JPH09176827A - Formation of film - Google Patents

Formation of film

Info

Publication number
JPH09176827A
JPH09176827A JP34077595A JP34077595A JPH09176827A JP H09176827 A JPH09176827 A JP H09176827A JP 34077595 A JP34077595 A JP 34077595A JP 34077595 A JP34077595 A JP 34077595A JP H09176827 A JPH09176827 A JP H09176827A
Authority
JP
Japan
Prior art keywords
film
ions
substrate
ion
orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP34077595A
Other languages
Japanese (ja)
Inventor
Yasuo Murakami
泰夫 村上
Naoto Kuratani
直人 鞍谷
Osamu Imai
今井  修
Kiyoshi Ogata
潔 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP34077595A priority Critical patent/JPH09176827A/en
Publication of JPH09176827A publication Critical patent/JPH09176827A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily control the preferential orientation of crystals of films and to control the intensity of the orientation thereof without heating a substrate by property selecting the ions at the time of irradiation with ions and adjusting the energy of the irradiation with the ions. SOLUTION: This film forming method comprises executing vapor deposition of a material and the irradiation with the ions in combination on the film to be formed with (IVD method). While the crystallinity of the films may be controlled by changing film forming factors, the ion irradiation energy and ion spiced in patricularly among the various factors strongly affect the preferential orientation of the crystals and the orientation intensity thereof in this IVD method. Then, the preferential orientation of the crystals and the orientation intensity thereof may be controlled by properly changing the ion species and irradiation energy in the irradiation with the ions, and the plural processes for the control are not needed. There is no need for controlling the film characteristics by heating the substrate and the film formation by a low-temp. process by cooling the substrate is made possible. As a result, the width of the selection of the substrate is expanded and the formation of an oriented film on, for example, the high-polymer substrate is made possible as well.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、低圧気相中で、被
成膜基体上に膜形成する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a film on a film-forming substrate in a low pressure gas phase.

【0002】[0002]

【従来の技術】膜の優先配向やその配向強度等の結晶性
は、該膜の機械的強度、屈折率、誘電率等の特性に強い
影響を及ぼすことが知られている。
2. Description of the Related Art It is known that the preferential orientation of a film and the crystallinity such as its orientation strength have a strong influence on the properties such as mechanical strength, refractive index and dielectric constant of the film.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、膜結晶
性を任意に制御することは困難であり、また、膜結晶性
制御にあたり成膜中の被成膜基体の加熱を要することが
あるが、成膜中に被成膜基体を加熱するときには、熱に
より膜の諸特性が変化したり、基体材質が制限されたり
する。
However, it is difficult to control the film crystallinity arbitrarily, and heating the film-forming substrate during film formation may be required to control the film crystallinity. When the film-forming substrate is heated in the film, the heat may change the various characteristics of the film or limit the material of the substrate.

【0004】そこで本発明は、被成膜基体上に膜を形成
する方法であって、該基体の加熱を要さず容易に該膜の
結晶の優先配向及びその配向強度を制御できる膜形成方
法を提供することを課題とする。
Therefore, the present invention is a method for forming a film on a substrate on which a film is to be formed, wherein the preferential orientation of crystal of the film and the orientation strength thereof can be easily controlled without heating the substrate. The challenge is to provide.

【0005】[0005]

【課題を解決するための手段】前記課題を解決する本発
明の膜形成方法は、被成膜基体上に物質蒸着とイオン照
射とを併用して膜を形成する方法〔イオン蒸着薄膜形成
(IVD)法〕であって、イオン照射時のイオン種を選
択することにより、及びイオン照射エネルギを調整する
ことにより、該膜の結晶の優先配向及びその配向強度を
制御しつつ膜形成することを特徴とする。
The film forming method of the present invention for solving the above problems is a method of forming a film on a film-forming substrate by using both material vapor deposition and ion irradiation [Ion Vapor Deposition Thin Film Formation (IVD ) Method], the film is formed while controlling the preferential orientation of the crystal of the film and the orientation strength thereof by selecting the ion species at the time of ion irradiation and adjusting the ion irradiation energy. And

【0006】本発明方法における蒸着とイオン照射との
併用には、該両者を同時若しくは交互に行うこと、又は
蒸着の後にイオン照射を行うことが含まれる。また、前
記「膜の結晶の優先配向及びその配向強度の制御」に
は、結晶が認められないアモルファス状態の膜とするこ
とも含まれる。本発明者らの研究によると、膜の結晶性
は、成膜条件を変化させることで制御できるが、IVD
法において変化させることができる成膜条件は、蒸着速
度、イオン照射エネルギ、照射イオン種及び被成膜基体
に到達する蒸着原子(v)数とイオン(i)数との比
(v/i輸送比)等である。この中で、特にイオン照射
エネルギ及びイオン種が、形成される膜の結晶の優先配
向及びその配向強度に強い影響を与える。
The combined use of vapor deposition and ion irradiation in the method of the present invention includes performing both of them simultaneously or alternately, or performing ion irradiation after vapor deposition. Further, the "control of the preferential orientation of the crystal of the film and the orientation strength thereof" includes that the film is in an amorphous state in which no crystal is observed. According to the research conducted by the present inventors, the crystallinity of the film can be controlled by changing the film formation conditions.
The film formation conditions that can be changed in the method include the deposition rate, the ion irradiation energy, the irradiation ion species, and the ratio of the number of vapor deposition atoms (v) and the number of ions (i) reaching the target substrate (v / i transport). Ratio) etc. Among them, especially the ion irradiation energy and the ion species have a strong influence on the preferential orientation of the crystals of the film to be formed and the orientation strength thereof.

【0007】従って本発明によると、IVDにおいて、
イオン照射におけるイオン種及びイオン照射エネルギを
適宜変えることにより、形成される膜の結晶の優先配向
及びその配向強度を制御でき、結晶性制御のための複数
のプロセスを要さない。また、IVDにおいてはイオン
照射エネルギ等を調整することにより膜特性を制御でき
るため、基体を加熱してこれを制御する必要がなく、基
体を冷却して低温プロセスで成膜できる。そして、これ
により、被成膜基体の材質選択の幅が広がり、例えば高
分子基体上にも配向膜を形成することができる。
Therefore, according to the present invention, in IVD:
By appropriately changing the ion species and ion irradiation energy in the ion irradiation, it is possible to control the preferential orientation of crystals of the film to be formed and the orientation strength thereof, and a plurality of processes for controlling crystallinity are not required. Further, in the IVD, since the film characteristics can be controlled by adjusting the ion irradiation energy and the like, it is not necessary to heat the substrate to control it, and the substrate can be cooled to form a film in a low temperature process. As a result, the range of choices for the material of the film formation substrate is expanded, and for example, the alignment film can be formed on the polymer substrate.

【0008】本発明方法におけるイオン照射エネルギの
範囲は、イオン照射による成膜上の効果を十分に得るこ
とができるとともに基体に熱的損傷を与えない範囲内で
あればよい。
The range of ion irradiation energy in the method of the present invention may be within a range in which the effect of film formation by ion irradiation can be sufficiently obtained and the substrate is not thermally damaged.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。図1は本発明方法の実施に用いる
ことができるIVD装置の概略構成を示す図である。こ
の装置は真空容器1を有し、容器1内には被成膜基体S
を支持するホルダ2及びホルダ2に対向する位置には蒸
発源3及びイオン源4が設けられている。また、ホルダ
2付近には膜厚モニタ5及びイオン電流測定器6が配置
され、それぞれ、基体Sに対する蒸着量、及びイオン照
射量を測定できるようになっている。なお、真空容器1
には排気装置11が付設されており、容器1内を所定の
真空度にすることができる。また、基体ホルダ2は図示
しない冷却手段にて水冷される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a schematic configuration of an IVD device that can be used for carrying out the method of the present invention. This apparatus has a vacuum container 1 in which a film-forming substrate S is formed.
An evaporation source 3 and an ion source 4 are provided at a position facing the holder 2 and the holder 2 for supporting. A film thickness monitor 5 and an ion current measuring device 6 are arranged near the holder 2 so that the vapor deposition amount and the ion irradiation amount on the substrate S can be measured, respectively. The vacuum container 1
An exhaust device 11 is attached to the container 1, so that the inside of the container 1 can have a predetermined degree of vacuum. The substrate holder 2 is water-cooled by a cooling means (not shown).

【0010】この装置を用いて、本発明方法を実施する
にあたっては、被成膜基体Sを容器1内に搬入し、ホル
ダ2に支持させた後、排気装置11の運転にて容器1内
を所定の真空度とする。次いで、蒸発源3から蒸発物質
3aを蒸発させて基体S上に蒸着させ、これと同時、交
互又は該蒸着後に該蒸着面にイオン源4からイオンを照
射する。このとき、イオン種を適宜選択し、イオン照射
エネルギを調整することにより形成される膜の結晶の優
先配向及びその配向強度を制御する。
In carrying out the method of the present invention using this apparatus, after the substrate S to be film-formed is carried into the container 1 and supported by the holder 2, the inside of the container 1 is operated by operating the exhaust device 11. The degree of vacuum is predetermined. Next, the evaporation material 3a is evaporated from the evaporation source 3 and vapor-deposited on the substrate S, and at the same time, alternately or after the vapor deposition, the vapor deposition surface is irradiated with ions from the ion source 4. At this time, the ion species are appropriately selected and the ion irradiation energy is adjusted to control the preferential orientation of crystals of the film formed and the orientation strength thereof.

【0011】次に、本発明方法実施の具体例を説明す
る。被成膜基体Sとしてシリコン(Si)ウェハ(10
0)を用い、該基体Sを容器1内に搬入し、ホルダ2に
支持させた後、容器1内を5×10-7Torr以下の真
空度とした。次いで、電子ビーム蒸発源3を用いてニッ
ケル(Ni)を蒸発させ基体S上に成膜し、同時に、イ
オン源4に容器1内が5×10-5Torrの真空度にな
るまで不活性ガスイオンを導入し、イオン化させ、該イ
オンを基体S上に照射して、膜厚1μmのNi膜を形成
した。
Next, a specific example of implementing the method of the present invention will be described. A silicon (Si) wafer (10
0) was used to carry the substrate S into the container 1 and support it by the holder 2. Then, the inside of the container 1 was set to a vacuum degree of 5 × 10 −7 Torr or less. Then, nickel (Ni) is evaporated using the electron beam evaporation source 3 to form a film on the substrate S, and at the same time, an inert gas is supplied to the ion source 4 until the inside of the container 1 has a vacuum degree of 5 × 10 −5 Torr. Ions were introduced and ionized, and the ions were irradiated onto the substrate S to form a Ni film having a film thickness of 1 μm.

【0012】なお、Niの蒸着速度は4.5Å/sec
とし、イオン電流密度は42μA/cm2 とした。この
とき、用いる不活性ガスイオンの種類をネオン(Ne)
イオン、アルゴン(Ar)イオン、クリプトン(Kr)
イオン又はキセノン(Xe)イオンに変えて、それぞれ
Ni膜形成を行い、各場合につきイオン照射エネルギを
0.5〜10keVに変化させた。さらに得られたNi
膜について、それぞれX線回折分析を行い、膜の優先配
向及びその配向強度を調べた。
The deposition rate of Ni is 4.5Å / sec.
And the ion current density was 42 μA / cm 2 . At this time, the type of the inert gas ion used is neon (Ne).
Ion, argon (Ar) ion, krypton (Kr)
Ions or xenon (Xe) ions were changed to form Ni films, and the ion irradiation energy was changed to 0.5 to 10 keV in each case. Further obtained Ni
The film was subjected to X-ray diffraction analysis to examine the preferential orientation of the film and its orientation strength.

【0013】前記実施例により得られたNi膜における
イオン照射エネルギとNi膜の優先配向面との関係を図
2に示す。これによると、照射イオンとしてNeイオン
を用いた場合、イオン照射エネルギが0.5keV程度
と小さいときNi(111)面が優先配向し、該エネル
ギを大きくするに従いNi(110)面が優先配向し、
10keV程度まで大きくなるとNi(100)面が優
先配向した。また、照射イオンとしてArイオン及びK
rイオンを用いた場合、イオン照射エネルギが低いとき
はNi(111)面が優先配向し、該エネルギが大きく
なるに従いNi(100)面が優先配向した。Krイオ
ンを用いた場合は、Ni(100)面が優先配向するよ
りさらにイオン照射エネルギを大きくすると、結晶が認
められないアモルファス状態のNi膜が得られた。ま
た、照射イオンとしてXeイオンを用いた場合、イオン
照射エネルギが0.5keV〜2keV程度の範囲内
で、Ni(111)面が優先配向した。
FIG. 2 shows the relationship between the ion irradiation energy and the preferential orientation plane of the Ni film in the Ni film obtained in the above-mentioned embodiment. According to this, when Ne ions are used as the irradiation ions, the Ni (111) plane is preferentially oriented when the ion irradiation energy is small at about 0.5 keV, and the Ni (110) plane is preferentially oriented as the energy is increased. ,
When it increased to about 10 keV, the Ni (100) plane was preferentially oriented. Further, Ar ions and K are used as irradiation ions.
When r ions were used, the Ni (111) plane was preferentially oriented when the ion irradiation energy was low, and the Ni (100) plane was preferentially oriented as the energy increased. When Kr ions were used, when the ion irradiation energy was increased further than when the Ni (100) plane was preferentially oriented, a Ni film in an amorphous state in which no crystal was observed was obtained. Further, when Xe ions were used as the irradiation ions, the Ni (111) plane was preferentially oriented within the ion irradiation energy range of about 0.5 keV to 2 keV.

【0014】また、前記実施例により得られたNi膜に
おける、Arイオンのイオン照射エネルギとNi(11
1)面、Ni(200)面及びNi(220)面におけ
る配向強度との関係を、図3に示す。Ni(111)面
の配向強度は、イオン照射エネルギを小さくするほど強
くなり、イオン照射エネルギが略0.5keVのとき最
も強くなった。また、Ni(200)面の配向強度は、
イオン照射エネルギが略5keVのとき最も強くなり、
Ni(220)面の配向強度は、イオン照射エネルギが
略2keVのとき最も強くなった。
Further, in the Ni film obtained in the above-mentioned embodiment, the ion irradiation energy of Ar ions and Ni (11
FIG. 3 shows the relationship with the orientation strength in the 1) plane, the Ni (200) plane and the Ni (220) plane. The orientation intensity of the Ni (111) plane became stronger as the ion irradiation energy was made smaller, and became the strongest when the ion irradiation energy was about 0.5 keV. Further, the orientation strength of the Ni (200) plane is
It becomes strongest when the ion irradiation energy is about 5 keV,
The orientational strength of the Ni (220) plane was strongest when the ion irradiation energy was about 2 keV.

【0015】また、前記実施例により得られたNi膜に
おける、照射イオンの原子量とNi(111)面におけ
る配向強度との関係を図4に示す。なお、照射イオンと
しては、Neイオン、Arイオン、Krイオン及びXe
イオンを用い、イオン照射エネルギは0.5keV〜2
keVの範囲内で変化させた。これによると、イオン照
射エネルギを同じにしたとき、照射イオンの原子量が大
きいほど、この例ではNeイオン→Arイオン→Krイ
オン→Xeイオンの順にNi(111)面の配向強度が
強く、すなわち結晶化度が大きくなったことが分かる。
FIG. 4 shows the relationship between the atomic weight of irradiation ions and the orientation strength on the Ni (111) plane in the Ni film obtained in the above-mentioned embodiment. The irradiation ions are Ne ions, Ar ions, Kr ions and Xe.
Ion irradiation energy is 0.5 keV to 2
It was changed within the range of keV. According to this, when the ion irradiation energy is the same, the larger the atomic weight of the irradiation ions is, the stronger the orientation strength of the Ni (111) plane in this order is Ne ion → Ar ion → Kr ion → Xe ion, that is, the crystal It can be seen that the degree of change has increased.

【0016】以上のことから、Niの蒸着と不活性ガス
イオンの照射を併用するIVD法によりNi膜を形成す
る場合、照射イオン種及びイオン照射エネルギを変化さ
せることで形成される膜の結晶の優先配向及びその配向
強度を変化させることができ、容易に膜結晶性を制御で
きたことが分かる。またNiの結晶が認められないアモ
ルファス状態の膜も得ることができた。さらに、基体S
を冷却しながら低温で成膜を行うことができた。
From the above, when the Ni film is formed by the IVD method in which the vapor deposition of Ni and the irradiation of the inert gas ions are used together, the crystal of the film formed by changing the irradiation ion species and the ion irradiation energy. It can be seen that the preferred orientation and its orientation strength could be changed, and the film crystallinity could be easily controlled. Moreover, a film in an amorphous state in which no Ni crystal was observed could be obtained. Furthermore, the substrate S
The film could be formed at a low temperature while cooling the film.

【0017】また、IVD法を採用したことで、基体S
への密着性良好な膜を得ることができた。
Further, by adopting the IVD method, the substrate S
It was possible to obtain a film having good adhesion to.

【0018】[0018]

【発明の効果】本発明方法によると、被成膜基体上に膜
を形成する方法であって、該基体の加熱を要さず容易に
該膜の結晶の優先配向及びその配向強度を制御でき、さ
らに高密着性を有する膜を得ることができる膜形成方法
を提供することができる。
According to the method of the present invention, a film is formed on a substrate on which a film is to be formed, and the preferred orientation of crystal of the film and the orientation strength thereof can be easily controlled without heating the substrate. Further, it is possible to provide a film forming method capable of obtaining a film having higher adhesiveness.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法の実施に用いることができる成膜装
置の概略構成を示す図である。
FIG. 1 is a diagram showing a schematic configuration of a film forming apparatus that can be used for carrying out a method of the present invention.

【図2】イオン照射エネルギとNi膜の優先配向面との
関係を示す図である。
FIG. 2 is a diagram showing a relationship between ion irradiation energy and a preferentially oriented surface of a Ni film.

【図3】Ni膜における、Arイオンのイオン照射エネ
ルギとNi(111)面、Ni(200)面及びNi
(220)面のそれぞれにおける配向強度との関係を示
す図である。
FIG. 3 shows the ion irradiation energy of Ar ions and the Ni (111) plane, Ni (200) plane, and Ni in the Ni film.
It is a figure which shows the relationship with the orientation intensity in each of (220) plane.

【図4】Ni膜における、照射イオンの原子量とNi
(111)面における配向強度との関係を示す図であ
る。
FIG. 4 shows the atomic weight of irradiated ions and Ni in a Ni film.
It is a figure which shows the relationship with the orientation intensity in a (111) plane.

【符号の説明】[Explanation of symbols]

1 真空容器 11 排気装置 2 基体ホルダ 3 蒸発源 3a 蒸発物質 4 イオン源 5 膜厚モニタ 6 イオン電流測定器 S 被成膜基体 DESCRIPTION OF SYMBOLS 1 Vacuum container 11 Exhaust device 2 Substrate holder 3 Evaporation source 3a Evaporation substance 4 Ion source 5 Film thickness monitor 6 Ion current measuring device S S Substrate for film formation

───────────────────────────────────────────────────── フロントページの続き (72)発明者 緒方 潔 京都市右京区梅津高畝町47番地 日新電機 株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Kiyoshi Ogata 47, Takaunecho Umezu, Ukyo-ku, Kyoto Nissin Electric Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被成膜基体上に物質蒸着とイオン照射と
を併用して膜を形成する方法であって、イオン照射時の
イオン種を選択することにより、及びイオン照射エネル
ギを調整することにより、該膜の結晶の優先配向及びそ
の配向強度を制御しつつ膜形成することを特徴とする膜
形成方法。
1. A method for forming a film on a film-forming substrate by using both material vapor deposition and ion irradiation, which comprises selecting an ion species at the time of ion irradiation and adjusting ion irradiation energy. The film forming method is characterized in that the film is formed while controlling the preferential orientation of the crystal of the film and the orientation strength thereof.
JP34077595A 1995-12-27 1995-12-27 Formation of film Withdrawn JPH09176827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34077595A JPH09176827A (en) 1995-12-27 1995-12-27 Formation of film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34077595A JPH09176827A (en) 1995-12-27 1995-12-27 Formation of film

Publications (1)

Publication Number Publication Date
JPH09176827A true JPH09176827A (en) 1997-07-08

Family

ID=18340190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34077595A Withdrawn JPH09176827A (en) 1995-12-27 1995-12-27 Formation of film

Country Status (1)

Country Link
JP (1) JPH09176827A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006025485A1 (en) * 2004-09-02 2006-03-09 Sekisui Chemical Co., Ltd. Electroconductive fine particle and anisotropically electroconductive material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006025485A1 (en) * 2004-09-02 2006-03-09 Sekisui Chemical Co., Ltd. Electroconductive fine particle and anisotropically electroconductive material
US7491445B2 (en) 2004-09-02 2009-02-17 Sekisui Chemical Co., Ltd. Electroconductive fine particle and anisotropically electroconductive material comprising non-crystal and crystal nickel plating layers and method of making thereof

Similar Documents

Publication Publication Date Title
US20020098297A1 (en) Method of crystallizing amorphous silicon layer and crystallizing apparatus thereof
JPH0217685A (en) Manufacture of metal oxide superconducting material layer using laser vaporization
JP2004091858A (en) Vacuum evaporation system and method for manufacturing evaporated film-applied product
EP0819782A1 (en) Process of forming a thin film by laser ablation
JP3979800B2 (en) Apparatus and method for forming electrode for lithium secondary battery
JPH09176827A (en) Formation of film
US4925700A (en) Process for fabricating high density disc storage device
US7022191B2 (en) Method of crystallizing amorphous silicon layer and crystallizing apparatus thereof
EP0591588B1 (en) Method of making polycrystalline thin film and superconducting oxide body
JP3227795B2 (en) Method for controlling crystal orientation of aluminum film
EP0486054B1 (en) Process for preparing a superconducting thin oxide film
JP2985472B2 (en) Method of forming silicon film
Ressler et al. The development of biaxial alignment in yttria-stabilized zirconia films fabricated by ion beam assisted deposition
JP2636577B2 (en) Method of forming titanium nitride film
JPH0913166A (en) Method for controlling film crystallinity
JP3227768B2 (en) Method for controlling crystal orientation of copper thin film
JP3389639B2 (en) Control method of internal stress of film
JPH07207441A (en) Controlling method of inner stress of film
JP2004018903A (en) Process and apparatus for forming thin film of composite material
JPH07207442A (en) Controlling method of inner stress of film
JP3291149B2 (en) Method for producing crystalline thin film
JPH0978226A (en) Treatment of substrate surface
JPH04285154A (en) Formation of carbon thin film
JPH048506B2 (en)
JPH02180793A (en) Production of thin film

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030304