JPH09176745A - Production of hot rolled steel sheet excellent in workability - Google Patents

Production of hot rolled steel sheet excellent in workability

Info

Publication number
JPH09176745A
JPH09176745A JP33311595A JP33311595A JPH09176745A JP H09176745 A JPH09176745 A JP H09176745A JP 33311595 A JP33311595 A JP 33311595A JP 33311595 A JP33311595 A JP 33311595A JP H09176745 A JPH09176745 A JP H09176745A
Authority
JP
Japan
Prior art keywords
rolling
less
steel sheet
value
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33311595A
Other languages
Japanese (ja)
Inventor
Tokiaki Nagamichi
常昭 長道
Nozomi Komatsubara
望 小松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP33311595A priority Critical patent/JPH09176745A/en
Publication of JPH09176745A publication Critical patent/JPH09176745A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a steel sheet having high r value and elongation and excellent workability equal to those of the conventional cold rolled steel sheet by a hot rolling method. SOLUTION: A slab of a steel having a compsn. contg., by weight, <=0.02% C, <=2.0% Si, 0.05 to 0.20% Mn, <=0.03% S, <=0.010% N, <=0.10% P, 0.002 to 0.10% sol.Al, 0.01 to 0.30% Ti, <=0.1% Nb, <=0.5% V and <=0.003% B and satisfying the relationship of Ti/48>=(C/12)+(N+14)+(S/32) and the relationship of 0.7<=(S/32)/(C/12)<=2.0, and the balance Fe with inevitable impurities is held in the temp. range of 700 to 1150 deg.C for 1 to 60min before the finish rolling of hot rolling, is thereafter subjected to rolling at >=50% draft in the temp. range of 550 deg.C to less than the Ar3 point and is subsequently recrystallized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、自動車、家電製
品、鋼構造物などに使用される加工性、特に深絞り性と
延性に優れた熱延鋼板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a hot-rolled steel sheet having excellent workability, particularly deep drawability and ductility, which is used for automobiles, home appliances, steel structures and the like.

【0002】[0002]

【従来の技術】鋼材コスト低減の要望と熱延鋼板の製造
技術の向上とが相まって、従来は冷延鋼板が使用されて
いた分野にも熱延鋼板の使用が試みられるようになって
きた。
2. Description of the Related Art With the demand for reduction of steel cost and the improvement of manufacturing technology of hot rolled steel sheet, the use of hot rolled steel sheet has come to be tried even in the field where cold rolled steel sheet was conventionally used.

【0003】冷延鋼板は、表面が美麗で、板厚精度がよ
く、深絞り性がすぐれているが、熱延鋼板に比較すれば
製造工程が長く、コストも高くなる。これに対し、表面
状況や板厚精度が多少劣っていても、加工性、特に深絞
り性が充分良好であれば、熱延鋼板は低コストでもある
ので、その用途の拡大が考えられる。
The cold-rolled steel sheet has a beautiful surface, good plate thickness accuracy, and excellent deep drawability. However, compared with the hot-rolled steel sheet, the manufacturing process is long and the cost is high. On the other hand, even if the surface condition and the plate thickness accuracy are slightly inferior, if the workability, especially the deep drawability is sufficiently good, the hot rolled steel plate is also low in cost, and its application can be expanded.

【0004】一般の熱延鋼板の深絞り性が冷延鋼板に比
して劣る最大の理由は、深絞り性の指標であるr値(以
下、とくに断らない限り、圧延方向に対し 0゜、45゜お
よび90゜の3方向で測定したr値の平均値を示す)が
1.0をこえることはほとんどないためである。このr値
は、引張り変形の際、板の面方向に対して板厚方向が変
形しにくいという塑性異方性を示す指標であり、冷延鋼
板は通常 1.0以上であって、深絞り用になると 1.5以上
の値になる。これに対し熱延鋼板は、通常、圧延加工を
オーステナイト域でおこなうため圧延による集合組織は
冷間圧延とは異るものとなり、その上変態してランダム
化するので、塑性的に等方な状態になりやすい。
The reason why the deep drawability of general hot-rolled steel sheet is inferior to that of the cold-rolled steel sheet is the r value which is an index of the deep-drawability (hereinafter, 0 ° to the rolling direction unless otherwise specified, The average of r values measured in three directions of 45 ° and 90 °)
This is because it rarely exceeds 1.0. This r value is an index showing the plastic anisotropy that the plate thickness direction is less likely to be deformed with respect to the plate surface direction during tensile deformation, and cold rolled steel plate is usually 1.0 or more, and for deep drawing. Then, the value becomes 1.5 or more. On the other hand, hot-rolled steel sheets are usually rolled in the austenite region, so the texture obtained by rolling is different from that of cold rolling, and on top of that, they are transformed and randomized. It is easy to become.

【0005】これに対し、熱間圧延の工程においても、
鋼板のr値を向上させる方法が提案されている。たとえ
ば、特開昭 61ー3844号公報には、Ar3 点以上のオース
テナイト温度域で圧延後、Ar3 点以下のフェライト域
で50%以上の潤滑圧延をおこない、その後再結晶させて
1.0以上のr値を得る製造方法が提示されている。ま
た、極低炭素鋼に微量のTi又はNbを添加し、固溶C
や固溶Nを炭窒化物として固定した鋼片を、Ar3 点以
上の温度域で粗圧延した後、 800℃以下のフェライト域
で合計圧下率73%の仕上げ圧延を行う方法も報告されて
いる(鉄と鋼:74(1988),1617〜1624.参照)。
On the other hand, even in the hot rolling process,
A method for improving the r value of a steel sheet has been proposed. For example, in JP-A-61-1 3844, after rolling in Ar 3 point or more austenite temperature region, performs a lubrication rolling over 50% Ar 3 point or less of the ferrite zone, by subsequent recrystallization
A manufacturing method for obtaining an r value of 1.0 or more has been proposed. Also, by adding a trace amount of Ti or Nb to ultra low carbon steel, solid solution C
It has also been reported that a steel slab with solute N fixed as carbonitride is roughly rolled in a temperature range of Ar 3 points or higher and then finish rolled with a total reduction of 73% in a ferrite range of 800 ° C or lower. (Iron and Steel: 74 (1988), 1617-1624.).

【0006】これらの方法は、いずれも通常は冷間圧延
でおこなわれるフェライト域での圧延加工を、ホットス
トリップミルなど熱間圧延工程においておこなわせるも
のである。したがって、コールドストリップミルなどに
よる冷間圧延に比較すれば、フェライト域での充分な加
工度は得にくいため、そのr値は冷延鋼板には及ばぬ場
合が多い。しかしながら、冷間圧延工程を省略し工期を
短くして、低コストにて深絞り性のよい鋼板を提供でき
る可能性があり、用途によっては充分使用できるので、
この熱間圧延工程だけによる鋼板特性のより一層の向上
や安定性が望まれている。
[0006] In all of these methods, rolling in the ferrite region, which is usually performed by cold rolling, is performed in a hot rolling process such as a hot strip mill. Therefore, as compared with cold rolling using a cold strip mill or the like, it is difficult to obtain a sufficient workability in the ferrite region, so that the r value is often less than that of cold rolled steel sheets. However, there is a possibility that the cold rolling step can be omitted and the construction period can be shortened to provide a steel sheet with good deep drawability at low cost, and since it can be sufficiently used depending on the application,
Further improvement and stability of steel sheet properties by only this hot rolling process are desired.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、熱間
圧延工程でフェライト域の圧延加工をおこなう深絞り性
と延性にすぐれた熱延鋼板の製造方法を提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a hot-rolled steel sheet which is excellent in deep drawability and ductility and which is used for rolling the ferrite region in the hot rolling step.

【0008】[0008]

【課題を解決するための手段】熱延鋼板のr値を向上さ
せる方法は、基本的には冷延鋼板と同じくフェライト域
において圧延集合組織を導入し、それを焼鈍等により再
結晶させてr値に好ましい方位を持った再結晶粒を発達
させるというものである。そこで、熱間圧延工程の後半
においてAr3 点以下の温度域での圧延をおこなう製造
方法において、巻取り後焼鈍等により再結晶させる場合
の成分や、Ar3 点に至るまでの条件の影響を詳細に検
討した。その結果、r値が1以上のできるだけ高いもの
を得るには、まず第一に、鋼としては固溶Cや固溶Nが
最終焼鈍時に実質的に存在しない、いわゆるIF(Inter
stitial Free) 鋼が必須であった。その上で、Ar3
より上のオーステナイト域での圧延は、Ar3 点に近い
温度域にてある程度以上の加工度が必要であり、さらに
Ar3 点未満の温度での圧延は、できるだけ圧下率を大
きくすることが得られた鋼板のr値向上に有効であっ
た。
[Means for Solving the Problems] A method of improving the r-value of a hot-rolled steel sheet is basically to introduce a rolling texture in the ferrite region as in the case of the cold-rolled steel sheet and recrystallize it by annealing or the like. This is to develop a recrystallized grain having a preferred orientation for the value. Therefore, in the second half of the hot rolling process, in the manufacturing method in which the rolling is performed in the temperature range of Ar 3 point or less, the influence of the components in the case of recrystallizing by annealing after winding and the conditions up to the Ar 3 point I examined it in detail. As a result, in order to obtain an r-value as high as 1 or higher as much as possible, first of all, as a steel, solute C and solute N are substantially absent at the time of the final annealing, so-called IF (Inter
stitial Free) Steel was essential. On top of that, rolling in the austenite region above the Ar 3 point is required a certain degree or more working ratio at a temperature range close to the 3-point Ar, further rolling at a temperature of Ar less than 3 points, possible reduction Increasing the rate was effective in improving the r value of the obtained steel sheet.

【0009】これらの製造工程において、より一層r値
を向上させるため、結晶の成長を阻害する析出物の挙動
に着目して検討を進めたところ、Ti4 2 2 の生成
析出を積極的に利用して析出物を粗大化させ、微細なT
iCの析出を抑制するのが効果的であった。そのために
は、とくに 700℃より上の温度域での圧延過程で、所定
温度範囲にて一定時間保持するTi4 2 2 の析出処
理をおこなうことが有効であった。
In order to further improve the r-value in these manufacturing processes, a study was conducted focusing on the behavior of the precipitates that inhibit the crystal growth. As a result, Ti 4 C 2 S 2 was formed and precipitated positively. Is used to coarsen precipitates and
It was effective to suppress the precipitation of iC. For that purpose, it was particularly effective to perform a Ti 4 C 2 S 2 precipitation treatment in which the temperature was maintained for a certain period of time in a rolling process in a temperature range above 700 ° C.

【0010】さらに、0.15%Mn−0.01%P−0.03%A
l− 0.003%N−0.05%Tiの組成にて、Cが0.001 〜
0.005 %の範囲でS量を種々変えた鋼を実験室的規模に
て溶製し、粗圧延後、仕上げ圧延の前に 950℃で 5分保
持する析出処理をおこない、550〜 800℃(これらの鋼
はいずれもAr3 点が 870〜 880℃)の温度範囲で潤滑
油を用いて合計の圧下率80%の圧延をおこない、 1.0mm
厚に仕上げた。脱スケール後 820℃、 1 min均熱の連続
焼鈍法相当の焼鈍により再結晶させた。得られた鋼板か
らJIS 5 号引張り試験片を採取し、伸びおよびr値(圧
延方向に対し 0゜、45゜および90゜の3方向で測定した
r値の平均値)を測定した。これらの鋼のCとSの原子
濃度比(式による)と、伸びおよびr値をとの関係を
調べた結果、図1が得られた。このように、伸びおよび
r値を大きくする最適のCとSの原子濃度比の範囲があ
ることがわかった。CとSの原子濃度比が1の時伸びお
よびr値が最大になることから、これに近い範囲でTi
4 2 2 の析出が効果的ににおこなわれるためと考え
られた。これらの知見に基づいて限界条件を明確にし、
本発明に至ったのである。
Further, 0.15% Mn-0.01% P-0.03% A
1-0.003% N-0.05% Ti composition, C is 0.001-
Steels with various S contents varying in the range of 0.005% were smelted on a laboratory scale, and after rough rolling, a precipitation treatment was carried out by holding at 950 ° C for 5 minutes before finish rolling. All steels were rolled at a total rolling reduction of 80% using lubricating oil within a temperature range of Ar 3 points of 870 to 880 ℃)
Finished thick. After descaling, recrystallization was performed by annealing equivalent to a continuous annealing method at 820 ° C for 1 min soaking. A JIS No. 5 tensile test piece was sampled from the obtained steel sheet, and the elongation and r value (average value of r values measured in three directions of 0 °, 45 ° and 90 ° with respect to the rolling direction) were measured. As a result of examining the relationship between the atomic concentration ratio of C and S (according to the formula) and the elongation and the r value of these steels, FIG. 1 was obtained. Thus, it was found that there is an optimum range of the atomic concentration ratio of C and S for increasing the elongation and the r value. When the atomic concentration ratio of C and S is 1, the elongation and the r value are maximum.
It was considered that the precipitation of 4 C 2 S 2 was effectively performed. Based on these findings, clarify the limit conditions,
This has led to the present invention.

【0011】本発明の要旨とするところは、C:0.02%
以下、Si: 2.0%以下、Mn:0.05〜0.20%、S:0.
03%以下、N: 0.010%以下、P:0.10%以下、sol.A
l: 0.002〜0.10%、Ti:0.01〜0.30%、Nb:0.1
%以下、V: 0.5%以下、B: 0.0030 %以下を含有
し、かつ下記式および式(ここで元素記号はその元
素の含有重量%をあらわす)を満足し、 Ti/48≧(C/12)+(N/14)+(S/32) 0.7≦(S/32)/(C/12)≦2.0 残部がFeおよび不可避的不純物からなる鋼のスラブ
を、熱間圧延の際、 700〜1150℃の温度域で 1〜60min
保持した後、 550℃以上Ar3 点未満の温度域で圧下率
を50%以上とする圧延をおこない、その後再結晶させる
ことを特徴とする加工性にすぐれた熱延鋼板の製造方法
である。
The gist of the present invention is that C: 0.02%
Below, Si: 2.0% or less, Mn: 0.05 to 0.20%, S: 0.
03% or less, N: 0.010% or less, P: 0.10% or less, sol.A
1: 0.002 to 0.10%, Ti: 0.01 to 0.30%, Nb: 0.1
% Or less, V: 0.5% or less, B: 0.0030% or less, and satisfy the following formula and formula (where the element symbol represents the content% by weight of the element): Ti / 48 ≧ (C / 12 ) + (N / 14) + (S / 32) 0.7 ≦ (S / 32) / (C / 12) ≦ 2.0 A steel slab with the balance Fe and unavoidable impurities is 700 ~ 1 to 60min in the temperature range of 1150 ℃
The method for producing a hot-rolled steel sheet having excellent workability is characterized in that, after holding, rolling is performed at a rolling reduction of 50% or more in a temperature range of 550 ° C. or more and less than Ar 3 point, and then recrystallization is performed.

【0012】[0012]

【発明の実施の形態】以下に、本発明の化学組成、およ
び製造条件の限定理由につき、詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The chemical composition of the present invention and the reasons for limiting the production conditions will be described in detail below.

【0013】(1) C Cは鋼板の深絞り性に悪影響をおよぼす元素なので、そ
の含有量は少ない方が好ましい。とくに再結晶のための
焼鈍の過程では、固溶Cも少なければ少ないほど深絞り
性がよいと考えられ、そのためにTiを添加してCと結
合させ、実質的に固溶状態のCが無いようにする。この
Cを固定するのに必要なTiの添加量を少なくするため
にも、Cは少ない方がよい。そこでCの含有量は0.02%
以下とする。
(1) C C is an element that adversely affects the deep drawability of the steel sheet, so the smaller the content, the better. Particularly, in the process of annealing for recrystallization, it is considered that the less solid solution C is, the better the deep drawability is. Therefore, Ti is added to bond with C, and substantially no solid solution C is present. To do so. In order to reduce the addition amount of Ti necessary for fixing C, it is preferable that the amount of C is small. Therefore, the C content is 0.02%
The following is assumed.

【0014】(2) Si Siは鋼を硬くし、鋼板の表面性状を劣化させるので、
少なければ少ないほどよい。実質的に影響がない状態と
するには、0.05%以下が望ましい。ただし、加工性を大
幅に低下させることなく強度を向上させ得る手段とし
て、表面性状の劣化があまり問題にならない用途の場合
には添加してもよい。しかし、多すぎると加工性が低下
するので含有量の限界は 2.0%までである。
(2) Si Si hardens the steel and deteriorates the surface properties of the steel sheet.
The less, the better. 0.05% or less is desirable to have substantially no effect. However, it may be added as a means for improving the strength without significantly lowering the workability in the case where the deterioration of the surface properties is not a serious problem. However, if the amount is too large, the workability decreases, so the content limit is 2.0%.

【0015】(3) Mn Mnは、一般的には鋼中のSによる熱間脆性防止のため
Sの固定を目的に添加される。しかし、本発明の方法で
はTi4 2 2 の生成、析出を積極的に利用するの
で、その生成を阻害する傾向にあるMnの含有量は低く
おさえる必要がある。このため上限を 0.2%までとす
る。また、少なくしすぎると、酸化物の増加など鋼質を
劣化させるため、少なくても0.05%以上は必要である。
したがってMnの含有量範囲は0.05〜0.20%とする。
(3) Mn Mn is generally added for the purpose of fixing S in order to prevent hot embrittlement due to S in steel. However, in the method of the present invention, since the production and precipitation of Ti 4 C 2 S 2 is positively utilized, it is necessary to keep the content of Mn, which tends to inhibit the production, low. Therefore, the upper limit is 0.2%. On the other hand, if the amount is too small, the quality of the steel is deteriorated due to an increase in oxides, so at least 0.05% or more is necessary.
Therefore, the Mn content range is 0.05 to 0.20%.

【0016】(4) sol.Al Alは健全な鋳片を得るための溶鋼の脱酸、およびTi
など添加元素の歩留確保を目的に添加される。含有量は
鋼中に酸固溶Al(sol.Al)として、 0.002%以上な
いとその作用効果は十分でない。一方、0.10%を超えて
含有させても効果が飽和するので、Al含有量はsol.A
lとして0.002 〜0.10%と定める。
(4) sol.Al Al is used for deoxidation of molten steel and Ti for obtaining sound cast pieces.
It is added to secure the yield of additional elements. If the content is 0.002% or more of acid solid solution Al (sol. Al) in steel, the action and effect are not sufficient. On the other hand, if the content exceeds 0.10%, the effect is saturated, so the Al content is sol.
It is set as 0.002 to 0.10% as l.

【0017】(5) Ti TiはCやNと強固に結合するので、鋼中の固溶Cや固
溶Nを排除するために添加する。さらに本発明の方法で
はSとともにTi4 2 2 を形成させ、Cとの結合の
結果できる微細なTiC析出物を少なくさせる。この目
的には0.01%以上必要であるが、CやNおよびSの含有
量に対応し、充分な量含まれていることが重要で、前出
の式を満足していなければならない。
(5) Ti Since Ti is strongly bonded to C and N, it is added to eliminate solid solution C and solid solution N in steel. Further, the method of the present invention forms Ti 4 C 2 S 2 together with S, and reduces fine TiC precipitates that may be formed as a result of bonding with C. For this purpose, 0.01% or more is necessary, but it is important that the content is sufficient, corresponding to the contents of C, N and S, and the above formula must be satisfied.

【0018】一方、0.30%を超える含有は、化成処理性
など表面性状を劣化させるので好ましくない。したがっ
てTiの含有量は、0.01〜0.30%であって、かつ前述の
式を満足する範囲とする。
On the other hand, the content of more than 0.30% is not preferable because it deteriorates the surface properties such as chemical conversion treatment property. Therefore, the Ti content is in the range of 0.01 to 0.30% and satisfying the above formula.

【0019】(6) B Bは、深絞り性を劣化する傾向があるので添加しなくて
もよいが、極低炭素鋼板を絞り加工する際問題となる
「二次加工割れ」を防止する効果があるため、必要によ
り添加する。添加してその効果を期待する場合には、0.
0002%以上の含有が望ましいが、0.0030%を超えて含有
させてもその効果が飽和し、さらに鋼が脆化することが
あるので、B含有量は0.0030%以下と定める。
(6) BB does not need to be added because it tends to deteriorate deep drawability, but it is effective in preventing "secondary work cracking" which is a problem when drawing an ultra-low carbon steel sheet. Therefore, it is added if necessary. If you add it and expect its effect, add 0.
The content of 0002% or more is desirable, but even if the content exceeds 0.0030%, the effect may be saturated and the steel may become brittle, so the B content is defined as 0.0030% or less.

【0020】(7) NbおよびV NbおよびVは添加しなくてもよいが、鋼の結晶粒を微
細化してその強度を上昇させる効果があるので必要によ
り添加する。しかし、多く添加しすぎるとTi4 2
2 の生成を阻害するようになるため、含有させる場合の
限界はNbでは0.1%以下、Vでは0.5 %以下とする。
(7) Nb and V Nb and V may not be added, but they are added if necessary because they have the effect of refining the crystal grains of the steel and increasing their strength. However, if too much is added, Ti 4 C 2 S
Since it inhibits the formation of 2 , the content of Nb should be 0.1% or less and V should be 0.5% or less.

【0021】(8) S Sは不可避的不純物元素であり、加工性など鋼の品質確
保には少なければ少ないほど好ましく、含有量は0.03%
以下とする。ただし、本発明の方法では、TiおよびC
を共に反応させてTi4 2 2 析出物を形成させる必
要があり、SとCの原子濃度比は1に近い状態であるこ
とが望ましいと考えられる。そこで、図1からr値が
1.4を超える結果の得られる含有範囲、すなわちC含有
量に応じて次式 0.7≦(S/32)/(C/12)≦2.0 を満足する範囲に規制することとする。r値が 1.4を超
えれば明らかに改善されたといえる。このように、Sの
含有量は0.03%以下であって、かつC含有量に応じて上
記式で示される範囲とする。
(8) S S is an unavoidable impurity element, and the smaller the content, the better for ensuring the quality of steel such as workability. The content is 0.03%.
The following is assumed. However, in the method of the present invention, Ti and C
It is necessary to react them with each other to form a Ti 4 C 2 S 2 precipitate, and it is considered desirable that the atomic concentration ratio of S and C is close to 1. Therefore, from Fig. 1, the r value is
The content range in which the result exceeds 1.4, that is, the range satisfying the following formula 0.7 ≦ (S / 32) / (C / 12) ≦ 2.0 is regulated according to the C content. If the r value exceeds 1.4, it can be said that the improvement is obvious. As described above, the S content is 0.03% or less, and is in the range represented by the above formula according to the C content.

【0022】(9) P Pは鋼を硬くし脆くする傾向があるので、強度が不要の
場合は少なければ少ないほどよい。しかしながら、少量
の添加により、加工性を大きくは阻害することなく強度
を上昇させることができるので、必要により添加する。
添加する場合、多すぎると脆化が目立ってくるので、含
有量は0.10%までとする。
(9) P P tends to make the steel hard and brittle, so the smaller the strength, the better. However, the addition of a small amount can increase the strength without significantly impairing the workability, so that it is added if necessary.
When it is added, if it is too much, embrittlement becomes conspicuous, so the content is made 0.10%.

【0023】(10) N NはSと同じく不可避的不純物元素であり、本発明のよ
うにTiを添加する場合は、TiNを形成して余分のT
iを消費することになり、その上できたTiNは地疵の
原因になることもあるので、少なければ少ないほどよ
い。したがって、Nは0.010 %以下とする。
(10) N N is an unavoidable impurity element like S, and when Ti is added as in the present invention, TiN is formed to form an extra T.
Since i will be consumed, and TiN formed on the i-side may cause a ground defect, the smaller the better, the better. Therefore, N is 0.010% or less.

【0024】(11) 熱間圧延条件 (a) 粗圧延の過程 通常のホットストリップミルによる圧延は、粗圧延と仕
上げのタンデムミルによる圧延との2つに分けられる。
加熱されたスラブを仕上げのタンデムミル圧延ができる
まで圧下する粗圧延において、Ar3 点以上1200℃まで
の温度域での合計圧下率は40%以上とすることが望まし
い。この温度域の圧延は、粗大鋳造粒を破壊し歪を導入
することにより、析出物の析出や成長を促進する効果が
ある。合計圧下率が40%より小さいか、あるいはその圧
延温度が1200℃より高い場合は、目的とする効果が充分
得られない。しかしながら、通常の連続鋳造による 200
mm厚前後のスラブから、最終板厚が 3mm前後ないしはそ
れ以下の板厚に仕上げられる場合、この条件はほぼ満足
できる。
(11) Hot rolling conditions (a) Rough rolling process Rolling by a normal hot strip mill is divided into two: rough rolling and finishing tandem mill rolling.
In the rough rolling in which the heated slab is rolled down to finish tandem mill rolling, it is desirable that the total rolling reduction in the temperature range from Ar 3 point to 1200 ° C. is 40% or more. Rolling in this temperature range has an effect of promoting precipitation and growth of precipitates by breaking coarse cast grains and introducing strain. If the total reduction is less than 40% or the rolling temperature is higher than 1200 ° C, the desired effect cannot be obtained sufficiently. However, 200 by normal continuous casting
This condition is almost satisfied when the slab with a thickness of about mm is finished to a final thickness of about 3 mm or less.

【0025】(b) 析出処理 Ti4 2 2 の析出物を積極的に形成させるため、仕
上げ圧延前の 700〜1150℃の温度範囲にて、 1 min以上
60 min以内の時間保持する析出処理をおこなう。この析
出処理は、スラブがある程度圧延加工された粗圧延の後
段の過程でおこなうことが望ましい。これは加工歪みを
加えることにより、析出が促進されるからである。粗圧
延途中ないしは粗圧延後、圧延を中断して放冷または保
温することでこの処理をおこなうが、近年開発されたコ
イルボックスを使用し粗圧材を一時保持することによっ
ても可能である。また、粗圧途中でこの析出処理をおこ
なって、さらに粗圧延を継続してもよい。
(B) Precipitation treatment In order to positively form Ti 4 C 2 S 2 precipitates, in the temperature range of 700 to 1150 ° C. before finish rolling, 1 min or more
Perform a precipitation treatment that keeps the time within 60 min. It is desirable that this precipitation treatment be performed in the subsequent stage of rough rolling in which the slab is rolled to some extent. This is because the addition of work strain promotes precipitation. This treatment is carried out by suspending the rolling during the rough rolling or after the rough rolling and allowing to cool or keep the temperature, but it is also possible to temporarily hold the rough pressure material by using a coil box developed in recent years. Further, the precipitation treatment may be performed during the rough pressure and the rough rolling may be further continued.

【0026】この場合、1150℃を超える温度で保持して
も、溶解度が大きいためTi4 22 の析出が十分進
まず、一方、 700℃を下回る温度での保持は、その温度
までの冷却が速すぎる結果になることや、拡散速度の低
下のため、やはり析出が十分となる。析出が不十分にな
ると微細なTiCやTiSを残存させてしまう結果とな
り、圧延後の再結晶時の結晶粒成長が不十分になってr
値が低く、その上微細析出物により鋼板の延性が阻害さ
れる。保持時間は 1 min未満ではTi4 2 2 の析出
が不十分であり、60 min以上保持しても析出の進行は飽
和してそれ以上は進まない。なお、圧延途中で一時保持
する析出処理は、Ar3 点以上での滞留時間が 1 min以
上であれば、その終了時点で鋼の温度がAr3 点を下回
っていてもかまわない。
In this case, the Ti 4 C 2 S 2 does not sufficiently precipitate even if it is held at a temperature higher than 1150 ° C. because of its large solubility. Precipitation is also sufficient because the cooling rate is too fast and the diffusion rate is low. If the precipitation is insufficient, fine TiC and TiS will be left, and the crystal grain growth during recrystallization after rolling will be insufficient and r
The value is low, and the fine precipitates impair the ductility of the steel sheet. If the holding time is less than 1 min, precipitation of Ti 4 C 2 S 2 is insufficient, and even if held for 60 min or more, the progress of precipitation is saturated and does not proceed any further. In the precipitation treatment temporarily held during rolling, if the residence time at the Ar 3 point or higher is 1 min or longer, the temperature of the steel may be lower than the Ar 3 point at the end.

【0027】実際の圧延工程におけるAr3 点は、成分
ばかりでなく、そこに至る鋼の熱履歴、圧延速度、圧下
率等の影響を受け、タンデムミルによる熱間圧延工程で
は変形抵抗の変化からその存在がわかる。したがって、
厳密には熱間圧延過程で検知されるAr3 点を基準に圧
延温度範囲を規制すべきであるが、一般に適用される成
分からの推定値を用いてもよい。
The Ar 3 point in the actual rolling process is affected not only by the composition but also by the heat history of the steel reaching it, the rolling speed, the reduction ratio, etc., and in the hot rolling process by the tandem mill, the deformation resistance changes. I know its existence. Therefore,
Strictly speaking, the rolling temperature range should be regulated on the basis of the Ar 3 point detected in the hot rolling process, but an estimated value from generally applied components may be used.

【0028】(C) 仕上げ圧延 粗圧後の鋼を仕上げ圧延により最終板厚とするが、その
際の 550℃以上Ar3点未満の温度域での圧延の合計圧
下率を50%以上とする。仕上げ圧延はAr3 点未満の温
度からはじめてもよいし、Ar3 点以上の温度からはじ
めて圧延の途中から変態して 550℃以上Ar3 点未満の
温度域の圧延になるというように連続していてもよい。
この温度域での圧延の目的は、α粒(フェライト相の結
晶粒)を圧延加工して圧延集合組織を形成させるととも
に加工による歪みを導入し、次の工程で再結晶させる際
に、r値の向上と面内異方性低減に好ましい 111 再結
晶集合組織を発達させ、最終製品の加工性(r値、伸
び)を向上させることにある。Ar3 点以上の温度での
加工は、たとえ圧下率が十分大きくても、圧延による集
合組織の形成および歪みの蓄積が不十分であり、高いr
値の鋼板が得られない。また温度が低くなりすぎると変
形抵抗が増大し、圧延が困難となるので下限は550℃ま
でとする。
(C) Finish rolling The steel after rough rolling is finished to a final plate thickness, and the total rolling reduction in the temperature range of 550 ° C or higher and lower than Ar 3 point is 50% or higher. . Finish rolling may be started from a temperature lower than Ar 3 point, be continuous so that it becomes rolling first temperature range to less than 3 points 550 ° C. or higher Ar transformation from the middle of the rolling from Ar 3 point or more temperature May be.
The purpose of rolling in this temperature range is to roll the α grain (crystal grain of the ferrite phase) to form a rolling texture and to introduce strain due to the working, and to recrystallize it in the next step. To improve the crystallinity and the reduction of in-plane anisotropy to develop a 111 recrystallized texture and improve the workability (r value, elongation) of the final product. Even if the rolling reduction is sufficiently large, the processing at a temperature of Ar 3 point or higher does not sufficiently result in the formation of the texture and the accumulation of strain due to the rolling.
The value of steel plate cannot be obtained. If the temperature is too low, the deformation resistance increases and rolling becomes difficult, so the lower limit is set to 550 ° C.

【0029】この 550℃以上Ar3 点未満の温度域での
圧延をおこなう場合、一部のパスまたは全部のパスを圧
延潤滑油を用いておこなうことが望ましい。圧延潤滑油
を用いれば、板厚方向の加工変形が均一化され、再結晶
後の鋼板のr値が向上する。
When rolling is carried out in the temperature range of 550 ° C. or higher and lower than Ar 3 point, it is desirable to carry out some or all of the passes by using rolling lubricant. By using the rolling lubricant, the work deformation in the plate thickness direction is made uniform, and the r value of the recrystallized steel plate is improved.

【0030】圧延潤滑油を用いてこの圧延を行う場合
は、圧延ロールと鋼板との摩擦係数μが0.2以下となる
ようにするのがよい。
When this rolling is carried out using the rolling lubricant, it is preferable that the friction coefficient μ between the rolling roll and the steel sheet be 0.2 or less.

【0031】(12) 再結晶 Ar3 点未満のα域の圧延加工工程で導入された圧延集
合組織から、深絞り性に好ましい集合組織を発達させる
ため充分に再結晶させる必要がある。その方法として、
熱間圧延終了後の冷却中あるいはコイルに巻取った状態
での自己保有熱によるか、または巻取後に加熱焼鈍して
再結晶させる。
(12) Recrystallization It is necessary to sufficiently recrystallize the rolling texture introduced in the rolling process in the α region of less than Ar 3 point in order to develop a texture preferable for deep drawability. As a method,
It is recrystallized by self-held heat during cooling after completion of hot rolling or in the state of being wound into a coil, or by heating and annealing after winding.

【0032】巻取り後の自己保有熱による場合、充分に
再結晶させるには 650℃以上の高温巻取りが望ましい。
しかし、α域にて合計圧下率50%以上の圧延をおこなう
と、温度低下が大きくなり、充分な温度で巻取るのが困
難になってくる。その場合、良好な表面状態を得るには
酸洗してスケール除去後、600 〜 900℃の温度範囲に加
熱し焼鈍する。 600℃より低い温度では、長時間の焼鈍
でも再結晶が充分に進行せず、一方、 900℃を超える温
度ではr値が低下する。この焼鈍方法はコイルの状態で
の箱焼鈍法や連続焼鈍法、あるいは溶融亜鉛メッキ処理
の際の焼鈍でもよい。
In the case of self-held heat after winding, high temperature winding of 650 ° C. or higher is desirable for sufficient recrystallization.
However, if rolling with a total reduction of 50% or more is performed in the α region, the temperature decrease will be large, and it will be difficult to wind at a sufficient temperature. In that case, in order to obtain a good surface condition, the product is pickled and the scale is removed, and then heated to a temperature range of 600 to 900 ° C. and annealed. At a temperature lower than 600 ° C, recrystallization does not proceed sufficiently even if annealed for a long time, while at a temperature higher than 900 ° C, the r value decreases. This annealing method may be a box annealing method in the state of a coil, a continuous annealing method, or an annealing during hot dip galvanizing treatment.

【0033】[0033]

【実施例】【Example】

〔実施例1〕表1に化学組成を示す厚さ 200mmの鋼のス
ラブを用い、表2に示すように熱間圧延における析出処
理条件、および 550℃以上Ar3 点未満のα域の圧下率
を制御し、厚さ 1.0mmの鋼板に仕上げて巻取った。なお
表1にはAr3 点の温度、式に対応するC、Sおよび
NのTi当量、および式に対応するCとSの含有量当
量比を示してある。本発明の方法では、Ti含有量はこ
のTi当量より大きい範囲に、そしてC/Sの含有量当
量比は 0.7〜 2.0の規制範囲に、それぞれ入っていなけ
ればならない。
[Example 1] Using a steel slab having a chemical composition of 200 mm and having a thickness of 200 mm as shown in Table 1, precipitation treatment conditions in hot rolling as shown in Table 2 and a rolling reduction in an α region of 550 ° C or higher and less than Ar 3 points Was controlled to finish a 1.0 mm thick steel plate and wind it. Table 1 shows the temperature at the Ar 3 point, the Ti equivalents of C, S and N corresponding to the formula, and the C and S content equivalent ratios corresponding to the formula. In the method of the present invention, the Ti content must be above this Ti equivalent, and the C / S content equivalent ratio must be within the regulation range of 0.7 to 2.0.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】巻取り温度が充分高い場合は、巻取り後の
自己保有熱による焼鈍効果でその後の焼鈍を省略できる
が、圧下率を高くした場合や、圧延開始温度が低い場合
は巻取り温度を高くできないので、脱スケール後焼鈍し
た。再結晶のための焼鈍は、820℃の温度で 1分間保持
の連続焼鈍法、または 700℃の温度で 5時間保持の箱焼
鈍法とした。
When the coiling temperature is sufficiently high, the subsequent annealing can be omitted due to the annealing effect of self-held heat after coiling, but when the reduction ratio is increased or the rolling start temperature is low, the coiling temperature is changed. Since it cannot be raised, it was annealed after descaling. Annealing for recrystallization was a continuous annealing method at a temperature of 820 ° C for 1 minute or a box annealing method at a temperature of 700 ° C for 5 hours.

【0037】得られた鋼板からJIS 5 号の引張り試験片
を採取して、降伏強さ、引張強さ、伸びおよびr値を調
査した結果を表2に併せて示す。r値は、圧延方向に対
して0度、45度および90度の方向から採取した試験片に
より測定したr値を各々r0、r45およびr90とした時
(r0 + 2r45+r90)/ 4で求めた平均値である。
Table 2 shows the results of a JIS 5 tensile test piece taken from the obtained steel sheet, and the yield strength, tensile strength, elongation and r value were investigated. The r values are r 0 , r 45, and r 90 measured with test pieces taken from the directions of 0 °, 45 °, and 90 ° with respect to the rolling direction, respectively (r 0 + 2r 45 + r 90 ) / 4 is the average value obtained.

【0038】表2の結果から明らかなように、本発明で
規定する成分であって、析出処理条件、および 550℃以
上Ar3 点未満のα域の圧下率を本発明で定める範囲内
の条件で製造された鋼板は、そうでない条件による鋼板
に比較してすぐれた伸びおよびr値を示している。例え
ば試験番号11は、鋼成分は試験番号1と同じである
が、圧延条件が本発明で規定する範囲を外れており、伸
び、r値、とも試験番号1より劣った結果となってい
る。また試験番号12および13も試験番号1と同じ同
じ鋼であるが、析出処理条件が本発明の定める範囲外で
あり、伸びおよびr値は向上していない。さらに、圧延
工程が本発明の方法であっても、鋼の化学組成が本発明
範囲を満足していない場合も、試験番号14〜21に見
られるように鋼板特性として十分な改善が得られていな
い。
As is clear from the results shown in Table 2, the components specified in the present invention are conditions for precipitation treatment, and the reduction ratio in the α region at 550 ° C. or higher and lower than Ar 3 point within the range defined by the present invention. The steel sheet manufactured in accordance with Table 1 shows excellent elongation and r-value as compared with the steel sheet under other conditions. For example, Test No. 11 has the same steel composition as Test No. 1, but the rolling conditions are out of the range specified in the present invention, and the elongation and r value are inferior to those of Test No. 1. Test Nos. 12 and 13 are also the same steel as Test No. 1, but the precipitation treatment conditions are outside the range defined by the present invention, and the elongation and r value are not improved. Further, even when the rolling process is the method of the present invention, even when the chemical composition of the steel does not satisfy the range of the present invention, sufficient improvement in steel plate properties is obtained as shown in Test Nos. 14 to 21. Absent.

【0039】〔実施例2〕表1に示す鋼Aのスラブを用
い、仕上げ圧延の直前に 930℃、 5 min保持の析出処理
をおこない、 660〜 790℃の温度範囲における合計の圧
下率を20〜92%の範囲で変え、巻取温度目標 600℃とし
て 1.0mm厚に仕上げた。Ar3 点未満の温度での圧延に
は潤滑油を使用した。脱スケール後 820℃、 1 min保持
の連続焼鈍法にて焼鈍した。得られた鋼板から、実施例
1と同様JIS 5 号の引張り試験片を採取しr値を測定し
た。
Example 2 Using a slab of steel A shown in Table 1, a precipitation treatment of 930 ° C. for 5 minutes was performed immediately before finish rolling, and the total reduction ratio in the temperature range of 660 to 790 ° C. was 20. It was changed within the range of up to 92%, and the target winding temperature was 600 ° C, and the finish was 1.0 mm. Lubricating oil was used for rolling at a temperature below the Ar 3 point. After descaling, it was annealed by continuous annealing at 820 ° C for 1 min. A JIS 5 tensile test piece was sampled from the obtained steel sheet in the same manner as in Example 1, and the r value was measured.

【0040】圧下率と得られた鋼板のr値との関係を図
2に示すが、Ar3 点未満の温度における圧延の圧下率
は大きいほどr値が向上しており、r値が 1.4を超える
結果を得るには、圧下率が50%以上必要であることがわ
かる。
The relationship between the rolling reduction and the r value of the obtained steel sheet is shown in FIG. 2. The larger the rolling reduction at a temperature lower than the Ar 3 point, the higher the r value. It can be seen that the rolling reduction is required to be 50% or more to obtain the above results.

【0041】[0041]

【発明の効果】本発明の方法によれば、熱間圧延工程と
その後の焼鈍により、従来の冷延鋼板に匹敵するr値と
伸びの高い加工性に優れた鋼板を、合理的かつ低コスト
に製造することができる。
EFFECTS OF THE INVENTION According to the method of the present invention, a steel sheet having an r value comparable to that of a conventional cold-rolled steel sheet and excellent workability with high elongation is rationalized and cost-effective by the hot rolling step and subsequent annealing. Can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】SとCの原子濃度比{(S/32 )/(C/12
)}と得られた鋼板のr値および伸びとの関係を示す
図である。
[Fig. 1] Atomic concentration ratio of S and C {(S / 32) / (C / 12
)} And the r value and elongation of the obtained steel sheet.

【図2】550℃以上Ar3 点未満の温度範囲における合
計の圧下率と得られた鋼板のr値との関係を示す図であ
る。
FIG. 2 is a diagram showing the relationship between the total rolling reduction in the temperature range of 550 ° C. or higher and lower than the Ar 3 point and the r value of the obtained steel sheet.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】重量割合で、C:0.02%以下、Si: 2.0
%以下、Mn:0.05〜0.20%、S:0.03%以下、N:
0.010%以下、P:0.10%以下、sol.Al: 0.002〜0.1
0%、Ti:0.01〜0.30%、Nb: 0.1%以下、V: 0.
5%以下、B:0.0030%以下を含有し、かつ下記式お
よび式を満足し、 Ti/48≧(C/12)+(N/14)+(S/32) 0.7≦(S/32)/(C/12)≦2.0 残部がFeおよび不可避的不純物からなる鋼のスラブ
を、熱間圧延の仕上げ圧延の前に 700〜1150℃の温度域
で 1〜60min 保持した後、 550℃以上Ar3 点未満の温
度域での圧下率を50%以上とする圧延をおこない、その
後再結晶させることを特徴とする加工性にすぐれた熱延
鋼板の製造方法。
1. A weight ratio of C: 0.02% or less, Si: 2.0
% Or less, Mn: 0.05 to 0.20%, S: 0.03% or less, N:
0.010% or less, P: 0.10% or less, sol.Al: 0.002-0.1
0%, Ti: 0.01 to 0.30%, Nb: 0.1% or less, V: 0.
5% or less, B: 0.0030% or less, and the following formulas and formulas are satisfied: Ti / 48 ≧ (C / 12) + (N / 14) + (S / 32) 0.7 ≦ (S / 32) / (C / 12) ≤ 2.0 A steel slab with the balance Fe and unavoidable impurities is held for 1 to 60 minutes in the temperature range of 700 to 1150 ° C before finish rolling of hot rolling, and then 550 ° C or more Ar A method for producing a hot-rolled steel sheet with excellent workability, which comprises rolling at a rolling reduction of 50% or more in a temperature range of less than 3 points and then recrystallization.
JP33311595A 1995-12-21 1995-12-21 Production of hot rolled steel sheet excellent in workability Pending JPH09176745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33311595A JPH09176745A (en) 1995-12-21 1995-12-21 Production of hot rolled steel sheet excellent in workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33311595A JPH09176745A (en) 1995-12-21 1995-12-21 Production of hot rolled steel sheet excellent in workability

Publications (1)

Publication Number Publication Date
JPH09176745A true JPH09176745A (en) 1997-07-08

Family

ID=18262461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33311595A Pending JPH09176745A (en) 1995-12-21 1995-12-21 Production of hot rolled steel sheet excellent in workability

Country Status (1)

Country Link
JP (1) JPH09176745A (en)

Similar Documents

Publication Publication Date Title
JP5408314B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and material uniformity in the coil and method for producing the same
JP3292671B2 (en) Hot-rolled steel strip for cold-rolled steel sheet with good deep drawability and aging resistance
WO2011118421A1 (en) Method for producing high-strength steel plate having superior deep drawing characteristics
JP4414883B2 (en) High-strength cold-rolled steel sheet for ultra-deep drawing excellent in formability and weldability and its manufacturing method
JP5655475B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof
CN111788324A (en) Cold-rolled steel sheet and method for producing same
JP2003105446A (en) High strength hot rolled steel sheet, and production method therefor
JPH03277741A (en) Dual-phase cold roller steel sheet excellent in workability, cold nonaging properties and baking hardenability and its manufacture
JP5151390B2 (en) High-tensile cold-rolled steel sheet, high-tensile galvanized steel sheet, and methods for producing them
JP2987815B2 (en) Method for producing high-tensile cold-rolled steel sheet excellent in press formability and secondary work cracking resistance
JP3302118B2 (en) Manufacturing method of cold rolled steel sheet with excellent deep drawability
JP3735142B2 (en) Manufacturing method of hot-rolled steel sheet with excellent formability
JP4094498B2 (en) Deep drawing high strength cold-rolled steel sheet and method for producing the same
JP3204101B2 (en) Deep drawing steel sheet and method for producing the same
JP3593728B2 (en) Manufacturing method of ultra low carbon cold rolled steel sheet with excellent formability
JPH0466653A (en) Manufacture of hot-dip galvanized steel sheet for high working excellent in surface property
JPH09176745A (en) Production of hot rolled steel sheet excellent in workability
JP3596045B2 (en) Manufacturing method of bake hardening type cold rolled steel sheet with excellent formability
JPH06108155A (en) Production of cold-rolled steel sheet for ultradeep drawing
JP2000199031A (en) Cold rolled steel sheet excellent in workability and its production
JPH02145747A (en) Hot rolled steel sheet for deep drawing and its manufacture
JP3762085B2 (en) Manufacturing method of soft cold-rolled steel sheet by direct feed rolling with excellent workability
JPH10280048A (en) Production of coating/baking haredening type cold rolled steel sheet excellent in strain aging resistance
JPH06158175A (en) Production of cold rolled steel sheet for ultradeep drawing
JP3261037B2 (en) Manufacturing method of cold rolled steel sheet with good aging resistance