnostics Operations, Inc. | Laboratory sample distribution system and laboratory automation system |
US10509049B2 (en) | 2014-09-15 | 2019-12-17 | Roche Diagnostics Operations, Inc. | Method of operating a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system |
US9939455B2 (en) | 2014-11-03 | 2018-04-10 | Roche Diagnostics Operations, Inc. | Laboratory sample distribution system and laboratory automation system |
US10119982B2 (en) | 2015-03-16 | 2018-11-06 | Roche Diagnostics Operations, Inc. | Transport carrier, laboratory cargo distribution system, and laboratory automation system |
US10094843B2 (en) | 2015-03-23 | 2018-10-09 | Roche Diagnostics Operations, Inc. | Laboratory sample distribution system and laboratory automation system |
CN105984707A (en) * | 2015-03-23 | 2016-10-05 | 豪夫迈·罗氏有限公司 | Laboratory sample distribution system and laboratory automation system |
US10352953B2 (en) | 2015-05-22 | 2019-07-16 | Roche Diagnostics Operations, Inc. | Method of operating a laboratory sample distribution system, laboratory sample distribution system and a laboratory automation system |
US10006927B2 (en) | 2015-05-22 | 2018-06-26 | Roche Diagnostics Operations, Inc. | Method of operating a laboratory automation system and a laboratory automation system |
US11092613B2 (en) | 2015-05-22 | 2021-08-17 | Roche Diagnostics Operations, Inc. | Method of operating a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system |
US11226348B2 (en) | 2015-07-02 | 2022-01-18 | Roche Diagnostics Operations, Inc. | Storage module, method of operating a laboratory automation system and laboratory automation system |
US10564170B2 (en) | 2015-07-22 | 2020-02-18 | Roche Diagnostics Operations, Inc. | Sample container carrier, laboratory sample distribution system and laboratory automation system |
US10175259B2 (en) | 2015-09-01 | 2019-01-08 | Roche Diagnostics Operations, Inc. | Laboratory cargo distribution system, laboratory automation system and method of operating a laboratory cargo distribution system |
US10197586B2 (en) | 2015-10-06 | 2019-02-05 | Roche Diagnostics Operations, Inc. | Method of determining a handover position and laboratory automation system |
US10160609B2 (en) | 2015-10-13 | 2018-12-25 | Roche Diagnostics Operations, Inc. | Laboratory sample distribution system and laboratory automation system |
US10228384B2 (en) | 2015-10-14 | 2019-03-12 | Roche Diagnostics Operations, Inc. | Method of rotating a sample container carrier, laboratory sample distribution system and laboratory automation system |
US10948508B2 (en) | 2016-02-26 | 2021-03-16 | Roche Diagnostics Operations, Inc. | Transport device unit for a laboratory sample distribution system |
US10520520B2 (en) | 2016-02-26 | 2019-12-31 | Roche Diagnostics Operations, Inc. | Transport device with base plate modules |
US10578632B2 (en) | 2016-02-26 | 2020-03-03 | Roche Diagnostics Operations, Inc. | Transport device unit for a laboratory sample distribution system |
US10605819B2 (en) | 2016-02-26 | 2020-03-31 | Roche Diagnostics Operations, Inc. | Transport device having a tiled driving surface |
US10996233B2 (en) | 2016-06-03 | 2021-05-04 | Roche Diagnostics Operations, Inc. | Laboratory sample distribution system and laboratory automation system |
US10989726B2 (en) | 2016-06-09 | 2021-04-27 | Roche Diagnostics Operations, Inc. | Laboratory sample distribution system and method of operating a laboratory sample distribution system |
US10197555B2 (en) | 2016-06-21 | 2019-02-05 | Roche Diagnostics Operations, Inc. | Method of setting a handover position and laboratory automation system |
US11112421B2 (en) | 2016-08-04 | 2021-09-07 | Roche Diagnostics Operations, Inc. | Laboratory sample distribution system and laboratory automation system |
US10416183B2 (en) | 2016-12-01 | 2019-09-17 | Roche Diagnostics Operations, Inc. | Laboratory sample distribution system and laboratory automation system |
US10436808B2 (en) | 2016-12-29 | 2019-10-08 | Roche Diagnostics Operations, Inc. | Laboratory sample distribution system and laboratory automation system |
US10495657B2 (en) | 2017-01-31 | 2019-12-03 | Roche Diagnostics Operations, Inc. | Laboratory sample distribution system and laboratory automation system |
US11204361B2 (en) | 2017-02-03 | 2021-12-21 | Roche Diagnostics Operations, Inc. | Laboratory automation system |
US10989725B2 (en) | 2017-06-02 | 2021-04-27 | Roche Diagnostics Operations, Inc. | Method of operating a laboratory sample distribution system, laboratory sample distribution system, and laboratory automation system |
US10962557B2 (en) | 2017-07-13 | 2021-03-30 | Roche Diagnostics Operations, Inc. | Method of operating a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system |
US11110464B2 (en) | 2017-09-13 | 2021-09-07 | Roche Diagnostics Operations, Inc. | Sample container carrier, laboratory sample distribution system and laboratory automation system |
US11110463B2 (en) | 2017-09-13 | 2021-09-07 | Roche Diagnostics Operations, Inc. | Sample container carrier, laboratory sample distribution system and laboratory automation system |
US11971420B2 (en) | 2018-03-07 | 2024-04-30 | Roche Diagnostics Operations, Inc. | Method of operating a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system |
US11709171B2 (en) | 2018-03-16 | 2023-07-25 | Roche Diagnostics Operations, Inc. | Laboratory system, laboratory sample distribution system and laboratory automation system |
US12000850B2 (en) | 2020-06-19 | 2024-06-04 | Roche Diagnostics Operations, Inc. | Laboratory sample distribution system and corresponding method of operation |
US12000851B2 (en) | 2020-07-15 | 2024-06-04 | Roche Diagnostics Operations, Inc. | Laboratory sample distribution system and method for operating the same |
US11747356B2 (en) | 2020-12-21 | 2023-09-05 | Roche Diagnostics Operations, Inc. | Support element for a modular transport plane, modular transport plane, and laboratory distribution system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0917848A (en) | Magnetic levitation type stage | |
US5925956A (en) | Stage construction incorporating magnetically levitated movable stage | |
JP4639517B2 (en) | Stage apparatus, lithography system, positioning method, and stage apparatus driving method | |
JP3745167B2 (en) | Stage apparatus, exposure apparatus, device manufacturing method, and stage driving method | |
JP4027916B2 (en) | Reticle masking blade system and reticle masking blade control method | |
US4485339A (en) | Electro-magnetic alignment device | |
JP3456307B2 (en) | Magnetic levitation stage | |
WO1999010970A1 (en) | Positioning device, driving unit, and aligner equipped with the device | |
JP3456308B2 (en) | Magnetic levitation stage | |
KR20110107801A (en) | Monolithic stage positioning system and method | |
US6946757B2 (en) | Stage apparatus and method of controlling the same | |
US6486941B1 (en) | Guideless stage | |
US20030173833A1 (en) | Wafer stage with magnetic bearings | |
JPS60134918A (en) | Precise positioning apparatus | |
JP3940277B2 (en) | Stage equipment | |
JP3216157B2 (en) | Precision 1 stage 6 degrees of freedom stage | |
JP2004363605A (en) | Method and system for controlling reticle masking blade, and levitation apparatus for of reticle masking blade | |
JPH03135360A (en) | Linear motor | |
US11393706B2 (en) | Magnetically-levitated transporter | |
JPH0522924A (en) | Plane motor apparatus | |
JP4012199B2 (en) | Stage apparatus, exposure apparatus, and device manufacturing method | |
JP4012198B2 (en) | Stage apparatus, exposure apparatus, and device manufacturing method | |
US6515381B1 (en) | Cantilever stage | |
JP2000071089A (en) | Optical system driving device | |
JP2997273B2 (en) | Stage movable support device |