JPH09177567A - Intake air cooling device for compressor, and method of operating it - Google Patents

Intake air cooling device for compressor, and method of operating it

Info

Publication number
JPH09177567A
JPH09177567A JP28376996A JP28376996A JPH09177567A JP H09177567 A JPH09177567 A JP H09177567A JP 28376996 A JP28376996 A JP 28376996A JP 28376996 A JP28376996 A JP 28376996A JP H09177567 A JPH09177567 A JP H09177567A
Authority
JP
Japan
Prior art keywords
cooling
cold water
intake
intake air
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP28376996A
Other languages
Japanese (ja)
Inventor
Tadashi Tsuji
正 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP28376996A priority Critical patent/JPH09177567A/en
Publication of JPH09177567A publication Critical patent/JPH09177567A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the cooling efficiency of the intake air cooling device of a gas turbine compressor. SOLUTION: A heat exchanger 5 for guiding a coolant from a refrigerating equipment 6 is provided within a cooling chamber 1 to which the intake air of a compressor 51 is introduced. The heat exchanger 5 is dipped in water in the night to make ice. In generation in the daytime, water is drained, and intake air is directly cooled by the exposed ice. In this case, the intake quantity carried in a bypass duct 4 is regulated by a damper V1 to control the intake air temperature in the inlet of the compressor 51.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はガスタービン圧縮機
の吸気冷却装置の構造とその運用方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of an intake air cooling device for a gas turbine compressor and a method of operating the same.

【0002】[0002]

【従来の技術】図17は、従来のガスタービン圧縮機の
吸気冷却装置の一例を示す系統図である。ガスタービン
圧縮機(51)の吸気は、吸気室(52)から吸気さ
れ、吸気ダクト(53)を通って圧縮機(51)の吸気
口に至る。
2. Description of the Related Art FIG. 17 is a system diagram showing an example of a conventional intake cooling system for a gas turbine compressor. The intake air of the gas turbine compressor (51) is taken in from the intake chamber (52) and reaches the intake port of the compressor (51) through the intake duct (53).

【0003】吸気ダクト(53)の途中には、吸気冷却
用熱交換器(54)が設置されていて吸気を冷却する。
この熱交換器(54)の冷却媒体は、冷水タンク(5
5)に貯えられている冷水である。
An intake air cooling heat exchanger (54) is installed in the middle of the intake duct (53) to cool the intake air.
The cooling medium of the heat exchanger (54) is a cold water tank (5
It is the cold water stored in 5).

【0004】冷水の製造は主として夜間に行なう。その
場合、冷凍設備(56)を稼動して冷媒を冷却熱交換器
(57)に循環させ、冷水タンク(55)内に氷と水と
のシャーベット状の液体を貯える。そして昼間のガスタ
ービン運転時に冷水ポンプ(58)によって冷水を取り
出し、吸気冷却用熱交換器(54)に送って吸気を冷却
し、その後冷水タンク(55)に戻す。
Cold water is produced mainly at night. In that case, the refrigerating equipment (56) is operated to circulate the refrigerant in the cooling heat exchanger (57), and a sherbet liquid of ice and water is stored in the cold water tank (55). Then, during the daytime operation of the gas turbine, cold water is taken out by the cold water pump (58) and sent to the intake air cooling heat exchanger (54) to cool the intake air, and then returned to the cold water tank (55).

【0005】[0005]

【発明が解決しようとする課題】前述した従来の吸気冷
却装置には、次のような解決すべき課題があった。すな
わち、冷水を循環させて吸気冷却用熱交換器(54)で
間接的に熱交換しているので、冷却効率が悪い。冷水は
流動性などを考慮して0℃〜10℃程度の温度に保持さ
れているので尚更、冷却効果は上らない。
The above-mentioned conventional intake air cooling system has the following problems to be solved. That is, since cold water is circulated and heat is indirectly exchanged in the intake air cooling heat exchanger (54), the cooling efficiency is poor. Since the cold water is kept at a temperature of about 0 ° C. to 10 ° C. in consideration of fluidity and the like, the cooling effect is not improved.

【0006】また吸気を冷却した際、吸気の水分が凝縮
して水滴あるいはミストとなり、圧縮機(51)に流入
し易い状況となる。
Further, when the intake air is cooled, the water content of the intake air is condensed to form water drops or mist, which easily flows into the compressor (51).

【0007】更に構造的には、吸気冷却用熱交換器(5
4)と冷却熱交換器(57)の二つの熱交換器が必要と
なる。
Further structurally, the heat exchanger for cooling the intake air (5
4) and a cooling heat exchanger (57) are required.

【0008】[0008]

【課題を解決するための手段】本発明者は、前記従来の
課題を解決するために、吸気室からガスタービン圧縮機
入口に至る吸気ダクトの途中に設けられ、下部に冷却熱
交換器の伝熱管を収容する冷却室と、上記伝熱管の冷媒
出入口に接続された冷凍設備と、上記冷却室の吸気出入
口を互いに連通し、温度調節ダンパーを有するバイパス
ダクトと、上記冷却室に導入される吸気に冷水を噴射す
る噴射ノズルと、上記冷却室の底部から冷水移送ポンプ
および液位制御弁を介して冷水タンクへ至る冷水配管
と、上記冷水タンクから冷水噴射ポンプおよび冷水噴射
制御弁を介して上記噴射ノズルへ冷水を供給する冷水噴
射配管と、上記冷水噴射ポンプの出口から分岐して上記
冷却室に連通し、水投入制御弁を有する水投入配管とを
備えたことを特徴とする圧縮機の吸気冷却装置を提供
し、夜間に冷却室に水漲りをし夜間電力を用いて冷却熱
交換器の伝熱管表面に氷を生成・付着させ、昼間の発電
時には冷却室内の水位を下げて伝熱管面の氷を露出さ
せ、吸気と氷面を直接接触させて吸気の冷却を行ない、
また夜間電力で氷を作っている時でも、必要ならば発電
と吸気冷却を行なうことができる。
In order to solve the above-mentioned conventional problems, the inventor of the present invention is provided in the middle of an intake duct from the intake chamber to the inlet of the gas turbine compressor, and the cooling heat exchanger is installed in the lower part thereof. A cooling chamber for accommodating a heat pipe, a refrigeration facility connected to the refrigerant inlet / outlet of the heat transfer pipe, a bypass duct communicating with the intake / outlet inlet / outlet of the cooling chamber and having a temperature control damper, and an intake air introduced into the cooling chamber An injection nozzle for injecting cold water into the cold water, a cold water pipe from the bottom of the cooling chamber to the cold water tank via a cold water transfer pump and a liquid level control valve, and a cold water injection pump from the cold water tank and a cold water injection control valve A cold water injection pipe for supplying cold water to the injection nozzle; and a water injection pipe branching from the outlet of the cold water injection pump to communicate with the cooling chamber and having a water injection control valve. The compressor intake air cooling system is provided, and water is poured into the cooling chamber at night, and ice is generated and adheres to the heat transfer tube surface of the cooling heat exchanger by using the nighttime electric power. Lower it to expose the ice on the heat transfer tube surface, and directly contact the intake air with the ice surface to cool the intake air,
In addition, even when ice is being made with night power, power generation and intake cooling can be performed if necessary.

【0009】また,本発明は上記冷凍設備は、フロンガ
ス、アンモニア等の冷媒を用いるターボ冷凍機、LNG
気化器、空気、N2,O2,CO2 等の液化設備、又は液体
空気、液体N2,液体O2,液体CO2 等の気化設備の少な
くとも何れか一つで構成し、また、上記冷却熱交換器
は、多数の冷却管を林立したヘダー構造とした圧縮機の
吸気冷却装置を提供し、上記ターボ冷凍機以下の各設備
はいずれもが液化ガスであり、気化する際に気化の潜熱
を奪い、冷却熱交換器のヘッダーに林立する冷却管を冷
却する。気化したガスはフロンガスの場合は再び冷凍設
備の冷凍機へ循環し、例えば冷凍設備がLNGガスの場
合は、ガスタービン燃料に投入する。また、液体空気の
気化設備の場合には気化した空気が吸気と混合して冷却
を強化する。液体窒素、液体酸素、液体炭酸ガスの場合
は、気化した窒素、酸素、炭酸ガスをコンバインド発電
システムの相応する系内に投入する。
Further, according to the present invention, the refrigerating equipment is a turbo refrigerator using a refrigerant such as CFC gas or ammonia, LNG.
Carburetor, constitute air, N 2, O 2, CO 2 , etc. liquefaction equipment, or liquid air, liquid N 2, a liquid O 2, in at least one of the vaporization equipment such as liquid CO 2, also, the The cooling heat exchanger provides an intake air cooling device for a compressor having a heder structure in which a large number of cooling pipes are forested.Each equipment below the turbo refrigerator is a liquefied gas, and when it is vaporized, it is vaporized. It takes latent heat and cools the cooling pipes standing in the header of the cooling heat exchanger. The vaporized gas is circulated again to the refrigerator of the refrigeration facility in the case of CFC gas, and is fed to the gas turbine fuel when the refrigeration facility is LNG gas, for example. In the case of liquid air vaporization equipment, the vaporized air mixes with the intake air to enhance cooling. In the case of liquid nitrogen, liquid oxygen and liquid carbon dioxide gas, the vaporized nitrogen, oxygen and carbon dioxide gas are put into the corresponding system of the combined power generation system.

【0010】また本発明は、上記温度調節ダンパーは、
単弁または多弁構造のものを上記バイパスダクトの入口
側に設けるとともに、同バイパスダクトの出口側にも温
度調節ダンパーを設けた圧縮機の吸気冷却装置を提供
し、バイパスダクトの入口側に設けた温度調節ダンパー
を、例えばマルチルーパダンパーとすることによって、
バイパスダクトを流れるバイパス流が整流され微小コン
トロールが可能となる。また、バイパスダクト出口側に
もダンパーを取り付けたことによって、ダクト内の乱流
が整流され、マルチルーパダンパーの効果と相乗してバ
イパスダクトの振動の問題が解決される。
According to the present invention, the temperature control damper is
A single-valve or multi-valve structure is provided on the inlet side of the bypass duct, and an intake air cooling device for the compressor is also provided on the outlet side of the bypass duct to provide a cooling system for the intake side of the bypass duct. By making the adjustment damper a multi-looper damper, for example,
The bypass flow that flows through the bypass duct is rectified and fine control becomes possible. Further, by installing a damper also on the outlet side of the bypass duct, turbulent flow in the duct is rectified, and the problem of vibration of the bypass duct is solved in synergy with the effect of the multi-loop damper.

【0011】また本発明は、上記冷水タンクは、上記冷
却室の底部に配設してこれと一体構造とし、同冷却室の
底面に傾斜をつけた圧縮機の吸気冷却装置を提供し、冷
却室と冷水タンクを一体構造としたことにより、付属す
る制御弁類を冷水タンク内或いはタンクの側壁に取り付
け可能となり、これによって機器が平面上に配置される
ことが防止でき、コンパクト化が図れる。また,冷水タ
ンク内構造を変えることによってタンク内の冷水の流
れ、空気の流れもスムーズとなり、さらに冷却室底面の
傾斜によりドレン等の排出も確実にすることができる。
The present invention also provides an intake air cooling device for a compressor, in which the cold water tank is disposed at the bottom of the cooling chamber and integrated with the cooling chamber, and the bottom surface of the cooling chamber is inclined. Since the chamber and the cold water tank are integrated with each other, the attached control valves can be attached inside the cold water tank or on the side wall of the tank, whereby the equipment can be prevented from being arranged on a flat surface and the size can be reduced. Further, by changing the structure of the cold water tank, the flow of cold water and air in the tank can be made smooth, and the drain of the drain can be ensured due to the inclination of the bottom of the cooling chamber.

【0012】また本発明は、上記バイパスダクト出口か
ら上記ガスタービン圧縮機の吸気口に至るダクト中、ま
たは上記冷却熱交換器の吸気出口部に除湿器を設置した
圧縮機の吸気冷却装置を提供し、ミストセパレータ等の
除湿器を取り付けたことにより、吸気の除湿が徹底し、
ガスタービン圧縮機への湿分の流入は無くなる。
Further, the present invention provides an intake air cooling device for a compressor, wherein a dehumidifier is installed in a duct from the bypass duct outlet to the intake port of the gas turbine compressor or at the intake outlet of the cooling heat exchanger. However, by installing a dehumidifier such as a mist separator, dehumidification of intake air is thorough,
There is no inflow of moisture into the gas turbine compressor.

【0013】また本発明は、上記ガスタービン圧縮機入
口の吸気温度および吸気圧力ならびにガスタービン出力
に基づいて、上記温度調節ダンパー、上記液位制御弁、
上記冷水噴射制御弁および/または上記水投入制御弁を
制御し、上記冷却室内の水位を上下させて、吸気の温度
を調節する圧縮機の吸気冷却装置の運用方法を提供し、
夜間に冷却室に水漲りをし夜間電力を用いて冷却熱交換
器の伝熱管表面に氷を生成・付着させ、昼間の発電時に
は冷却室内の水位を下げて伝熱管面の氷を露出させ、吸
気と氷面を直接接触させて吸気の冷却を行ない、また夜
間電力で氷を作っている時でも、必要ならば発電と吸気
冷却を行なうことができる運転方法である。
Further, the present invention is based on the intake air temperature and intake pressure at the gas turbine compressor inlet and the gas turbine output, the temperature adjusting damper, the liquid level control valve,
Provided is a method for operating an intake air cooling device of a compressor, which controls the cold water injection control valve and / or the water injection control valve to raise and lower the water level in the cooling chamber to adjust the temperature of intake air.
During the night, water is poured into the cooling chamber and the night power is used to generate and adhere ice to the heat transfer tube surface of the cooling heat exchanger, and during daytime power generation, the water level in the cooling chamber is lowered to expose the ice on the heat transfer tube surface. This is a method of operation that allows the intake air to be cooled by direct contact between the intake air and the ice surface, and also to generate power and cool the intake air when necessary even when ice is being produced by night-time power.

【0014】[0014]

【発明の実施の形態】図1は本発明の実施の一形態に係
るガスタービン圧縮機の吸気冷却装置を示す系統図であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a system diagram showing an intake air cooling system for a gas turbine compressor according to an embodiment of the present invention.

【0015】(1)は冷却室であって、吸気室(2)か
らガスタービン圧縮機(51)の入口に至る吸気ダクト
(3)の途中に設けられ、下部に冷却熱交換器(5)の
伝熱管を収容する。(6)は上記伝熱管の冷媒出入口に
接続された冷凍設備である。
Reference numeral (1) is a cooling chamber, which is provided in the middle of an intake duct (3) from the intake chamber (2) to the inlet of the gas turbine compressor (51), and has a cooling heat exchanger (5) in the lower part. Housing the heat transfer tubes. (6) is a refrigerating facility connected to the refrigerant inlet / outlet of the heat transfer tube.

【0016】冷却室(1)の上部には水平な仕切板(4
a)が設けられていて、その上方に冷却室の吸気入口と
吸気出口を連通するバイパスダクト(4)が形成されて
いる。このバイパスダクト(4)の入口側には、温度調
節用ダンパー(V1)が設けられている。
A horizontal partition plate (4) is provided above the cooling chamber (1).
a) is provided, and a bypass duct (4) which communicates the intake inlet and the intake outlet of the cooling chamber is formed above it. A temperature adjusting damper (V1) is provided on the inlet side of the bypass duct (4).

【0017】冷却室(1)の外には、冷水タンク(7)
が設置されていて、冷却室(1)の底部と冷水配管
(8)により連通している。そして、この冷水配管
(8)には、冷水移送ポンプ(9)と液位制御弁(V
2)が設けられている。また吸気ダクト(3)内の噴射
ノズル(10)に冷水タンク(7)から冷水を送給する
冷水噴射管(11)が配設されており、この冷水噴射管
(11)に冷水噴射ポンプ(12)と冷水噴射制御弁
(V3)が設けられている。更に冷水噴射ポンプ(1
2)の出口側から分岐して冷却室(1)に連通する水投
入配管(13)が設けられており、水投入制御弁(V
4)が配設されている。
Outside the cooling chamber (1) is a cold water tank (7).
Is installed and communicates with the bottom of the cooling chamber (1) through the cold water pipe (8). Then, a chilled water transfer pump (9) and a liquid level control valve (V
2) is provided. Further, a cold water injection pipe (11) for supplying cold water from the cold water tank (7) is arranged to the injection nozzle (10) in the intake duct (3), and a cold water injection pump (11) is provided in the cold water injection pipe (11). 12) and a cold water injection control valve (V3) are provided. Furthermore, cold water injection pump (1
A water injection pipe (13) that branches from the outlet side of 2) and communicates with the cooling chamber (1) is provided, and a water injection control valve (V
4) is provided.

【0018】そして圧縮機吸気口の温度・圧力(1
4),(15)の検出信号とガスタービン発電出力信号
を吸気温度制御装置(16)に入力し、その出力信号に
よりバイパスダクト(4)の温度調節用ダンパー(V
1)、冷水配管(8)の液位制御弁(V2)、冷水噴射
管(11)の冷水噴射制御弁(V3)および水投入配管
(13)の水投入制御弁(V4)を制御するとともに、
上記の温度調節に加え吸気圧力(15)を所定値とする
圧力調節を複合させて制御できるようになっている。な
お符号(17)は、液位制御弁(V2)を制御する液面
発信器である。
The temperature and pressure (1
The detection signals of 4) and (15) and the gas turbine power generation output signal are input to the intake air temperature control device (16), and the output signal outputs the damper (V) for adjusting the temperature of the bypass duct (4).
1), while controlling the liquid level control valve (V2) of the cold water pipe (8), the cold water injection control valve (V3) of the cold water injection pipe (11) and the water injection control valve (V4) of the water injection pipe (13) ,
In addition to the above-mentioned temperature adjustment, the pressure adjustment for setting the intake pressure (15) to a predetermined value can be combined and controlled. Reference numeral (17) is a liquid level transmitter that controls the liquid level control valve (V2).

【0019】本実施形態の吸気冷却装置は、夜間に冷却
室(1)に水漲りをして冷却熱交換器(5)の伝熱管を
浸漬し、夜間電力を用いて伝熱管の表面に氷を生成・付
着させる。そして昼間の発電時には、冷却室(1)内の
水位を下げて伝熱管面の氷を露出させ、吸気と氷面を直
接接触させて吸気の冷却を行なう。また夜間電力で氷を
作っている時でも、必要であれば発電および吸気冷却は
可能である。
In the intake air cooling device of this embodiment, water is poured into the cooling chamber (1) at night to immerse the heat transfer tube of the cooling heat exchanger (5), and ice is applied to the surface of the heat transfer tube by using night power. Is generated and attached. During daytime power generation, the water level in the cooling chamber (1) is lowered to expose the ice on the heat transfer tube surface, and the intake air and the ice surface are brought into direct contact to cool the intake air. Moreover, even when ice is being made with night power, power generation and intake air cooling are possible if necessary.

【0020】次に冷却室の運用は、図2に示されるよう
に、無冷却モード(製氷モード)、全冷却モード、およ
び半冷却モードに対応できる。
Next, as shown in FIG. 2, the operation of the cooling chamber can correspond to a non-cooling mode (ice making mode), a full cooling mode and a half cooling mode.

【0021】(a) 無冷却モード(製氷モード)時
は、温度調節ダンパー(V1)は全開、冷却室(1)の
液面は満水として製氷を行なう。製氷中にガスタービン
を運転する時は、バイパスダクト(4)経由で圧縮機
(51)に吸気を送る。この場合は単なる大気吸込であ
って、吸気冷却は行なわれない。
(A) In the non-cooling mode (ice making mode), the temperature control damper (V1) is fully opened and the liquid level in the cooling chamber (1) is full of water for ice making. When operating the gas turbine during ice making, intake air is sent to the compressor (51) via the bypass duct (4). In this case, the intake air is simply sucked into the atmosphere, and the intake air is not cooled.

【0022】(b) 全冷却モード時(最大冷却性能を
得たい時)は、温度調節ダンパー(V1)は全閉、冷却
室(1)の液面は最低位とし、吸気の全量を氷と接触さ
せて熱交換を行なう。
(B) In the total cooling mode (when maximum cooling performance is desired), the temperature control damper (V1) is fully closed, the liquid level in the cooling chamber (1) is at the lowest level, and the total amount of intake air is ice. Contact them for heat exchange.

【0023】(c) 半冷却モード時(任意の冷却性能
を得たい時)は温度調節ダンパー(V1)は半開、冷却
室(1)の液面は中水位とする。この場合、冷却熱交換
器(5)の氷は一部露出しており、冷却熱交換器(5)
で冷却される吸気とバイパスダクト(4)を冷却されず
に流れる吸気との割合を温度調節ダンパー(V1)で制
御することになる。
(C) In the semi-cooling mode (when desired cooling performance is desired), the temperature control damper (V1) is semi-open, and the liquid level in the cooling chamber (1) is at the middle water level. In this case, the ice of the cooling heat exchanger (5) is partially exposed, and the cooling heat exchanger (5) is
The temperature control damper (V1) controls the ratio of the intake air cooled by (4) and the intake air flowing through the bypass duct (4) without being cooled.

【0024】これ等の温度調節動作は、圧縮機(51)
の吸気口の温度・圧力信号(14),(15)およびガ
スタービン発電出力信号を吸気温度制御装置(16)に
入力しその出力信号により、温度調節ダンパー(V1)
(バイパス制御)、液位制御弁(V2)(氷露出制御)
および冷水噴射制御弁(V3)(冷水噴射制御)を制御
して行なう。また吸気の圧力は、上記温度調節に複合
(重畳)させて制御調節する。
The temperature adjusting operation is performed by the compressor (51).
The temperature / pressure signals (14) and (15) of the intake port of the engine and the gas turbine power generation output signal are input to the intake temperature control device (16), and the temperature control damper (V1) is output by the output signal.
(Bypass control), Liquid level control valve (V2) (Ice exposure control)
The cold water injection control valve (V3) (cold water injection control) is controlled. Further, the intake pressure is controlled and adjusted by being combined (superposed) with the temperature adjustment.

【0025】なお本実施形態では、凝縮水分が氷表面に
捕集され、一部は氷結し、一部は下方の水面に流下す
る。また上昇流でガスタービン吸気口に向う水分は、粗
大粒は重力で落下するし、微粒の水分もバイパスダクト
(4)を通った高温吸気と混合して乾き度が上るので、
圧縮機に流入するミストや水滴は減少する。
In the present embodiment, the condensed water is collected on the ice surface, partly freezes, and partly flows down to the water surface below. Further, as for the water content toward the gas turbine intake port in the ascending flow, the coarse particles drop by gravity, and the fine particle water also mixes with the high temperature intake air that has passed through the bypass duct (4), so that the dryness increases.
Mist and water drops flowing into the compressor are reduced.

【0026】表1に本実施形態を従来の技術と対比して
示す。
Table 1 shows this embodiment in comparison with the prior art.

【0027】[0027]

【表1】 [Table 1]

【0028】なお、本実施の形態にあっては、冷却熱交
換器、バイパスダクト、冷水タンク、冷凍設備等その付
属する構成に種々の変更・改変を加えることが出来るも
のであり、以下その変形例について説明する。
In the present embodiment, various modifications and alterations can be made to the cooling heat exchanger, the bypass duct, the cold water tank, the refrigerating equipment, and the like, which are attached thereto. An example will be described.

【0029】図3ないし図7は、冷却熱交換器の変形例
を示し、図3では詳細図示してないが、冷凍設備(6)
をフロンガスによる冷凍機、LNG気化器、及び空気、
窒素、酸素、炭酸ガスなどによる液化された気体を取り
扱う液化設備あるいは気化設備を想定しており、冷却室
(1)内の冷却熱交換器(5)は、上部ヘダー(5B)
と下部ヘダー(5A)を配置した構造になっていて、同
両ヘダー間を連通して冷却管(5C)が多数渡された構
造になっている。
3 to 7 show a modification of the cooling heat exchanger, which is not shown in detail in FIG. 3, but the refrigerating equipment (6).
CFC-based refrigerator, LNG vaporizer, and air,
A liquefaction facility or a vaporization facility that handles a liquefied gas such as nitrogen, oxygen, and carbon dioxide is assumed, and the cooling heat exchanger (5) in the cooling chamber (1) has an upper head (5B).
And a lower header (5A) are arranged, and a large number of cooling pipes (5C) are provided so as to communicate between the both headers.

【0030】冷媒液は、冷凍設備(6)から冷媒液ポン
プ(28)、制御弁(V5)を通って下部ヘダー(5
A)に入り、冷却管(5C)で矢印の方向から流れてく
る吸気から気化潜熱を奪って気化し、上部ヘダー(5
B)からLNGガスは図示省略のガスタービンへ、気化
空気は次位のプロセスへ、そしてフロン蒸気は冷凍設備
(6)へと送られる。なお、ここで符号(29)は断熱
材である。
The refrigerant liquid flows from the refrigeration equipment (6) through the refrigerant liquid pump (28) and the control valve (V5) to the lower header (5).
A), the cooling pipe (5C) removes the latent heat of vaporization from the intake air flowing in the direction of the arrow to vaporize it, and the upper header (5)
From B), LNG gas is sent to a gas turbine (not shown), vaporized air is sent to the next process, and CFC vapor is sent to the refrigeration equipment (6). In addition, the code | symbol (29) is a heat insulating material here.

【0031】図4は前記図3のものを一部変形したもの
で、図4(a)に正面を、(b)に側面を示すように、
下部ヘダー(5A)を複数設け冷却管(5C)の全長を
長くして、熱交換性能を高めたものである。
FIG. 4 is a partially modified version of the one shown in FIG. 3, and FIG. 4 (a) shows the front surface, and FIG. 4 (b) shows the side surface.
A plurality of lower headers (5A) are provided to lengthen the entire length of the cooling pipe (5C) to improve heat exchange performance.

【0032】図5は冷凍設備(6)として液化空気を用
いる場合を想定したものであり、液化空気の気化分は、
それ自体空気と混合して冷却機能を強化できる構造にな
っている。即ち、冷却管(5C)の(C1)部分で氷を
生成し、(C2)部分で吸気と混合させる。ここで(C
1)と(C2)の境目、即ち(C1)領域と(C2)領
域の区分は、液位制御計LCと制御弁(V5)により行
う。
FIG. 5 assumes the case where liquefied air is used as the refrigeration equipment (6), and the vaporized component of the liquefied air is
The structure itself can mix with air to enhance the cooling function. That is, ice is generated in the (C1) portion of the cooling pipe (5C) and mixed with the intake air in the (C2) portion. Where (C
The boundary between 1) and (C2), that is, the division of the (C1) region and the (C2) region is performed by the liquid level controller LC and the control valve (V5).

【0033】図6はバイパスダクト4に気化空気を投入
し、冷却室1と相俟って冷却を行うようにしたものであ
る。なお、ここで冷却管5Cは種々の形状を選択するこ
とができ、その幾つかを図7(a)〜(e−2)に示
す。
In FIG. 6, vaporized air is introduced into the bypass duct 4 to cool the bypass duct 4 together with the cooling chamber 1. Here, various shapes of the cooling pipe 5C can be selected, some of which are shown in FIGS. 7 (a) to 7 (e-2).

【0034】即ち、図7の(a)は上端を水平に切断し
て開口を構成し、バイパスダクト(4)内の流れに直行
する気化空気の流れを形成するものであり、図7の
(b)は上端を下流方向に向いた斜面で切断して開口を
構成し、バイパスダクト(4)内の流れにできるだけ沿
った気化空気の流れを形成するものであり、図7の
(c)は上端を水平に切断して開口を構成するととも
に、後流側に長手方向の途中まで延びる切り込みを構成
し、前記(a)と(b)とを合成したような気化空気の
流れを形成するものであり、図7の(d)は前記図7の
(c)のものに比べ上端部に蓋をし、後流側に長手方向
の途中まで延びる切り込みだけを構成してバイパスダク
ト(4)内の流れにできるだけ沿った気化空気の流れを
形成するものであり、また図7の(e−1)は前記図7
の(d)に近似するが、上方から見た概略を図7の(e
−2)にしめすように、先端の一部を流れの前後方向で
膨らませ、他方、これに直角の幅方向で狭めるように構
成して、バイパスダクト(4)内の流れに限りなく沿っ
た気化空気の流れを形成する様にしたものである。
That is, FIG. 7A shows that the upper end is cut horizontally to form an opening to form a flow of vaporized air that is orthogonal to the flow in the bypass duct (4). In b), the upper end is cut along a slope facing the downstream direction to form an opening, and a flow of vaporized air is formed along the flow in the bypass duct (4) as much as possible. An upper end is cut horizontally to form an opening, and a notch that extends partway in the longitudinal direction is formed on the wake side to form a flow of vaporized air that is a combination of (a) and (b). 7 (d) is different from that of FIG. 7 (c) in that the upper end is covered and only the notch extending halfway in the longitudinal direction is formed on the wake side to form the inside of the bypass duct (4). To form a flow of vaporized air as closely as possible to the flow of Of (e-1) FIG. 7
Although it is similar to (d) of FIG.
-2) As shown in Fig. 2), a part of the tip is inflated in the front-back direction of the flow, and on the other hand, it is narrowed in the width direction at a right angle to this, and vaporization along the flow in the bypass duct (4) is endless. It is designed to form a flow of air.

【0035】図8はバイパスダクト(4)の入口側に取
り付けた温度調節ダンパー(V1a)を単弁あるいは多
弁(マルチルーパダンー)とし、また、バイパスダクト
(4)の出口側にも別の温度調節ダンパー(V1b )を
取り付け、バイパス流を調整し、微小コントロールを可
能にするとともに、バイパスダクト(4)内の乱流によ
るバイパスダクト(4)の振動の問題も解決したもので
ある。
In FIG. 8, the temperature control damper (V1 a ) attached to the inlet side of the bypass duct (4) is a single valve or a multi-valve (multi-looper damper), and the outlet side of the bypass duct (4) is also provided with a separate valve. A temperature control damper (V1 b ) is attached to adjust the bypass flow to enable fine control, and the problem of vibration of the bypass duct (4) due to turbulent flow in the bypass duct (4) is also solved.

【0036】図9は冷却室(1)の底部に冷水タンク
(7)を隣接して配置し、両者を合わせて一体構造とし
たものである。なお、冷却室(1)と冷水タンク(7)
とを連通する配管類(7A)(冷水配管、水投入配管、
冷水噴射管等がこれに当たる)は、冷水タンク(7)
内、あるいは冷水タンク(7)の側壁等に取り付けら
れ、全体のコンパクト化を図るようにしている。
In FIG. 9, a cold water tank (7) is arranged adjacent to the bottom of the cooling chamber (1), and both are combined to form an integrated structure. The cooling chamber (1) and the cold water tank (7)
Piping (7A) that communicates with (cold water piping, water input piping,
Cold water injection pipes, etc. correspond to this), the cold water tank (7)
It is mounted inside or on the side wall of the cold water tank (7) to make the whole compact.

【0037】図10は冷水タンク(7)の天井部(7
B)(冷却室(1)の底部にあたる)と底部(7C)と
にそれぞれ傾斜を付けて、それぞれの底部の冷水の流れ
をスムーズにしたものである。なお底部(7C)には更
に冷水溜まりピット(7D)が設けられている。また冷
水タンク(7)の天井部(7B)には、冷却室(1)に
連通する吸気出入管(7E)が取り付けられており下槽
の水の出入りに伴ってピット(7D)を介して空気の出
入りが確保されている。
FIG. 10 shows the ceiling portion (7) of the cold water tank (7).
B) (corresponding to the bottom of the cooling chamber (1)) and the bottom (7C) are inclined to make the flow of cold water at the bottom smooth. A cold water pool pit (7D) is further provided at the bottom (7C). Further, an intake / inlet pipe (7E) communicating with the cooling chamber (1) is attached to the ceiling portion (7B) of the cold water tank (7), and through the pit (7D) as water in and goes out of the lower tank. Entry and exit of air is secured.

【0038】図11はバイパスダクト(4)の出口から
図示省略のガスタービン圧縮機の吸気口に至るダクト
(3A)に、除湿器(ミストセパレータ)(20)を取
り付けたものであり、これにより後流のガスタービン圧
縮機等に不要な湿分が供給されるのを防ぐようにしたも
のである。
In FIG. 11, a dehumidifier (mist separator) (20) is attached to a duct (3A) extending from the outlet of the bypass duct (4) to the intake port of a gas turbine compressor (not shown). This is to prevent unnecessary moisture from being supplied to the downstream gas turbine compressor or the like.

【0039】図12も除湿器(ミストセパレータ)(2
0)を取り付けたものであるが、これは前記図11のも
のの設置位置と異なり、冷却熱交換器(5)の吸気出口
部に除湿器(20)を取り付けたものであり、もっぱら
冷却熱交換器(5)側からの湿分を除去するようにした
ものである。
FIG. 12 also shows a dehumidifier (mist separator) (2
0) is attached, but this is different from the installation position of the one shown in FIG. 11 described above in that the dehumidifier (20) is attached to the intake / outlet portion of the cooling heat exchanger (5), and the cooling heat exchange is exclusively performed. The moisture from the container (5) side is removed.

【0040】図13は冷熱源に工夫を凝らしたものであ
り、冷熱源をLNG気化設備(6A)、冷凍機設備(6
B)、及び液体空気設備(6C)の複数の冷熱源設備で
構成し、切替えにより各冷熱源設備を交替して使用する
ことができるようにしたものである。なおこの場合、切
替え制御は冷媒タンク(6G)の温度検出器TCの信号
ににより、各冷熱源に対応する冷媒熱交換器(6D)、
(6E)、(6F)および同各冷媒熱交換器に対応する
制御弁(V4H)、(V4I)、(V4J)を制御して
行う。
FIG. 13 shows a refrigerating heat source which is devised so that the refrigerating machine (6A) and the LNG vaporizing equipment (6A) are used as the cold heat source.
B), and a plurality of cold heat source equipments of liquid air equipment (6C), and each cold heat source equipment can be replaced and used by switching. In this case, the switching control is performed by the signal from the temperature detector TC of the refrigerant tank (6G), and the refrigerant heat exchanger (6D) corresponding to each cold heat source,
(6E), (6F) and the control valves (V4H), (V4I), and (V4J) corresponding to the respective refrigerant heat exchangers are controlled.

【0041】図14は冷却熱交換器5を冷熱源毎にそれ
ぞれLNG気化設備(6A)、冷凍機設備(6B)、お
よび液体空気設備(6C)に分割し、かつこれ等をそれ
ぞれ独立の冷却熱交換器(5A)、(5B)、(5C)
に接続させたものであり、必要に応じて図示省略の切替
え装置で切替え制御し、冷熱源を異にした冷却熱交換器
の組合せによりそれぞれの温度域t1 ,t2 ,ti で運
転て入口側温度T1 を出口側温度T2 に調整することが
できるようにしたものである。
FIG. 14 shows that the cooling heat exchanger 5 is divided into an LNG vaporization facility (6A), a refrigerator facility (6B), and a liquid air facility (6C) for each cold heat source, and these are independently cooled. Heat exchanger (5A), (5B), (5C)
If necessary, switching control is performed by a switching device (not shown), and a combination of cooling heat exchangers with different cooling heat sources is used to operate in each temperature range t 1 , t 2 , t i. The inlet side temperature T 1 can be adjusted to the outlet side temperature T 2 .

【0042】なお図15、16には前記図13、14の
ように冷熱源を切替えて用いる場合の動作環境の変化
を、夜間の場合(図15)と昼間の場合(図16)に分
けて示す。即ち前記冷熱源のLNG気化設備(4A)
(LNG冷熱)、冷凍機設備(4B)(ターボ冷凍
機)、および液体空気設備(4C)(空気液化)それぞ
れの冷熱発生動力は一般的に、LNG冷熱(動力0)<
ターボ冷凍機≪空気液化、という関係が有るので、ベー
ス出力とデマンドとの差(余剰電力)でまず電動ターボ
冷凍機を作動させ、次に空気液化を行う。
In FIGS. 15 and 16, the change in operating environment when the cold heat source is switched and used as shown in FIGS. 13 and 14 is divided into nighttime (FIG. 15) and daytime (FIG. 16). Show. That is, the LNG vaporization equipment (4A) of the cold heat source
(LNG cold heat), refrigerator equipment (4B) (turbo refrigerator), and liquid air equipment (4C) (air liquefaction) are generally LNG cold heat (power 0) <
Since there is a relationship of turbo chiller << air liquefaction, the electric turbo chiller is first operated by the difference between the base output and the demand (excess electric power), and then air liquefaction is performed.

【0043】なお、冷熱源として蓄熱氷冷熱を用いる場
合には、LNG冷熱及び蓄熱氷冷熱(動力0)<ターボ
冷凍機、という関係に有るので、蓄熱氷冷熱で不足する
分はターボ冷凍機で補助し、冷熱の変化が頻繁となる量
については投入と冷却に制御応答性の良い蓄熱液体空気
を用いるとよい。
When the stored ice cold heat is used as the cold heat source, there is a relationship of LNG cold heat and stored ice cold heat (power 0) <turbo refrigerator, so that the portion that is insufficient in the stored ice cold heat is consumed by the turbo refrigerator. For the amount of the auxiliary heat that frequently changes the cold heat, it is advisable to use the heat storage liquid air with good control response for charging and cooling.

【0044】なおまた、同図15、16中において、A
は蓄熱氷冷熱を、Bは電動ターボ冷凍機を、Cは蓄熱液
体空気を示し、またはLNG気化冷熱を、は電動タ
ーボ冷熱を、は空気液化冷熱を示している。
Furthermore, in FIGS.
Is heat storage ice cold heat, B is an electric turbo refrigerator, C is heat storage liquid air, or LNG vaporized cold heat, is electric turbo cold heat, and is air liquefied cold heat.

【0045】以上、本発明を図示の実施の形態について
説明したが、本発明はかかる実施の形態に限定されず、
本発明の範囲内でその具体的構造に種々の変更を加えて
よいことはいうまでもない。
Although the present invention has been described with reference to the illustrated embodiment, the present invention is not limited to such an embodiment.
It goes without saying that various modifications may be made to the specific structure within the scope of the present invention.

【0046】[0046]

【発明の効果】本発明によれば次の効果が得られる。 1)吸気と氷とが直接接触するので、吸気を0℃近くま
で冷却することができる。 2)吸気の冷却により凝縮した水は、氷表面に付着する
か或いは冷却室内水面に捕集されるので、ガスタービン
へ流入する水分を少なくできる。 3)夜間電力で製氷するとき電力が平準化される。 4)冷却熱交換器とバイパスダクトの併用により吸気の
温度調節が自在となる。 5)冷却熱交換器のみで吸気を冷却することができる。 6)温度調節によって冷水タンクに溜められた冷水は他
の冷却器などの冷却水として使用することもできる。 7)冷却熱交換器、バイパスダクト、冷水タンクまたは
冷凍設備等に種々の改変を加えることにより、全体の機
能、操作に関し具体性と緻密性が加味され、吸気冷却シ
ステムの機能向上に大いに寄与するものである。
According to the present invention, the following effects can be obtained. 1) Since the intake air is in direct contact with the ice, the intake air can be cooled to near 0 ° C. 2) The water condensed by cooling the intake air adheres to the ice surface or is collected on the water surface of the cooling chamber, so that the amount of water flowing into the gas turbine can be reduced. 3) Electricity is leveled when ice is made with nighttime electricity. 4) The temperature of the intake air can be freely adjusted by using the cooling heat exchanger and the bypass duct together. 5) The intake air can be cooled only by the cooling heat exchanger. 6) The cold water stored in the cold water tank by adjusting the temperature can also be used as cooling water for other coolers. 7) By making various modifications to the cooling heat exchanger, bypass duct, cold water tank, refrigeration equipment, etc., specificity and precision are added to the overall function and operation, which greatly contributes to improving the function of the intake air cooling system. It is a thing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明の実施の一形態に係るガスタービ
ン圧縮機の吸気冷却装置を示す系統図である。
FIG. 1 is a system diagram showing an intake air cooling device for a gas turbine compressor according to an embodiment of the present invention.

【図2】図2は上記実施形態の運用モードを示す図であ
る。
FIG. 2 is a diagram showing an operation mode of the above embodiment.

【図3】図3は冷却熱交換器の一具体例を示す概念図で
ある。
FIG. 3 is a conceptual diagram showing a specific example of a cooling heat exchanger.

【図4】図4は冷却熱交換器の他の具体例を示す概念図
であり、(a)は正面図、(b)は側面図である。
FIG. 4 is a conceptual view showing another specific example of the cooling heat exchanger, (a) is a front view and (b) is a side view.

【図5】図5は冷却熱交換器の更に他の具体例を示す概
念図である。
FIG. 5 is a conceptual diagram showing still another specific example of the cooling heat exchanger.

【図6】図6は冷却熱交換器の更に他の具体例を示す概
念図である。
FIG. 6 is a conceptual diagram showing still another specific example of the cooling heat exchanger.

【図7】図7は図6の要部である冷却管について、
(a)、(b)、(c)、(d)、(e−1)および同
(e−1)の平面を示す(e−2)に区分して同冷却管
の種々の変形を示す概略図である。
7 is a perspective view of a cooling pipe which is a main part of FIG.
(A), (b), (c), (d), (e-1) and (e-2) showing the plane of the same (e-1) are classified into (e-2) to show various modifications of the cooling pipe. It is a schematic diagram.

【図8】図8はバイパスダクトに工夫を施した例を示す
バイパスダクトの構造概念図である。
FIG. 8 is a structural conceptual diagram of a bypass duct showing an example in which the bypass duct is modified.

【図9】図9は冷却室と冷水タンクとを一体構造とした
ものの構造概念図である。
FIG. 9 is a structural conceptual diagram of a cooling chamber and a cold water tank that are integrally structured.

【図10】図10は図9と同様に冷却室と冷水タンクと
を一体構造としたもので、図9と異なる他の例を示す構
造概念図である。
10 is a structural conceptual diagram showing another example different from FIG. 9 in which the cooling chamber and the cold water tank are integrally structured as in FIG. 9.

【図11】図11は冷却熱交換器に除湿器を組み入れた
一例を示すを示す除湿器の取り付け構造図である。
FIG. 11 is a mounting structure diagram of a dehumidifier showing an example in which a dehumidifier is incorporated in a cooling heat exchanger.

【図12】図12は図11と同様に冷却熱交換器に除湿
器を組み入れたもので、図11と異なる他の例を示す除
湿器の取り付け構造図である。
FIG. 12 is a mounting structure diagram of a dehumidifier in which a dehumidifier is incorporated in a cooling heat exchanger as in the case of FIG. 11, and another example different from FIG. 11 is shown.

【図13】図13は複数の冷凍設備を併設した例を示す
冷凍設備の系統図である。
FIG. 13 is a system diagram of a refrigerating facility showing an example in which a plurality of refrigerating facilities are provided side by side.

【図14】図14は図13と同様に複数の冷凍設備を配
設したもので、図13と異なる他の例を示す冷凍設備の
系統図である。
FIG. 14 is a system diagram of refrigerating equipment in which a plurality of refrigerating equipments are arranged similarly to FIG. 13 and showing another example different from FIG.

【図15】図15は図13、14の様な複数設備のもの
における夜間の動作環境を説明する説明図で、(a)は
電力のデマンド状況を示し、(b)は消費電力量の状況
を示す説明図である。
FIG. 15 is an explanatory diagram for explaining an operating environment at night in a plurality of facilities as shown in FIGS. 13 and 14, (a) showing a power demand situation, and (b) showing a power consumption situation. FIG.

【図16】図16は図15が夜間であったのに対し、昼
間の状況を説明する説明図である。
FIG. 16 is an explanatory diagram illustrating a daytime situation, whereas FIG. 15 shows nighttime.

【図17】図17は従来のガスタービン圧縮機の吸気冷
却装置の一例を示す系統図である。
FIG. 17 is a system diagram showing an example of a conventional intake-air cooling device for a gas turbine compressor.

【符号の説明】[Explanation of symbols]

(1) 冷却室 (2) 吸気室 (3) 吸気ダクト (4) バイパスダクト (4a) 仕切板 (5) 冷却熱交換器 (5A) 下部ヘダー (5B) 上部ヘダー (5C) 冷却管 (6) 冷凍設備 (6A) LNG気化設備 (6B) 冷凍機設備 (6C) 液体空気設備 (6D) 冷媒熱交換器 (6E) 冷媒熱交換器 (6F) 冷媒熱交換器 (6G) 冷媒タンク (7) 冷水タンク (7A) 配管類 (7B) 天井部 (7C) 底部 (7D) 給水溜りピット (7E) 吸気出入管 (8) 冷水配管 (9) 冷水移送ポンプ (10) 冷水噴射ノズル (11) 冷水噴射管 (12) 冷水噴射ポンプ (13) 水投入配管 (14) 温度検出器 (15) 圧力検出器 (16) 吸気温度制御装置 (20) 除湿器 (28) 冷媒液ポンプ (29) 断熱材 (51) ガスタービン圧縮機 (52) 吸気室 (53) 吸気管 (54) 吸気冷却用熱交換器 (55) 冷水タンク (56) 冷凍設備 (57) 冷却熱交換器 (58) 冷水ポンプ (V1) 温度調節ダンパー (V2) 液位制御弁 (V3) 冷水噴射制御弁 (V4) 水投入制御弁 (V5) 制御弁 (V4H) 制御弁 (V4I) 制御弁 (V4J) 制御弁 (1) Cooling chamber (2) Intake chamber (3) Intake duct (4) Bypass duct (4a) Partition plate (5) Cooling heat exchanger (5A) Lower head (5B) Upper head (5C) Cooling pipe (6) Refrigeration equipment (6A) LNG vaporization equipment (6B) Refrigeration equipment (6C) Liquid air equipment (6D) Refrigerant heat exchanger (6E) Refrigerant heat exchanger (6F) Refrigerant heat exchanger (6G) Refrigerant tank (7) Cold water Tank (7A) Pipes (7B) Ceiling (7C) Bottom (7D) Water supply pit (7E) Intake / outlet pipe (8) Cold water pipe (9) Cold water transfer pump (10) Cold water injection nozzle (11) Cold water injection pipe (12) Cold water injection pump (13) Water injection pipe (14) Temperature detector (15) Pressure detector (16) Intake air temperature control device (20) Dehumidifier (28) Refrigerant liquid pump (29) Insulating material (51) Gas turbine compressor (52) Intake chamber (53) Intake pipe (54) Intake cooling heat exchanger (55) Cold water tank (56) Refrigeration equipment (57) Cooling heat exchanger (58) Cold water pump (V1) Temperature control Damper (V2) Liquid level control valve (V3) Cold water injection control valve (V4) Water injection control valve (V5) Control valve (V4H) Control valve (V4I) Control valve (V4J) Control valve

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 吸気室からガスタービン圧縮機入口に至
る吸気ダクトの途中に設けられ、下部に冷却熱交換器の
伝熱管を収容する冷却室と、上記伝熱管の冷媒出入口に
接続された冷凍設備と、上記冷却室の吸気出入口を互い
に連通し、温度調節ダンパーを有するバイパスダクト
と、上記冷却室に導入される吸気に冷水を噴射する噴射
ノズルと、上記冷却室の底部から冷水移送ポンプおよび
液位制御弁を介して冷水タンクへ至る冷水配管と、上記
冷水タンクから冷水噴射ポンプおよび冷水噴射制御弁を
介して上記噴射ノズルへ冷水を供給する冷水噴射配管
と、上記冷水噴射ポンプの出口から分岐して上記冷却室
に連通し、水投入制御弁を有する水投入配管とを備えた
ことを特徴とする圧縮機の吸気冷却装置。
1. A cooling chamber which is provided in the middle of an intake duct from an intake chamber to a gas turbine compressor inlet, and which accommodates a heat transfer tube of a cooling heat exchanger at a lower portion thereof, and a refrigeration connected to a refrigerant inlet / outlet of the heat transfer tube. A facility, a bypass duct that communicates the inlet and outlet ports of the cooling chamber with each other and has a temperature control damper, an injection nozzle that injects cold water into the intake air introduced into the cooling chamber, a cold water transfer pump from the bottom of the cooling chamber, and Cold water piping to the cold water tank through the liquid level control valve, cold water injection piping for supplying cold water from the cold water tank to the injection nozzle via the cold water injection pump and the cold water injection control valve, and from the outlet of the cold water injection pump An intake air cooling device for a compressor, comprising: a water injection pipe having a water injection control valve, the water intake pipe being branched and connected to the cooling chamber.
【請求項2】 上記冷凍設備は、フロンガス、アンモニ
ア等の冷媒を用いるターボ冷凍機、LNG気化器、空
気、N2,O2,CO2 等の液化設備、又は液体空気、液体
2,液体O2,液体CO2 等の気化設備の少なくとも何れ
か一つで構成し、また、上記冷却熱交換器は、多数の冷
却管を林立したヘダー構造としたことを特徴とする請求
項1に記載の圧縮機の吸気冷却装置。
2. The refrigerating facility is a turbo refrigerator using a refrigerant such as CFC gas, ammonia, LNG vaporizer, air, liquefying facility such as N 2 , O 2, CO 2 , or liquid air, liquid N 2 , liquid. O 2, constituted by at least one of the vaporization equipment such as liquid CO 2, also, the cooling heat exchanger according to claim 1, characterized in that a Heda structure bristled a plurality of cooling tubes Compressor air intake cooling system.
【請求項3】 上記温度調節ダンパーは、単弁または多
弁構造のものを上記バイパスダクトの入口側に設けると
ともに、同バイパスダクトの出口側にも温度調節ダンパ
ーを設けたことを特徴とする請求項1または2に記載の
圧縮機の吸気冷却装置。
3. The temperature control damper having a single-valve or multi-valve structure is provided on the inlet side of the bypass duct, and the temperature control damper is also provided on the outlet side of the bypass duct. Alternatively, the intake air cooling device of the compressor according to the item 2.
【請求項4】 上記冷水タンクは、上記冷却室の底部に
配設してこれと一体構造とし、同冷却室の底面に傾斜を
つけたことを特徴とする請求項1、2または3に記載の
圧縮機の吸気冷却装置。
4. The cold water tank is disposed at a bottom portion of the cooling chamber to have an integral structure with the cooling chamber, and the bottom surface of the cooling chamber is inclined. Compressor air intake cooling system.
【請求項5】 上記バイパスダクト出口から上記ガスタ
ービン圧縮機の吸気口に至るダクト中、または上記冷却
熱交換器の吸気出口部に除湿器を設置したことを特徴と
する請求項1、2、3または4に記載の圧縮機の吸気冷
却装置。
5. A dehumidifier is installed in the duct extending from the outlet of the bypass duct to the intake port of the gas turbine compressor or at the intake outlet of the cooling heat exchanger. The intake air cooling device for a compressor according to 3 or 4.
【請求項6】 上記フロンガス、アンモニア等の冷媒を
用いるターボ冷凍機、LNG気化器、空気、N2,O2,
2 等の液化設備、又は液体空気、液体N2,液体O2,
体CO2 等の気化設備で構成した冷凍設備は切換弁、ま
たは各設備個別に対応する冷媒管を上記冷却熱交換器内
に設けて各設備毎に作動可能としたことを特徴とする請
求項1、2、3、4または5に記載の圧縮機の吸気冷却
装置。
6. The turbo refrigerator using the CFC gas, refrigerant, such as ammonia, LNG vaporizers, air, N 2, O 2, C
The refrigerating equipment composed of liquefying equipment such as O 2 or vaporizing equipment such as liquid air, liquid N 2 , liquid O 2, liquid CO 2 is a switching valve, or a refrigerant pipe corresponding to each equipment is the cooling heat exchanger. The intake air cooling device for a compressor according to claim 1, 2, 3, 4, or 5, which is provided inside and is operable for each facility.
【請求項7】 上記ガスタービン圧縮機入口の吸気温度
および吸気圧力ならびにガスタービン出力に基づいて、
上記温度調節ダンパー、上記液位制御弁、上記冷水噴射
制御弁および/または上記水投入制御弁を制御し、上記
冷却室内の水位を上下させて、吸気の温度を調節するこ
とを特徴とする請求項1、2、3、4、5または6に記
載の圧縮機の吸気冷却装置の運用方法。
7. Based on the intake temperature and intake pressure at the gas turbine compressor inlet and the gas turbine output,
The temperature control damper, the liquid level control valve, the cold water injection control valve and / or the water injection control valve are controlled to raise or lower the water level in the cooling chamber to adjust the temperature of the intake air. Item 7. A method of operating an intake air cooling device for a compressor according to item 1, 2, 3, 4, 5 or 6.
JP28376996A 1995-10-27 1996-10-25 Intake air cooling device for compressor, and method of operating it Withdrawn JPH09177567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28376996A JPH09177567A (en) 1995-10-27 1996-10-25 Intake air cooling device for compressor, and method of operating it

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-280288 1995-10-27
JP28028895 1995-10-27
JP28376996A JPH09177567A (en) 1995-10-27 1996-10-25 Intake air cooling device for compressor, and method of operating it

Publications (1)

Publication Number Publication Date
JPH09177567A true JPH09177567A (en) 1997-07-08

Family

ID=26553711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28376996A Withdrawn JPH09177567A (en) 1995-10-27 1996-10-25 Intake air cooling device for compressor, and method of operating it

Country Status (1)

Country Link
JP (1) JPH09177567A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1923651A1 (en) * 2006-11-20 2008-05-21 Donaldson Company, Inc. A gas intake system
WO2008061686A1 (en) * 2006-11-20 2008-05-29 Donaldson Company, Inc. A gas intake system
JP2011038442A (en) * 2009-08-07 2011-02-24 Mitsubishi Heavy Ind Ltd Intake air cooling system for gas turbine, gas turbine and gas turbine combined cycle power generation plant having the same and output increase method
JP2011214475A (en) * 2010-03-31 2011-10-27 Mitsubishi Heavy Ind Ltd Intake air cooling device and operating method for the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1923651A1 (en) * 2006-11-20 2008-05-21 Donaldson Company, Inc. A gas intake system
WO2008061686A1 (en) * 2006-11-20 2008-05-29 Donaldson Company, Inc. A gas intake system
JP2011038442A (en) * 2009-08-07 2011-02-24 Mitsubishi Heavy Ind Ltd Intake air cooling system for gas turbine, gas turbine and gas turbine combined cycle power generation plant having the same and output increase method
JP2011214475A (en) * 2010-03-31 2011-10-27 Mitsubishi Heavy Ind Ltd Intake air cooling device and operating method for the same

Similar Documents

Publication Publication Date Title
CN102083298B (en) Cooling system of electronic device
JP2504663B2 (en) Air precooling method and air precooling device
KR940003733B1 (en) Apparatus and method for heating and cooling with a refrigerant
JP5354543B2 (en) Outside air type vaporizer
JPH10332090A (en) Treatment method of liquefied gas cooled at low temperature
JP4567849B2 (en) Liquefied gas vaporization system using waste heat and waste heat supply method
JPH09177567A (en) Intake air cooling device for compressor, and method of operating it
JPH08158814A (en) Intake air cooling system for combined cycle plant
TWM245304U (en) Refrigerant cooling system featuring with dual functions of air conditioning and engine cooling
JPH03182638A (en) Gas turbine driven refrigerator
JP4255059B2 (en) Combined heat storage system
JP2011106277A (en) Intake air cooling device for gas turbine, gas turbine plant, method for restructuring existing gas turbine plant, and method for cooling intake air of gas turbine
JP3801232B2 (en) Intake air cooling system for gas turbine
JP2003086418A (en) Cryogenic device
JP2570671B2 (en) LNG engine intake cooling system
JP3723943B2 (en) Gas turbine plant and intake air cooling method thereof
CN109269133B (en) Cooling system and cooling device
JP2006112706A (en) Duct device for supplying dehumidified air
JPH05312056A (en) Intake air cooling system of gas turbine
JPH08159584A (en) Helium liquefied refrigerator and operating method therefor
JP2001263894A (en) Cryogenic liquid storage facility
JP3716012B2 (en) Air cooling device with liquid air
JPH062569A (en) Multipurpose cooling method for gas turbine generating equipment
JP2001173460A (en) Gas turbine plant and its cooling method for intake air
AU2019359614A1 (en) Floating power generation vessel with simultaneous inlet air cooling and regasification technology

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040106