JPH0917427A - Non-sintered nickel hydroxide positive electrode plate for alkaline storage battery - Google Patents

Non-sintered nickel hydroxide positive electrode plate for alkaline storage battery

Info

Publication number
JPH0917427A
JPH0917427A JP7188596A JP18859695A JPH0917427A JP H0917427 A JPH0917427 A JP H0917427A JP 7188596 A JP7188596 A JP 7188596A JP 18859695 A JP18859695 A JP 18859695A JP H0917427 A JPH0917427 A JP H0917427A
Authority
JP
Japan
Prior art keywords
electrode plate
nickel hydroxide
positive electrode
active material
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7188596A
Other languages
Japanese (ja)
Inventor
Masayuki Terasaka
雅行 寺坂
Kozo Otsuki
浩三 大槻
Shigekazu Yasuoka
茂和 安岡
Kenji Arisawa
謙二 有澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP7188596A priority Critical patent/JPH0917427A/en
Publication of JPH0917427A publication Critical patent/JPH0917427A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a non-sintered nickel hydroxide positive electrode plate having high energy density and a long cycle life, by maintaining a coefficient of utilization of a plate at a high level as well as restraining the plate from swelling steadily. SOLUTION: Nickel hydroxide powder is stipulated as that half-power band width of a peak appearing in the proximity of 2γ=38.5 deg. in X-ray diffraction using CuK α rays is 0.8 to 1.2deg and 5 specific surface area of a Ni active material is 5 to 25m<2> /g (BET method), in the case of a non-sintered nickel hydroxide positive electrode plate comprizing Ni-active material powder composed of nickel hydroxide powder and a compound layer of II group elements formed on the surfaces thereof.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ニッケル・カドミウム
蓄電池やニッケル・水素蓄電池等のアルカリ蓄電池に用
いられる非焼結式水酸化ニッケル正極板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-sintered nickel hydroxide positive electrode plate used in alkaline storage batteries such as nickel-cadmium storage batteries and nickel-hydrogen storage batteries.

【0002】[0002]

【従来の技術】アルカリ蓄電池用非焼結式水酸化ニッケ
ル正極板は、焼結式水酸化ニッケル正極板に比べ、生産
性がよく且つ高エネルギー密度であるため、高容量タイ
プのアルカリ蓄電池に広く使用されている。しかし、非
焼結式ニッケル正極板は、焼結式正極板に比べ充放電サ
イクルに伴う極板の膨化が大きい。極板の膨化はセパレ
ータ中の電解液を押し出して枯渇させ、放電性能を低下
させるので、この膨化が電池寿命を支配する因子となっ
ている。
2. Description of the Related Art Non-sintered nickel hydroxide positive electrode plates for alkaline storage batteries are widely used in high capacity type alkaline storage batteries because they have higher productivity and higher energy density than sintered nickel hydroxide positive electrode plates. It is used. However, the non-sintered nickel positive electrode plate has a greater degree of swelling of the electrode plate with charge / discharge cycles than the sintered positive electrode plate. The expansion of the electrode plate pushes out and depletes the electrolytic solution in the separator, which deteriorates the discharge performance, and this expansion is a factor that governs the battery life.

【0003】このため非焼結式ニッケル正極板において
は、従来より極板膨化の抑制が重要な課題となってお
り、膨化抑制の方法として、例えば水酸化ニッケル粉末
中にII族元素を固溶させる方法(特開平1−18266
2)、水酸化ニッケル粉末とII族元素化合物粉末とを混
合して用いる方法(特開昭59−33758)、水酸化
ニッケル粉末の表面にII族元素化合物の層を形成する方
法(特開平3−274666)などが提案されている。
このうち、前記特開平3−274666に記載の技術
が、最も効果的に極板の膨化を抑制できる。
Therefore, in non-sintered nickel positive electrode plates, suppression of electrode plate swelling has been an important issue in the past. As a method of suppressing swelling, for example, a group II element is solid-dissolved in nickel hydroxide powder. Method (JP-A-1-18266)
2), a method of mixing and using nickel hydroxide powder and a group II element compound powder (JP-A-59-33758), and a method of forming a layer of the group II element compound on the surface of the nickel hydroxide powder (JP-A-3). -274666) and the like have been proposed.
Among them, the technique described in JP-A-3-274666 can suppress expansion of the electrode plate most effectively.

【0004】しかし、その詳細は後記するが、アルカリ
蓄電池用非焼結式水酸化ニッケル正極板において、極板
利用率の向上と極板膨化の抑制とは技術的に相反する関
係にある。このため、高エネルギー密度という特徴を損
なうことなく、電池寿命を十分に高めることは容易でな
い。したがって、前記技術(特開平3−274666)
にあっても未だ十分とは言い難く、更なるエネルギー密
度並びにサイクル寿命の向上が要請されている。
However, as will be described in detail later, in the non-sintered nickel hydroxide positive electrode plate for alkaline storage batteries, there is a technically contradictory relationship between the improvement of the electrode plate utilization rate and the suppression of electrode plate swelling. For this reason, it is not easy to sufficiently extend the battery life without impairing the feature of high energy density. Therefore, the above-mentioned technique (Japanese Patent Laid-Open No. 3-274666)
However, it is still not sufficient, and further improvement in energy density and cycle life is required.

【0005】[0005]

【発明が解決しようとする課題】本発明は、前記技術
(特開平3−274666)に改良を加え、極板利用率
の向上と極板膨化の抑制という相反する2つの要素を好
適にバランスさせ、一層長寿命で高エネルギー密度のア
ルカリ蓄電池用水酸化ニッケル正極板を提供しようとす
るものである。
DISCLOSURE OF THE INVENTION The present invention is an improvement of the above-mentioned technique (Japanese Patent Laid-Open No. 3-274666), which favorably balances two contradictory factors, namely, improvement of electrode plate utilization rate and suppression of electrode plate swelling. Another object of the present invention is to provide a nickel hydroxide positive electrode plate for alkaline storage batteries having a longer life and a higher energy density.

【0006】[0006]

【課題を解決するための手段】本発明は、上記目的を達
成するために、次のように構成される。請求項1の発明
は、水酸化ニッケル粉末の表面にII族元素の化合物層を
形成したNi活物質粉末を用いてなるアルカリ蓄電池用
非焼結式水酸化ニッケル正極板において、前記水酸化ニ
ッケル粉末として、CuKα線を使用するX線回折の2
θ=38.5°付近に出現するピークの半価幅が0.8
〜1.2deg.の水酸化ニッケル粉末を用いたことを
特徴とする。
In order to achieve the above object, the present invention is configured as follows. The invention of claim 1 provides a non-sintered nickel hydroxide positive electrode plate for alkaline storage batteries, which comprises a Ni active material powder having a group II compound layer formed on the surface of the nickel hydroxide powder. X-ray diffraction using CuKα ray
The half value width of the peak appearing near θ = 38.5 ° is 0.8.
~ 1.2 deg. The above nickel hydroxide powder is used.

【0007】請求項2の発明は、請求項1記載のアルカ
リ蓄電池用非焼結式水酸化ニッケル正極板において、N
i活物質粉末の比表面積を5〜25m2 /gに規定した
ことを特徴とする
According to a second aspect of the present invention, in the non-sintered nickel hydroxide positive electrode plate for alkaline storage batteries according to the first aspect, N is
The specific surface area of the i active material powder is specified to be 5 to 25 m 2 / g.

【0008】請求項3の発明は、請求項1記載のアルカ
リ蓄電池用非焼結式水酸化ニッケル正極板において、前
記II族元素を、Cd,Zn,Mgからなる群より選択さ
れるものとしたことを特徴とする。
According to a third aspect of the present invention, in the non-sintered nickel hydroxide positive electrode plate for an alkaline storage battery according to the first aspect, the group II element is selected from the group consisting of Cd, Zn and Mg. It is characterized by

【0009】請求項4の発明は、請求項2記載のアルカ
リ蓄電池用非焼結式水酸化ニッケル正極板において、II
族元素を、Cd,Zn,Mgからなる群より選択される
ものとしたことを特徴とする
According to a fourth aspect of the present invention, in the non-sintered nickel hydroxide positive electrode plate for alkaline storage batteries according to the second aspect, II
The group element is selected from the group consisting of Cd, Zn and Mg.

【0010】[0010]

【作用】極板膨化の原因を踏まえつつ、本発明の作用を
説明する。極板中の水酸化ニッケルは、充電によりβ型
オキシ水酸化ニッケルに変化し、このβ型オキシ水酸化
ニッケルは、過充電によりアルカリ電解液中の金属や水
を取り込んでγ型オキシ水酸化ニッケルに変化する。こ
のγ型オキシ水酸化ニッケルが生成されると、極板が膨
化するため物理的にセパレータを圧迫してセパレータ中
の電解液を押し出すように作用する。また、活物質の脱
落や内部短絡の原因ともなる。したがって、極板の膨化
は、円滑な電極反応を阻害する原因となるが、非焼結式
極板は焼結式極板に比べ強度が弱いため、この膨化が電
池性能や電池寿命を決定する要因となる。
The operation of the present invention will be described, taking into consideration the cause of the expansion of the electrode plate. The nickel hydroxide in the electrode plate changes to β-type nickel oxyhydroxide by charging, and this β-type nickel oxyhydroxide takes in the metal and water in the alkaline electrolyte by overcharging and forms γ-type nickel oxyhydroxide. Changes to. When this γ-type nickel oxyhydroxide is produced, the electrode plate swells, so that it physically presses the separator and acts to push out the electrolytic solution in the separator. In addition, this may cause the active material to fall off or cause an internal short circuit. Therefore, the expansion of the electrode plate hinders a smooth electrode reaction, but since the non-sintered electrode plate is weaker in strength than the sintered electrode plate, this expansion determines battery performance and battery life. It becomes a factor.

【0011】しかし、前記技術((特開平3−2746
66)に従い、水酸化ニッケル粉末の表面にII族元素の
化合物層を形成したNi活物質粉末を正極活物質として
用いた場合には、Ni活物質粉末表面に存在するII族元
素化合物層が、過充電時にアルカリ金属や水の結晶中へ
の侵入を防ぎ、結果としてγ型オキシ水酸化ニッケルの
生成を抑制する。ここで、II族元素化合物層は発電に直
接寄与しないので、その添加量を多くすると極板のエネ
ルギー密度を低下させるが、前記技術では、水酸化ニッ
ケル粉末の表面に配置した少量のII族元素化合物層が膨
化を効果的に抑制するので、エネルギー密度の低下が少
ない。
However, the above-mentioned technique ((Japanese Laid-Open Patent Publication No. 3-2746)
According to 66), when the Ni active material powder in which the compound layer of the group II element is formed on the surface of the nickel hydroxide powder is used as the positive electrode active material, the group II element compound layer present on the surface of the Ni active material powder is Prevents alkali metal and water from penetrating into crystals during overcharge, and consequently suppresses the formation of γ-type nickel oxyhydroxide. Here, since the group II element compound layer does not directly contribute to power generation, increasing the amount of addition thereof lowers the energy density of the electrode plate, but in the above technique, a small amount of group II element arranged on the surface of the nickel hydroxide powder is used. Since the compound layer effectively suppresses swelling, the decrease in energy density is small.

【0012】しかしながら、本発明者らが前記技術を種
々検討したところ、活物質本体である水酸化ニッケル粉
末の性状により極板のエネルギー密度やサイクル寿命に
差が認められた。また、Ni活物質粉末の性状により、
極板のエネルギー密度やサイクル寿命に差が認められ
た。
However, as a result of various examinations of the above-mentioned techniques by the present inventors, a difference was found in the energy density and cycle life of the electrode plate depending on the properties of the nickel hydroxide powder as the active material body. Also, depending on the properties of the Ni active material powder,
Differences were observed in the energy density and cycle life of the electrode plates.

【0013】そこで、本発明者らは、活物質本体である
水酸化ニッケル粉末の結晶性及びNi活物質粉末の比表
面積に着目し、これらの要素と極板膨化率及び利用率の
関係を検討し、活物質本体(核)である水酸化ニッケル
粉末の結晶性を高めると、極板利用率が低下するものの
極板膨化が抑制されること、及びNi活物質粉末(表面
にII族元素化合物層を有するもの)の比表面積を大きく
すると、極板膨化が大きくなる傾向があるものの、極板
利用率が高められるという知見を得た。本発明はこの知
見に基づいて完成された。
Therefore, the present inventors have paid attention to the crystallinity of the nickel hydroxide powder as the main body of the active material and the specific surface area of the Ni active material powder, and examined the relationship between these factors and the expansion rate and utilization rate of the electrode plate. However, when the crystallinity of the nickel hydroxide powder, which is the active material main body (nucleus), is increased, the electrode plate utilization rate decreases, but the electrode plate swelling is suppressed, and the Ni active material powder (group II element compound on the surface It was found that when the specific surface area of (having a layer) is increased, the electrode plate swelling tends to increase, but the electrode plate utilization rate increases. The present invention has been completed based on this finding.

【0014】即ち、本発明は、CuKα線を使用するX
線回折の2θ=38.5°付近に出現するピークの半価
幅を水酸化ニッケルの結晶性を表す指標とし、この半価
幅が0.8〜1.2deg.の範囲にある水酸化ニッケ
ル粉末をNi活物質粉末の本体(核)として用いること
を特徴とする。また、本発明は、半価幅0.8〜1.2
deg.の水酸化ニッケル粉末を活物質本体(核)と
し、この水酸化ニッケル粉末の表面にII族化合物層を形
成してなるNi活物質粉末の比表面積が、5〜25m2
/gの範囲に規定されていることを特徴とする。
That is, according to the present invention, X using CuKα rays is used.
The half width of the peak appearing in the vicinity of 2θ = 38.5 ° of the line diffraction is used as an index showing the crystallinity of nickel hydroxide, and the half width is 0.8 to 1.2 deg. The nickel hydroxide powder in the range of is used as the main body (core) of the Ni active material powder. Further, the present invention has a half width of 0.8 to 1.2.
deg. The nickel hydroxide powder is used as the active material body (nucleus), and the specific surface area of the Ni active material powder formed by forming the group II compound layer on the surface of the nickel hydroxide powder is 5 to 25 m 2.
It is specified in the range of / g.

【0015】水酸化ニッケル粉末の結晶性を上記範囲と
すると、極板利用率及び極板膨化率の双方を好適な範囲
でバランスさせることができる。また、Ni活物質粉末
の比表面積を上記範囲とすると、II族元素化合物層が水
酸化ニッケルとアルカリ電解液(アルカリ金属や水)と
の接触を制限するように作用する結果生じるマイナス要
因(利用率の低下)を取り除くことができる。これによ
り、高エネルギー密度でより長寿命のアルカリ蓄電池用
ニッケル正極板と成すことができる。
When the crystallinity of the nickel hydroxide powder is in the above range, both the electrode plate utilization rate and the electrode plate swelling rate can be balanced within a suitable range. Further, if the specific surface area of the Ni active material powder is within the above range, a negative factor resulting from the action of the group II element compound layer to limit the contact between nickel hydroxide and the alkaline electrolyte (alkali metal or water) Rate drop) can be eliminated. As a result, a nickel positive electrode plate for alkaline storage batteries having a high energy density and a long life can be obtained.

【0016】更に、上記本発明において、II族元素化合
物層をCd,Zn,Mgからなる群より選択される元素
の化合物で構成すると、より一層エネルギー密度及びサ
イクル寿命に優れた水酸化ニッケル正極板が得られる。
なお、この理由についてはよくわかっていない。
Further, in the present invention, when the group II element compound layer is composed of a compound of an element selected from the group consisting of Cd, Zn and Mg, a nickel hydroxide positive electrode plate having further excellent energy density and cycle life. Is obtained.
The reason for this is not well understood.

【0017】[0017]

【実施例】以下、実験1〜3に基づいて本発明の内容を
明らかにする。 〔実験1〕実験1では、結晶性の異なる水酸化ニッケル
粉末を5通り調製し、この水酸化ニッケル粉末を核とし
てNi活物質粉末を作製し、活物質本体である水酸化ニ
ッケル粉末の結晶性の違いが極板利用率と極板膨化率に
及ぼす影響を調べた。以下実験手順に従い順次説明す
る。
The contents of the present invention will be clarified below based on Experiments 1 to 3. [Experiment 1] In Experiment 1, five kinds of nickel hydroxide powders having different crystallinity were prepared, Ni active material powder was prepared by using the nickel hydroxide powder as a core, and the crystallinity of the nickel hydroxide powder as the active material body was measured. The effect of the difference on the electrode utilization rate and electrode swelling rate was investigated. The following is a sequential description according to the experimental procedure.

【0018】(各種水酸化ニッケル粉末の調製)15重
量%のアンモニア水でPH調整しながら、3モル%の硝
酸ニッケル水溶液に3モル%の水酸化ナトリウム水溶液
を攪拌下徐々に加えて反応させ、水酸化ニッケル析出物
を得た。この析出反応に際しては、反応溶液のPH値を
9〜12の範囲内で可変調整するとともに、反応温度を
20℃〜60℃の範囲で可変調整した。また、反応溶液
の攪拌速度を、半価幅1.0deg.の水酸化ニッケル
粉末の作製時の攪拌速度を基準(100)としたとき、
40〜500の範囲で可変調整した。上記範囲で各条件
を変化させることにより、5通りの水酸化ニッケル析出
物を得、これを水洗・乾燥してFisher Sub-sieve Sizer
Size (以下FSSSという)10μmの水酸化ニッケ
ル粉末を作製した。
(Preparation of Various Nickel Hydroxide Powders) While adjusting the pH with 15 wt% ammonia water, 3 mol% aqueous sodium hydroxide solution was gradually added to 3 mol% nickel nitrate aqueous solution with stirring to react. A nickel hydroxide precipitate was obtained. During this precipitation reaction, the pH value of the reaction solution was variably adjusted within the range of 9 to 12, and the reaction temperature was variably adjusted within the range of 20 ° C to 60 ° C. Further, the stirring speed of the reaction solution was set to a half width of 1.0 deg. When the stirring speed at the time of producing the nickel hydroxide powder of
It was variably adjusted in the range of 40 to 500. By changing each condition within the above range, 5 kinds of nickel hydroxide precipitates were obtained, which were washed with water and dried to obtain the Fisher Sub-sieve Sizer.
Nickel hydroxide powder having a size (hereinafter referred to as FSSS) of 10 μm was prepared.

【0019】これら水酸化ニッケル粉末について、回折
線;CuKα(λ=1.5418Å)、管電圧;30k
V、管電流;12.5mA、走査速度;5deg/mi
nの条件でX線回折分析を行い、2θ=約38.5°の
ピークの半価幅を測定したところ、それぞれ0.6de
g.、0.8deg.、1.0deg.、1.2de
g.、1.4deg.であった。
With respect to these nickel hydroxide powders, diffraction line: CuKα (λ = 1.5418Å), tube voltage: 30k
V, tube current; 12.5 mA, scanning speed; 5 deg / mi
X-ray diffraction analysis was performed under the condition of n, and the half width of the peak at 2θ = about 38.5 ° was measured.
g. , 0.8 deg. , 1.0 deg. , 1.2de
g. , 1.4 deg. Met.

【0020】(各種Ni活物質粉末の作製)上記5通り
の水酸化ニッケル粉末をそれぞれ用い、その粉末表面に
水酸化カドミウム層(II族化合物層)を形成せしめた。
作製方法は次の通りである。水酸化ニッケル粉末を約1
0倍量のイオン交換水に混合分散し、この混合分散液に
攪拌下、3モル%の水酸化ナトリウム水溶液と3モル%
の硝酸カドミウム水溶液とを、混合分散液のPHが所定
値(PH9〜12の範囲内)に維持されるように両溶液
の液量を調整しながら添加した。これにより、水酸化ニ
ッケル粉末の表面に水酸化カドミウム層を形成し、これ
を水洗・乾燥して、活物質本体である水酸化ニッケル粉
末の結晶性のみが異なる5通りのNi活物質粉末を作製
した。
(Preparation of Various Ni Active Material Powders) The above-mentioned five kinds of nickel hydroxide powders were used, and a cadmium hydroxide layer (group II compound layer) was formed on the surface of each powder.
The manufacturing method is as follows. About 1 part of nickel hydroxide powder
Mix and disperse in 0 times the amount of ion-exchanged water, and in this mixed dispersion, while stirring, 3 mol% sodium hydroxide aqueous solution and
Cadmium nitrate aqueous solution was added while adjusting the liquid amounts of both solutions so that the pH of the mixed dispersion liquid was maintained at a predetermined value (within a range of PH 9 to 12). Thereby, a cadmium hydroxide layer is formed on the surface of the nickel hydroxide powder, washed with water and dried to prepare five kinds of Ni active material powders having different crystallinity of the nickel hydroxide powder as the active material body. did.

【0021】上記で作製したNi活物質粉末の水酸化ニ
ッケル及び水酸化カドミウムを定量したところ、何れも
水酸化ニッケル粉末に対し5重量%の水酸化カドミウム
層が形成されていた。また、吸着気体として窒素ガスと
ヘリウムガスの混合気体(He:N2 =70:30)を
用いたBET法で、各Ni活物質粉末の比表面積を測定
したところ、何れも10m2 /gであった。
When the nickel hydroxide and the cadmium hydroxide of the Ni active material powder produced as described above were quantified, a cadmium hydroxide layer of 5% by weight based on the nickel hydroxide powder was formed in each case. Further, when the specific surface area of each Ni active material powder was measured by the BET method using a mixed gas of nitrogen gas and helium gas (He: N 2 = 70: 30) as an adsorbed gas, both were 10 m 2 / g. there were.

【0022】(非焼結式ニッケル極板の作製)上記各種
Ni活物質粉末90重量%と、水酸化コバルト粉末(F
SSS:1μm)10重量%、及び1重量%メチルセル
ロース水溶液適量を混合し活物質スラリーを調製し、こ
の活物質スラリーを多孔度95%のニッケルフォームに
充填し、乾燥後、圧延成形した。これにより水酸化ニッ
ケル粉末の結晶性のみが異なる5通りの非焼結式ニッケ
ル正極板を作製した。
(Preparation of non-sintered nickel electrode plate) 90% by weight of the above various Ni active material powders and cobalt hydroxide powder (F
(SSS: 1 μm) 10% by weight and 1% by weight aqueous solution of methylcellulose were mixed in appropriate amounts to prepare an active material slurry. The active material slurry was filled in nickel foam having a porosity of 95%, dried, and then roll-molded. As a result, five types of non-sintered nickel positive electrode plates differing only in the crystallinity of the nickel hydroxide powder were produced.

【0023】(極板利用率の測定)上記各非焼結式ニッ
ケル正極板を正極とし、対極として焼結式カドミウム負
極板、アルカリ電解液として水酸化カリウム水溶液を用
い、公知の方法で正極支配の開放型セル(理論容量60
0mAh)を5通り作製した。これらセルに対し、60
mAの電流で理論容量の150%まで充電した後、20
0mAの電流で電池電圧が0.8Vとなるまで放電して
放電容量を測定した。極板利用率は、数1に従い算出し
た。
(Measurement of Utilization Rate of Electrode Plate) Using each of the non-sintered nickel positive electrode plates as a positive electrode, a sintered cadmium negative electrode plate as a counter electrode, and an aqueous potassium hydroxide solution as an alkaline electrolyte, the positive electrode is controlled by a known method. Open cell (theoretical capacity 60
0 mAh) was prepared in 5 ways. 60 for these cells
After charging to 150% of theoretical capacity with mA current, 20
The discharge capacity was measured by discharging at a current of 0 mA until the battery voltage reached 0.8V. The electrode plate utilization rate was calculated according to Equation 1.

【0024】[0024]

【数1】 極板利用率=〔放電容量/理論容量〕×100 …数1## EQU00001 ## Electrode plate utilization rate = [discharge capacity / theoretical capacity] × 100 ...

【0025】(極板膨化率の測定)上記非焼結式ニッケ
ル正極板(5通り)と焼結式カドミウム負極板と、水酸
化カリウム水溶液からなる電解液とを用い、公知の方法
で公称容量1200mAhの円筒密閉型ニッケル−カド
ミウム蓄電池(JIS形式:KR−Aサイズ)を作製し
た。これら蓄電池に対し、1200mAの電流で公称容
量の150%まで充電した後、1200mAの電流で電
池電圧が0.8Vとなるまで放電するという操作(1サ
イクル)を500サイクル行なった。極板膨化率は、数
2に従い算出した。
(Measurement of Swelling Ratio of Electrode Plate) Using the non-sintered nickel positive electrode plate (5 ways), the sintered cadmium negative electrode plate, and an electrolytic solution containing an aqueous solution of potassium hydroxide, a nominal capacity was measured by a known method. A 1200 mAh cylindrical closed nickel-cadmium storage battery (JIS type: KR-A size) was produced. For these storage batteries, an operation (1 cycle) of charging the storage battery at a current of 1200 mA to 150% of the nominal capacity and then discharging the battery at a current of 1200 mA until the battery voltage became 0.8 V was performed 500 cycles. The electrode plate swelling ratio was calculated according to equation 2.

【0026】[0026]

【数2】 極板膨化率=〔500サイクル後の正極板の厚み/サイクル開始前の正極板 の厚み〕×100 …数2## EQU00002 ## Electrode plate swelling ratio = [thickness of positive electrode plate after 500 cycles / thickness of positive electrode plate before start of cycle] × 100 ...

【0027】(実験結果)表1に各正極板の利用率及び
膨化率を示す。なお、表1の各数値は、X線半価幅が
1.0deg.における場合を基準(100)として示
してある。表1から明らかなように、極板利用率は水酸
化ニッケル粉末の半価幅が小さくなると低下する傾向に
あり、極板利用率は半価幅0.8未満で特に大きく低下
した。他方、500サイクル後の極板膨化率は、水酸化
ニッケル粉末の半価幅が大きくなると大きくなる傾向が
あり、極板膨化率は半価幅が1.2deg.を越えると
顕著に増大した。これらの結果から、活物質本体(核)
である水酸化ニッケル粉末の結晶性をX線半価幅0.8
〜1.2deg.に調製してやれば、極板利用率及び極
板膨化率の双方が良好なアルカリ蓄電池用非焼結式水酸
化ニッケル正極板を得ることができることが判る。
(Experimental Results) Table 1 shows the utilization rate and expansion rate of each positive electrode plate. In addition, each numerical value of Table 1 has an X-ray half width of 1.0 deg. The case of is shown as the reference (100). As is clear from Table 1, the electrode plate utilization rate tends to decrease as the half-value width of the nickel hydroxide powder decreases, and the electrode plate utilization rate decreases significantly particularly when the half-value width is less than 0.8. On the other hand, the swelling ratio of the electrode plate after 500 cycles tends to increase as the half width of the nickel hydroxide powder increases, and the swelling ratio of the electrode plate has a half width of 1.2 deg. It increased remarkably beyond. From these results, the active material body (nucleus)
X-ray half-value width of 0.8
~ 1.2 deg. It is understood that the non-sintered nickel hydroxide positive electrode plate for an alkaline storage battery, which has good electrode plate utilization rate and electrode plate swelling rate, can be obtained by preparing the above.

【0028】[0028]

【表1】 [Table 1]

【0029】〔実験2〕実験2では、下記の方法により
比表面積の異なるNi活物質粉末を作製し、このNi活
物質粉末を用いて実験1と同様な測定方法により、Ni
活物質粉末の比表面積の違いが極板利用率及び極板膨化
率に及ぼす影響を調べた。 (比表面積の異なるNi活物質粉末の作製)水酸化ニッ
ケル粉末としては、実験1で作製したX線半価幅1.0
deg.、FSSS10μmの水酸化ニッケル粉末を使
用した。また、水酸化ニッケル粉末の表面に水酸化カド
ミウム層を生成する際の攪拌速度は、比表面積10m2
/gのNi活物質粉末の作製時の攪拌速度を100(基
準速度)とした場合、40〜300の範囲で変化させ
た。その他の条件については、実験1と同様に行った。
これにより、比表面積の異なる6通りのNi活物質粉末
を作製した。なお、上記以外の事項については実験1と
同様に行った。
[Experiment 2] In Experiment 2, Ni active material powders having different specific surface areas were prepared by the following method, and the Ni active material powder was used to measure Ni active material powder by the same measurement method as in Experiment 1.
The influence of the difference in the specific surface area of the active material powder on the electrode utilization rate and electrode plate swelling rate was investigated. (Preparation of Ni Active Material Powder with Different Specific Surface Area) As the nickel hydroxide powder, the X-ray half width of 1.0 prepared in Experiment 1 was used.
deg. , FSSS 10 μm nickel hydroxide powder was used. In addition, the stirring speed when forming the cadmium hydroxide layer on the surface of the nickel hydroxide powder is such that the specific surface area is 10 m 2
When the stirring speed at the time of producing the Ni active material powder of / g was 100 (reference speed), it was changed in the range of 40 to 300. Other conditions were the same as in Experiment 1.
As a result, 6 kinds of Ni active material powders having different specific surface areas were produced. The items other than the above were the same as in Experiment 1.

【0030】上記各Ni活物質粉末について、前記BE
T法により比表面積を測定したところ、それぞれ3m2
/g、5m2 /g、10m2 /g、18m2 /g、25
2/g、28m2 /gであった。 (実験結果)表2に実験2の結果を示す。表2より、極
板利用率は、比表面積が5m2 /g未満となると大きく
低下した。他方、極板膨化率は、比表面積が25m2
gを越えると大きくなった。これらの結果から、比表面
積が5〜25m2 /gの範囲のNi活物質粉末を用いた
場合に、極板の膨化が少なく且つ利用率の高い非焼結式
水酸化ニッケル正極板が得られることが判る。
For each of the above Ni active material powders, the BE
When the specific surface area was measured by the T method, it was 3 m 2
/ G, 5m 2 / g, 10m 2 / g, 18m 2 / g, 25
It was m 2 / g and 28 m 2 / g. (Experimental Results) Table 2 shows the results of Experiment 2. From Table 2, the electrode plate utilization rate decreased significantly when the specific surface area was less than 5 m 2 / g. On the other hand, the swelling ratio of the electrode plate is such that the specific surface area is 25 m 2 /
It became larger when it exceeded g. From these results, when Ni active material powder having a specific surface area of 5 to 25 m 2 / g is used, a non-sintered nickel hydroxide positive electrode plate with less expansion of the electrode plate and high utilization rate can be obtained. I understand.

【0031】[0031]

【表2】 [Table 2]

【0032】〔実験3〕実験3では、水酸化ニッケル粉
末の表面に形成する層の種類を変えたNi活物質粉末
(比表面積10m2 /g)を作製し、実験1と同様な方
法でII族元素化合物の種類と極板利用率及び極板膨化率
の関係を調べた。II族元素化合物の層は次のようにして
調製した。実験1で作製したX線半価幅1.0de
g.、FSSS10μmの水酸化ニッケル粉末を使用
し、この水酸化ニッケル粉末表面に実験1と略同様な方
法で、それぞれ水酸化カドミウム,酸化亜鉛,水酸化マ
グネシウム,水酸化カルシウム,水酸化バリウムからな
る層を形成した。表面層の調製方法及びその他の事項は
実験1と同様に行った。 (実験結果)表3に実験3の結果を示す。なお、表3の
各数値は、Cd(OH)2 を表面層としたNi活物質粉
末における場合を100(基準)として表してある。
[Experiment 3] In Experiment 3, Ni active material powder (specific surface area: 10 m 2 / g) in which the kind of layer formed on the surface of nickel hydroxide powder was changed was prepared, and II was prepared in the same manner as in Experiment 1. The relationship between the kinds of group element compounds and the electrode plate utilization rate and electrode plate swelling ratio was investigated. The layer of the group II element compound was prepared as follows. X-ray half width of 1.0 de produced in Experiment 1
g. , FSSS 10 μm nickel hydroxide powder was used, and a layer consisting of cadmium hydroxide, zinc oxide, magnesium hydroxide, calcium hydroxide and barium hydroxide was formed on the surface of the nickel hydroxide powder in the same manner as in Experiment 1. Formed. The preparation method of the surface layer and other matters were the same as in Experiment 1. (Experimental Results) Table 3 shows the results of Experiment 3. In addition, each numerical value in Table 3 is represented with 100 (reference) in the case of the Ni active material powder having Cd (OH) 2 as the surface layer.

【0033】[0033]

【表3】 [Table 3]

【0034】表3より、極板利用率は、Cd(OH)
2 、ZnO、Mg(OH)2 、Ca(OH)2 、Ba
(OH)2 の何れについても大差ない。他方、極板膨化
率は、Cd(OH)2 、ZnO、Mg(OH)2 の場合
に比較し、Ca(OH)2 、Ba(OH)2 の場合に大
きくなっている。このことから、極板利用率と膨化の双
方を考慮した場合、Cd(OH)2 、ZnO、Mg(O
H)2 から選択される化合物で水酸化ニッケル粉末の表
面層を形成するのが好ましいことが判る。 〔その他の事項〕上記実施例では、II族元素化合物を1
種類としたが、これに限定されるものではなく、2種類
以上を併用してもよい。また、上記と同様に上記実施例
では、II族元素化合物層を1層としたが、これを2層以
上としてもよい。更に、上記実施例では、対極として焼
結式カドミウム負極を使用したが、対極が水素吸蔵合金
電極であっても同様な効果が得られることは勿論であ
る。
From Table 3, the electrode plate utilization ratio is Cd (OH)
2 , ZnO, Mg (OH) 2 , Ca (OH) 2 , Ba
There is no great difference in any of (OH) 2 . On the other hand, the swelling rate of the electrode plate is larger in the case of Ca (OH) 2 and Ba (OH) 2 than in the case of Cd (OH) 2 , ZnO and Mg (OH) 2 . From this, when considering both the electrode plate utilization rate and the expansion, Cd (OH) 2 , ZnO, Mg (O
It has been found that it is preferable to form the surface layer of nickel hydroxide powder with a compound selected from H) 2 . [Other Matters] In the above embodiment, the group II element compound is 1
Although the type is used, the type is not limited to this, and two or more types may be used in combination. In addition, although the group II element compound layer is one layer in the above-mentioned embodiment similarly to the above, it may be two or more layers. Furthermore, although a sintered cadmium negative electrode is used as the counter electrode in the above embodiment, it is of course that the same effect can be obtained even if the counter electrode is a hydrogen storage alloy electrode.

【0035】[0035]

【発明の効果】本発明によれば、極板利用率を低下させ
ることなく、確実に極板膨化を抑制できる。したがっ
て、本発明によれば、高エネルギー密度でサイクル寿命
の長いアルカリ蓄電池用非焼結式水酸化ニッケル正極板
を得ることができる。
According to the present invention, swelling of the electrode plate can be reliably suppressed without reducing the electrode plate utilization rate. Therefore, according to the present invention, a non-sintered nickel hydroxide positive electrode plate for alkaline storage batteries having a high energy density and a long cycle life can be obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 有澤 謙二 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ─────────────────────────────────────────────────── --- Continuation of the front page (72) Inventor Kenji Arisawa 2-5-5 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 水酸化ニッケル粉末の表面にII族元素の
化合物層を形成したNi活物質粉末を用いてなるアルカ
リ蓄電池用非焼結式水酸化ニッケル正極板において、 前記水酸化ニッケル粉末が、CuKα線を使用するX線
回折の2θ=38.5°付近に出現するピークの半価幅
が0.8〜1.2deg.であることを特徴とするアル
カリ蓄電池用非焼結式水酸化ニッケル正極板。
1. A non-sintered nickel hydroxide positive electrode plate for an alkaline storage battery, which comprises a Ni active material powder having a group II compound layer formed on the surface of a nickel hydroxide powder, wherein the nickel hydroxide powder is: The half-value width of the peak appearing in the vicinity of 2θ = 38.5 ° of X-ray diffraction using CuKα ray is 0.8 to 1.2 deg. A non-sintered nickel hydroxide positive electrode plate for an alkaline storage battery, characterized in that
【請求項2】 前記Ni活物質粉末の比表面積が、5〜
25m2 /gであることを特徴とする請求項1記載のア
ルカリ蓄電池用非焼結式水酸化ニッケル正極板。
2. The specific surface area of the Ni active material powder is 5 to 5.
The non-sintered nickel hydroxide positive electrode plate for an alkaline storage battery according to claim 1, wherein the positive electrode plate has a thickness of 25 m 2 / g.
【請求項3】 前記II族元素が、Cd,Zn,Mgから
なる群より選択されるものであることを特徴とする請求
項1記載のアルカリ蓄電池用非焼結式水酸化ニッケル正
極板。
3. The non-sintered nickel hydroxide positive electrode plate for an alkaline storage battery according to claim 1, wherein the Group II element is selected from the group consisting of Cd, Zn and Mg.
【請求項4】 前記II族元素が、Cd,Zn,Mgから
なる群より選択されるものであることを特徴とする請求
項2記載のアルカリ蓄電池用非焼結式水酸化ニッケル正
極板。
4. The non-sintered nickel hydroxide positive electrode plate for an alkaline storage battery according to claim 2, wherein the Group II element is selected from the group consisting of Cd, Zn and Mg.
JP7188596A 1995-07-01 1995-07-01 Non-sintered nickel hydroxide positive electrode plate for alkaline storage battery Pending JPH0917427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7188596A JPH0917427A (en) 1995-07-01 1995-07-01 Non-sintered nickel hydroxide positive electrode plate for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7188596A JPH0917427A (en) 1995-07-01 1995-07-01 Non-sintered nickel hydroxide positive electrode plate for alkaline storage battery

Publications (1)

Publication Number Publication Date
JPH0917427A true JPH0917427A (en) 1997-01-17

Family

ID=16226431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7188596A Pending JPH0917427A (en) 1995-07-01 1995-07-01 Non-sintered nickel hydroxide positive electrode plate for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH0917427A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001357845A (en) * 2000-06-16 2001-12-26 Canon Inc Nickel-based secondary battery and method of manufacturing for this secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001357845A (en) * 2000-06-16 2001-12-26 Canon Inc Nickel-based secondary battery and method of manufacturing for this secondary battery

Similar Documents

Publication Publication Date Title
EP0869565B1 (en) Alkaline storage battery
JP3738052B2 (en) Nickel electrode active material, nickel electrode and nickel alkaline storage battery using the same, and production method thereof
EP0833397B1 (en) Positive electrode active material for alkaline storage batteries
US6632568B1 (en) Non-sintered nickel electrode with excellent over-discharge characteristics, an alkaline storage cell having the non-sintered nickel electrode, and a manufacturing method of the non-sintered nickel electrode
EP1783848B1 (en) Positive electrode active material for alkaline storage battery, positive electrode for alkaline storage battery, alkaline storage battery, and method of manufacturing positive electrode active material for alkaline storage battery
US20040209166A1 (en) Nickel hydrogen secondary battery
JP4321997B2 (en) Positive electrode active material for alkaline storage battery, and positive electrode and alkaline storage battery using the same
JP4403594B2 (en) Cathode active material for alkaline storage battery and method for producing the same
EP0932211B1 (en) Positive electrode active material for alkaline storage battery
EP1719195B1 (en) Positive electrode active material for a nickel electrode
JP2003173773A (en) Positive electrode active material for alkaline storage battery, positive electrode, and alkaline storage battery
US5910296A (en) Method of preparing Ni-M hydroxycarbonate having a high density
EP0848439B1 (en) An active material for a cathode of a nickel cell, a production method thereof, and a production method of a cathode of a nickel cell
JPH10172561A (en) Positive electrode active material for nickel battery and manufacture of positive electrode for nickel battery
JPH0917427A (en) Non-sintered nickel hydroxide positive electrode plate for alkaline storage battery
JPH0950805A (en) Nickel electrode for alkaline storage battery and active material for nickel electrode and its manufacturing method and alkaline storage battery
US6608465B2 (en) Positive electrode for alkaline storage battery and alkaline storage battery using the same
JPH10289714A (en) Nickel-hydrogen storage battery
US6171728B1 (en) Nickel electrode for akaline storage cell and manufacturing method of the same
JP2001357844A (en) Positive electrode active material for alkaline storage battery, nickel positive electrode, and alkaline storage battery
US20040202932A1 (en) Electrochemically active material for an electrode
KR100288472B1 (en) Nickel electrode active material, nickel electrode using same, nickel alkaline storage battery and manufacturing method thereof
JPH09147904A (en) Paste type nickel electrode for alkaline storage battery
JPH103940A (en) Nickel-metal hydride storage battery and its manufacture
JPH10172559A (en) Nickel active material for alkaline storage battery and manufacture thereof