JPH09177990A - Mechanical seal - Google Patents

Mechanical seal

Info

Publication number
JPH09177990A
JPH09177990A JP33348895A JP33348895A JPH09177990A JP H09177990 A JPH09177990 A JP H09177990A JP 33348895 A JP33348895 A JP 33348895A JP 33348895 A JP33348895 A JP 33348895A JP H09177990 A JPH09177990 A JP H09177990A
Authority
JP
Japan
Prior art keywords
pressure chamber
ring
high pressure
rotary
fixed ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP33348895A
Other languages
Japanese (ja)
Inventor
Akitami Kaneko
昭民 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP33348895A priority Critical patent/JPH09177990A/en
Publication of JPH09177990A publication Critical patent/JPH09177990A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain an intended sealing performance and to enlarge an operation range having a constant floating up quantity (opening). SOLUTION: Fluid sent from a high pressure chamber enters an annular groove 2A through the connecting hole 12 of a fixed ring, and when the fluid is led into the spiral groove of a rotary ring, pressure in the spiral groove is risen by the rotation of the rotary ring to produce a prescribed floating up quantity (opening) in a sealed shaft part. In the case where pressure in the high pressure chamber is lower than a set value, a fixed ring 2 is pressed against a rotary ring on the side of the high pressure chamber by a spring 10 and a movable ring 22 to form the sealed shaft part 3A on an opposite face, but in the case where the pressure in the high pressure chamber is higher than the set value, the fixed ring moves against the spring, and is pressed against the rotary ring 1b on the side of a low pressure chamber to form a sealed shaft part 3B on mutually opposite faces. Thus the opening of the sealed shaft part 3A is compensated, and the intended sealing performance can be wholly obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ガス圧縮機やポン
プ等の回転装置の軸封部に適用されるメカニカルシール
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mechanical seal applied to a shaft seal portion of a rotary device such as a gas compressor or a pump.

【0002】[0002]

【従来の技術】図3、図4は、従来のメカニカルシール
の1例を示している。図3において、回転軸5と静止し
たケーシング8の内側との間には、シールハウジング9
が取り付けられ、このシールハウジング9には、ばね1
0が取付けられ、このばね10によりて可動リング22
と固定リング2とが回転リング1の方向に押圧され、固
定リング2の回転リング1に対する軸封部3Aが形成さ
れて、この軸封部3Aにより高圧室3と低圧室4との間
がシールされている。
2. Description of the Related Art FIGS. 3 and 4 show an example of a conventional mechanical seal. In FIG. 3, a seal housing 9 is provided between the rotary shaft 5 and the inside of the stationary casing 8.
And a spring 1 is attached to the seal housing 9.
0 is attached, and by this spring 10, the movable ring 22
The fixed ring 2 and the fixed ring 2 are pressed in the direction of the rotary ring 1 to form a shaft sealing portion 3A of the fixed ring 2 with respect to the rotary ring 1, and the shaft sealing portion 3A seals between the high pressure chamber 3 and the low pressure chamber 4. Has been done.

【0003】回転軸5には、スリーブ6とスリーブ7と
が取り付けられ、このスリーブ6、7により回転リング
1が回転軸5上に支持されている。そして回転リング1
には、軸封部3Aに沿って高圧室3側へ流体を移送する
ための螺旋溝31が複数個設けられている。固定リング
2及び可動リング22には、軸封部3Aと高圧室3側と
を連絡する複数個の連絡孔12が設けられており、回転
リング1に複数設けられた螺旋溝31に高圧室3からの
流体を供給している。また固定リング2には、回転リン
グ1と対向する面に環状溝2Aが設けられ、この環状溝
2Aが連絡孔12に連絡している。
A sleeve 6 and a sleeve 7 are attached to the rotary shaft 5, and the rotary ring 1 is supported on the rotary shaft 5 by the sleeves 6, 7. And the rotating ring 1
Is provided with a plurality of spiral grooves 31 for transferring the fluid to the high pressure chamber 3 side along the shaft sealing portion 3A. The fixed ring 2 and the movable ring 22 are provided with a plurality of communication holes 12 that connect the shaft seal portion 3A and the high pressure chamber 3 side, and the spiral groove 31 provided in the rotary ring 1 has a plurality of communication holes 12. Supplying fluid from. Further, the fixed ring 2 is provided with an annular groove 2A on the surface facing the rotary ring 1, and the annular groove 2A communicates with the communication hole 12.

【0004】上記回転リング1に複数設けられた螺旋溝
31は、回転リング1の回転により高圧室3側の流体を
連絡孔12と環状溝2Aとを経由して軸封部3Aに沿っ
て外径方向へ移送し、回転リング1と固定リング2の軸
封部3Aとの間で回転を許容しつつ圧力差を維持し、回
転中は、螺旋溝31の作用により僅か数μmのギャップ
を保持している。この螺旋溝31は、図4に示すように
回転リング1が矢印方向に回転すると、螺旋溝31内の
流体の流れ方向が矢印のように外向流となり、流体が外
径方向へ移送されて、所謂外向流螺旋溝になる。
The plurality of spiral grooves 31 provided in the rotating ring 1 allow the fluid on the high pressure chamber 3 side to pass through the communication hole 12 and the annular groove 2A by the rotation of the rotating ring 1 along the shaft sealing portion 3A. It is transferred in the radial direction and the pressure difference is maintained while allowing rotation between the rotary ring 1 and the shaft sealing portion 3A of the fixed ring 2. During the rotation, a gap of only a few μm is maintained by the action of the spiral groove 31. doing. In the spiral groove 31, when the rotating ring 1 rotates in the direction of the arrow as shown in FIG. 4, the flow direction of the fluid in the spiral groove 31 becomes an outward flow as shown by the arrow, and the fluid is transferred in the outer diameter direction. It becomes a so-called outward flow spiral groove.

【0005】[0005]

【発明が解決しようとする課題】前記図3、図4に示す
従来のメカニカルシールでは、軸封部の浮上(開き)に
必要な負荷能力を発生させるためには、螺旋溝31の半
径方向長さを長くする必要がある。しかし軸封部の半径
方向長さには制限があるため、螺旋溝31の半径方向長
さを長くすると、シール面32の半径方向長さが短くな
ってしまう。
In the conventional mechanical seals shown in FIGS. 3 and 4, the radial length of the spiral groove 31 is increased in order to generate the load capacity required for the floating (opening) of the shaft sealing portion. Need to be long. However, since the radial length of the shaft sealing portion is limited, if the radial length of the spiral groove 31 is increased, the radial length of the sealing surface 32 becomes shorter.

【0006】このため、所定の浮上量(数μm)を得よ
うとすると、螺旋溝31の半径方向長さが長くなるにつ
れてシール面32の半径方向長さが短くなることから、
シール面からの流体のリーク量が多くなるという問題が
あった。特に高圧室3が高圧になると、この問題が顕著
になり、軸封部3Aの開きが大きくなるにつれて所定の
浮上量とリーク量とのバランスがとれなくなって、リー
ク量が多くなると同時にリーク量が不安定になり、軸封
部3Aの浮上量が一定せず、メカニカルシールとしての
必要性能が確保できないという問題があった。
For this reason, when it is attempted to obtain a predetermined flying height (several μm), the radial length of the sealing surface 32 becomes shorter as the radial length of the spiral groove 31 becomes longer.
There is a problem that the amount of fluid leaking from the sealing surface increases. In particular, when the high-pressure chamber 3 has a high pressure, this problem becomes remarkable, and as the opening of the shaft sealing portion 3A becomes larger, the predetermined floating amount and the leak amount become unbalanced, and the leak amount increases and the leak amount increases at the same time. There has been a problem that the shaft seal portion 3A becomes unstable, the floating amount of the shaft seal portion 3A is not constant, and the required performance as a mechanical seal cannot be secured.

【0007】本発明は前記の問題点に鑑み提案するもの
であり、その目的とする処は、所定のシール性能が得
られ、浮上量(開き)の一定した運転範囲の大きいメ
カニカルシールを提供しようとする点にある。
The present invention has been proposed in view of the above problems, and an object of the present invention is to provide a mechanical seal which has a predetermined sealing performance and has a large flying range (opening) and a large operating range. And there is a point.

【0008】[0008]

【課題を解決するための手段】この目的を達成するた
め、本発明のメカニカルシールは、回転軸に間隔を置い
て装着した高圧室側回転リング及び低圧室側回転リング
と、同各回転リングを取り囲むシールハウジングと、上
記各回転リングの間に配設した固定リングと、上記シー
ルハウジングに取り付けたばねにより上記高圧室側回転
リングの方向に移動して上記固定リングを同高圧室側回
転リングに押し付ける可動リングとを有し、上記固定リ
ングの高圧室側回転リングに対する軸封部に環状溝を設
けるとともに同環状溝と高圧室側とを連絡する複数の連
絡孔を同固定リング内に設け、上記低圧室側回転リング
の上記固定リングに対する対向面に円周方向に沿って流
体を移送する複数の螺旋溝を設け、前記高圧室側の圧力
と前記ばね力との差により前記固定リングを前記高圧室
側回転リングに押し付けて互いの間に軸封部を形成して
いる。
In order to achieve this object, the mechanical seal of the present invention comprises a high pressure chamber side rotary ring and a low pressure chamber side rotary ring which are mounted on a rotary shaft at intervals, and the respective rotary rings. The surrounding seal housing, the fixed ring arranged between the rotary rings, and the spring attached to the seal housing move in the direction of the high pressure chamber side rotary ring to press the fixed ring against the high pressure chamber side rotary ring. A movable ring is provided, and an annular groove is provided in the shaft sealing portion of the fixed ring with respect to the high-pressure chamber side rotating ring, and a plurality of communication holes that connect the annular groove and the high-pressure chamber side are provided in the fixed ring. A plurality of spiral grooves for transferring fluid along the circumferential direction are provided on the surface of the low pressure chamber side rotating ring facing the fixed ring, and the difference between the pressure on the high pressure chamber side and the spring force is provided. Forming a shaft seal part between each other more pressing the fixing ring to the high pressure chamber side rotating ring.

【0009】[0009]

【発明の実施の形態】次に本発明のメカニカルシールを
図1、図2に示す一実施形態により説明する。図1、図
2において、図3、図4の従来のメカニカルシールと同
一部分には、同一符号を用いている。図1は本メカニカ
ルシールの縦断側面図で、3が高圧室、4が低圧室で、
これら高圧室3と低圧室4との間を軸封するために、回
転軸5とケーシング8の内側のシールハウジング9との
間に本メカニカルシールが設けられている。即ち、高圧
室側回転リング1aと低圧室側回転リング1bとがスペ
ーサ7Aとスリーブ6及びスリーブ7とより挟持されて
回転軸5上に間隔をおいて支持されている。高圧室側回
転リング1aと低圧室側回転リング1bの間には、固定
リング2が軸方向に微小移動可能に配設されており、こ
の固定リング2がシールハウジング9に取付けたばね1
0と可動リング22とより高圧室側回転リング1aに押
し付けられて、固定リング2の高圧室側回転リング1a
に対する軸封部3Aが構成されている。
BEST MODE FOR CARRYING OUT THE INVENTION Next, a mechanical seal of the present invention will be described with reference to an embodiment shown in FIGS. 1 and 2, the same parts as those of the conventional mechanical seals of FIGS. 3 and 4 are designated by the same reference numerals. Figure 1 is a vertical side view of this mechanical seal. 3 is a high pressure chamber, 4 is a low pressure chamber,
In order to seal the space between the high pressure chamber 3 and the low pressure chamber 4, the mechanical seal is provided between the rotary shaft 5 and the seal housing 9 inside the casing 8. That is, the high pressure chamber side rotating ring 1a and the low pressure chamber side rotating ring 1b are sandwiched between the spacer 7A, the sleeve 6 and the sleeve 7, and are supported on the rotating shaft 5 with a space therebetween. A fixed ring 2 is disposed between the high-pressure chamber side rotary ring 1a and the low-pressure chamber side rotary ring 1b so as to be capable of minute movement in the axial direction. The fixed ring 2 is attached to a seal housing 9 to form a spring 1.
0 and the movable ring 22 are pressed against the high-pressure-chamber-side rotating ring 1a, and the fixed ring 2 has the high-pressure-chamber-side rotating ring 1a.
A shaft sealing portion 3A for the shaft is configured.

【0010】この高圧室側固定リング2の軸封部3Aに
は、環状溝2Aが設けられるとともに、同環状溝2Aと
高圧室3とに通じる連絡孔12が外径方向に向けて複数
個設けられている。そして高圧室側回転リング1aの軸
封部3Aには、螺旋溝31(図4参照)が円周方向に複
数溝設けられており、この高圧室側回転リング1aが時
計方向(図4の矢印参照)に回転することにより、環状
溝2A内の流体が螺旋溝31に導かれて、外向流が発生
する。
The shaft sealing portion 3A of the high pressure chamber side fixing ring 2 is provided with an annular groove 2A, and a plurality of communication holes 12 communicating with the annular groove 2A and the high pressure chamber 3 are provided in the outer diameter direction. Has been. A plurality of spiral grooves 31 (see FIG. 4) are circumferentially provided in the shaft sealing portion 3A of the high-pressure chamber-side rotary ring 1a, and the high-pressure chamber-side rotary ring 1a is rotated clockwise (arrow in FIG. 4). The fluid in the annular groove 2A is guided to the spiral groove 31 and the outward flow is generated.

【0011】また低圧室側回転リング1bの軸封部3B
には、上記と同様の螺旋溝31(図4参照)が円周方向
に複数溝設けられており、この低圧室側回転リング1b
が反時計方向(図4の矢印とは反対方向)に回転するこ
とにより、高圧室3から流れてくる流体が螺旋溝31に
導かれて、内向流が発生する。なお螺旋溝31の溝方向
を図4とは逆方向に設けて、前述の回転リングと同じく
反時計方向に回転した場合には、螺旋溝31に導かれた
流体が外向流の流れになる。
Further, the shaft sealing portion 3B of the rotary ring 1b on the low pressure chamber side
A plurality of spiral grooves 31 (see FIG. 4) similar to the above are provided in the circumferential direction of the low pressure chamber side rotary ring 1b.
Rotates in the counterclockwise direction (the direction opposite to the arrow in FIG. 4), the fluid flowing from the high-pressure chamber 3 is guided to the spiral groove 31 and an inward flow is generated. When the groove direction of the spiral groove 31 is provided in the direction opposite to that of FIG. 4 and the counterclockwise rotation is performed like the above-described rotary ring, the fluid guided to the spiral groove 31 becomes an outward flow.

【0012】次に前記図1、図2に示すメカニカルシー
ルの作用を具体的に説明する。図2(a)(b)は、メ
カニカルシールの固定リング2の移動状態を示してい
る。高圧室3側からの流体が固定リング2の連絡孔12
を経て環状溝2Aに入る。そして同環状溝2Aからの流
体が回転リングの螺旋溝31に導かれ、外向流螺旋溝3
1内の圧力が昇圧して、軸封部3Aに所定浮上量(開
き)が得られる。
Next, the operation of the mechanical seal shown in FIGS. 1 and 2 will be specifically described. 2A and 2B show the moving state of the fixed ring 2 of the mechanical seal. Fluid from the side of the high pressure chamber 3 has a communication hole 12 of the fixed ring 2.
And enters the annular groove 2A. Then, the fluid from the annular groove 2A is guided to the spiral groove 31 of the rotating ring, and the outward flow spiral groove 3
The pressure in 1 is increased, and a predetermined floating amount (opening) is obtained on the shaft sealing portion 3A.

【0013】通常の場合(高圧室3側の圧力が設定値よ
りも低い場合)には、図2(a)に示すように固定リン
グ2がばね10と可動リング22とにより左方(図2
(a)の点線矢印方向)に移動し、高圧室側回転リング
1aに押し付けられて、互いの対向面に軸封部3Aが形
成されており、高圧室3側からの流体が固定リング2の
連絡孔12を経て環状溝2Aに入ると、高圧室側回転リ
ング1aの回転により、環状溝2Aからの流体が高圧室
側回転リング1aの螺旋溝31に導かれて、外向流が発
生し、螺旋溝31内の圧力が昇圧して、軸封部3Aに所
定浮上量(開き)が得られる。
In a normal case (when the pressure on the side of the high pressure chamber 3 is lower than the set value), the fixed ring 2 is moved to the left (see FIG. 2) by the spring 10 and the movable ring 22 as shown in FIG.
(A) in the direction of the dotted line arrow) and is pressed against the high pressure chamber side rotating ring 1a to form shaft sealing portions 3A on the surfaces facing each other, and the fluid from the high pressure chamber 3 side is fixed in the fixing ring 2. When entering the annular groove 2A via the communication hole 12, the fluid from the annular groove 2A is guided to the spiral groove 31 of the high pressure chamber side rotating ring 1a by the rotation of the high pressure chamber side rotating ring 1a, and an outward flow is generated, The pressure in the spiral groove 31 is increased, and a predetermined floating amount (opening) is obtained on the shaft sealing portion 3A.

【0014】また運転条件により、高圧室3側の圧力が
高くなった場合には、図2(b)に示すように固定リン
グ2がばね10の押圧力に抗して右方(図2(b)の点
線矢印方向)に移動し、低圧室側回転リング1bに押し
付けられて、互いの対向面に軸封部3Bが形成されてお
り、高圧室3側からの流体が隙間から低圧室側回転リン
グ1bの方向へ流れる。
When the pressure on the side of the high pressure chamber 3 increases due to the operating conditions, the fixing ring 2 resists the pressing force of the spring 10 to the right (see FIG. 2 (b), as shown in FIG. 2 (b)). b) in the direction of the dotted line arrow) and pressed against the low pressure chamber side rotating ring 1b to form shaft seal portions 3B on the surfaces facing each other, and the fluid from the high pressure chamber 3 side passes through the gap to the low pressure chamber side. It flows in the direction of the rotating ring 1b.

【0015】そして低圧室側回転リング1bの回転によ
り、低圧室側回転リング1bの螺旋溝31に導かれて、
内向流または外向流が発生し、螺旋溝31内の圧力が昇
圧して、軸封部3Bに所定浮上量が得られる。従って高
圧室側の圧力が高くなった場合であっても、低圧室側に
適正な軸封部が形成されるので、リーク量が減少して、
シール性能が安定する。
Then, by the rotation of the low pressure chamber side rotating ring 1b, it is guided to the spiral groove 31 of the low pressure chamber side rotating ring 1b,
An inward flow or an outward flow is generated, the pressure in the spiral groove 31 is increased, and a predetermined floating amount is obtained on the shaft sealing portion 3B. Therefore, even if the pressure on the high-pressure chamber side becomes high, an appropriate shaft seal portion is formed on the low-pressure chamber side, so the leak amount decreases,
The sealing performance is stable.

【0016】本発明は、上記のように固定リング2が高
圧室側の圧力により軸方向に移動して、適正な軸封部が
形成されるので、圧力変化が起こっても、リーク量が少
なく、シール性能が安定するものである。なお上記実施
形態では、外向流螺旋溝31を回転リング1a、1b側
に設けているが、この外向流螺旋溝31を固定リング2
側に設けても、同様の作用が行われる。
According to the present invention, since the fixing ring 2 is moved in the axial direction by the pressure on the high pressure chamber side to form a proper shaft seal portion as described above, the leak amount is small even if the pressure changes. The sealing performance is stable. In the above embodiment, the outward flow spiral groove 31 is provided on the rotating rings 1a, 1b side, but the outward flow spiral groove 31 is provided on the fixed ring 2.
Even if it is provided on the side, the same operation is performed.

【0017】[0017]

【発明の効果】本発明のメカニカルシールは前記のよう
に構成されており、回転リングの軸封部に設けた複数の
螺旋溝が固定リングに設けた環状溝からの流体を回転軸
に装着した回転リングの回転により高圧室側へ移送する
ことにより、スラスト軸受としての機能を果している。
この螺旋溝では、高圧室からの流体が固定リングの連絡
孔を経て環状溝に入り、同環状溝からの流体が回転リン
グの螺旋溝に導かれ、螺旋溝内の圧力が昇圧して、軸封
部に所定浮上量(開き)が得られる。そして、通常の場
合(高圧室の圧力が設定値より低い場合)には、固定リ
ング2がばねと可動リングとにより高圧室側回転リング
に押し付けられて、互いの対向面に軸封部3Aが形成さ
れているが、運転条件により高圧室の圧力が設定値より
も高くなった場合には、固定リングがばねに抗して移動
して、低圧室側回転リングに押し付けられて、互いの対
向面に軸封部3Bが形成されるので、高圧室側の圧力が
高くなった場合であっても、高圧室側の軸封部の浮上量
(開き)は大きくなるが、低圧室側の軸封部で適正な軸
封部が形成されるので、リーク量が増加することなく、
リーク量が安定して、所定のシール性能か得られる。
The mechanical seal of the present invention is constructed as described above, and a plurality of spiral grooves provided in the shaft sealing portion of the rotary ring are mounted on the rotary shaft with fluid from the annular groove provided in the fixed ring. By rotating the rotary ring to transfer it to the high-pressure chamber side, it functions as a thrust bearing.
In this spiral groove, the fluid from the high pressure chamber enters the annular groove through the communication hole of the fixed ring, the fluid from the annular groove is guided to the spiral groove of the rotating ring, the pressure in the spiral groove is increased, and A predetermined floating amount (opening) is obtained in the sealed portion. Then, in a normal case (when the pressure in the high pressure chamber is lower than the set value), the fixed ring 2 is pressed against the high pressure chamber-side rotating ring by the spring and the movable ring, and the shaft sealing portion 3A is provided on the mutually opposing surfaces. However, when the pressure in the high pressure chamber becomes higher than the set value due to the operating conditions, the fixed ring moves against the spring and is pressed against the low pressure chamber side rotating ring to face each other. Since the shaft seal portion 3B is formed on the surface, even if the pressure on the high pressure chamber side becomes high, the floating amount (opening) of the shaft seal portion on the high pressure chamber side becomes large, but the shaft on the low pressure chamber side becomes large. Since the proper shaft seal part is formed in the seal part, the leak amount does not increase,
The leak amount is stable and the desired sealing performance is obtained.

【0018】また高圧室が高圧になっても、固定リング
が移動して、適正な軸封部を形成するので、圧力変化が
起こっても、リーク量が安定し、シール面からの流体の
リーク量が少なくて、浮上量(開き)の一定した運転範
囲の大きいメカニカルシールを提供できる。
Further, even if the pressure in the high pressure chamber becomes high, the fixed ring moves to form a proper shaft seal portion, so that the leak amount is stable even if the pressure changes, and the fluid leaks from the seal surface. It is possible to provide a mechanical seal that has a small flying height and a large operating range with a constant flying height (opening).

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のメカニカルシールの一実施形態を示す
縦断側面図である。
FIG. 1 is a vertical sectional side view showing an embodiment of a mechanical seal of the present invention.

【図2】(a)(b)は同メカニカルシールの作用説明
図である。
FIG. 2A and FIG. 2B are explanatory views of the operation of the mechanical seal.

【図3】従来のメカニカルシールの縦断側面図である。FIG. 3 is a vertical sectional side view of a conventional mechanical seal.

【図4】同メカニカルシールの回転リングに設けた螺旋
溝を示す正面図である。
FIG. 4 is a front view showing a spiral groove provided in a rotary ring of the mechanical seal.

【符号の説明】[Explanation of symbols]

1 回転リング 1a 高圧室側回転リング 1b 低圧室側回転リング 2 固定リング 2A 環状溝 3 高圧室 3A、3B 軸封部 4 低圧室 5 回転軸 6 スリーブ 7 スリーブ 8 ケーシング 9 シールハウジング 10 ばね 12 連絡孔 22 可動リング 31 螺旋溝 1 rotating ring 1a high pressure chamber side rotating ring 1b low pressure chamber side rotating ring 2 fixed ring 2A annular groove 3 high pressure chamber 3A, 3B shaft seal part 4 low pressure chamber 5 rotating shaft 6 sleeve 7 sleeve 8 casing 9 seal housing 10 spring 12 communication hole 22 movable ring 31 spiral groove

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 回転軸に間隔を置いて装着した高圧室側
回転リング及び低圧室側回転リングと、同各回転リング
を取り囲むシールハウジングと、上記各回転リングの間
に配設した固定リングと、上記シールハウジングに取り
付けたばねにより上記高圧室側回転リングの方向に移動
して上記固定リングを同高圧室側回転リングに押し付け
る可動リングとを有し、上記固定リングの高圧室側回転
リングに対する軸封部に環状溝を設けるとともに同環状
溝と高圧室側とを連絡する複数の連絡孔を同固定リング
内に設け、上記低圧室側回転リングの上記固定リングに
対する対向面の円周方向に沿って流体を移送する複数の
螺旋溝を設け、前記高圧室側の圧力と前記ばね力との差
により前記固定リングを前記高圧室側回転リングに押し
付けて互いの間に軸封部を形成したことを特徴とするメ
カニカルシール。
1. A high-pressure chamber-side rotary ring and a low-pressure chamber-side rotary ring mounted on a rotary shaft at intervals, a seal housing surrounding each rotary ring, and a fixed ring arranged between the rotary rings. A movable ring that moves in the direction of the high pressure chamber side rotating ring by a spring attached to the seal housing to press the fixed ring against the high pressure chamber side rotating ring, and the shaft of the fixed ring with respect to the high pressure chamber side rotating ring. An annular groove is provided in the sealing portion, and a plurality of communication holes that connect the annular groove and the high pressure chamber side are provided in the fixed ring, and the rotation direction of the low pressure chamber side rotary ring faces the fixed ring in the circumferential direction. A plurality of spiral grooves for transferring the fluid are provided, and the fixed ring is pressed against the high-pressure chamber-side rotating ring by a difference between the pressure on the high-pressure chamber side and the spring force, and an axis is provided between them. A mechanical seal characterized by having a sealed portion.
JP33348895A 1995-12-21 1995-12-21 Mechanical seal Withdrawn JPH09177990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33348895A JPH09177990A (en) 1995-12-21 1995-12-21 Mechanical seal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33348895A JPH09177990A (en) 1995-12-21 1995-12-21 Mechanical seal

Publications (1)

Publication Number Publication Date
JPH09177990A true JPH09177990A (en) 1997-07-11

Family

ID=18266630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33348895A Withdrawn JPH09177990A (en) 1995-12-21 1995-12-21 Mechanical seal

Country Status (1)

Country Link
JP (1) JPH09177990A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117066543A (en) * 2023-10-17 2023-11-17 意特利(上海)科技有限公司 Main shaft structure with adjustable multistage air curtain and processing machine tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117066543A (en) * 2023-10-17 2023-11-17 意特利(上海)科技有限公司 Main shaft structure with adjustable multistage air curtain and processing machine tool
CN117066543B (en) * 2023-10-17 2024-01-26 意特利(上海)科技有限公司 Main shaft structure with adjustable multistage air curtain and processing machine tool

Similar Documents

Publication Publication Date Title
US5014999A (en) Pressure enhanced self aligning seal
US5403019A (en) Balanced floating labyrinth seal
EP0470409B1 (en) Noncontacting face seal
US20070085278A1 (en) Tandem dual element intershaft carbon seal
JPH10281299A (en) Mechanical seal device
JPH0626365A (en) Seal ring for gas turbine-engine
JPH09292034A (en) Mechanical seal
JP6941479B2 (en) Seal structure and mechanical seal
JPH08303606A (en) Shaft sealing device
US5192083A (en) Single ring sector seal
WO2016013444A1 (en) Mechanical seal
JPH09177990A (en) Mechanical seal
JP2001200938A (en) Wedge-shaped seal
JPH10281300A (en) Mechanical seal device
JPH08296745A (en) Mechanical seal
JP4628556B2 (en) Fluid machinery
JPH09273636A (en) Mechanical seal
RU2187727C2 (en) Pulse end seal
JPH08277941A (en) Mechanical seal
JPH0579447A (en) Rotating cam type compressed fluid machine
JP2000018392A (en) Tandem seal type dry gas sealing device
JP2645544B2 (en) Shaft sealing device
JPH04272581A (en) Non-contact type sealing device
JPH0714697Y2 (en) Non-contact sealing device
JPS6326605Y2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030304