JPH09173436A - Bioprocsthetic member and its manufacture - Google Patents

Bioprocsthetic member and its manufacture

Info

Publication number
JPH09173436A
JPH09173436A JP7337502A JP33750295A JPH09173436A JP H09173436 A JPH09173436 A JP H09173436A JP 7337502 A JP7337502 A JP 7337502A JP 33750295 A JP33750295 A JP 33750295A JP H09173436 A JPH09173436 A JP H09173436A
Authority
JP
Japan
Prior art keywords
calcium phosphate
bone
phosphate material
bioprosthesis
bioprosthetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7337502A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kitano
宏幸 北野
Toshihiko Shimotoso
俊彦 下唐湊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP7337502A priority Critical patent/JPH09173436A/en
Publication of JPH09173436A publication Critical patent/JPH09173436A/en
Pending legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Dental Preparations (AREA)
  • Prostheses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a bioprosthetic member which can be early agglutinated to a bone and fixed thereto and is excellent in strength, and is capable of arbitrarily controlling a partial difference in composition, and the shape and arrangement of holes. SOLUTION: A bioprosthetic member 1 comprising a calcium phosphate material and the other ceramic materials and which has in vivo harmlessness is formed in multi-layers different in mixing ratio of two kinds of materials in such a manner that, as it separates from the bone fixing surface 2, the content proportion of calcium phosphate material is decreased in stages. Further, plural ceramic green sheets prepared by two kinds of material powder at different mixing ratio are stacked and integrated, and burnt to manufacture a bioprosthetic member.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、疾病、災害などに
より骨機能や手足の関節、あるいは老齢、疾病などで失
われた歯牙再建のための人工歯根等を構成する生体補綴
部材とその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bioprosthesis member for constructing an artificial root or the like for bone function and joints of limbs due to illness or disaster, or artificial tooth root for tooth reconstruction lost due to old age, illness, etc. It is about.

【0002】[0002]

【従来の技術】水酸アパタイトやリン酸三カルシウムな
どのリン酸カルシム材料は、アルミナ、ジルコニアとい
ったセラミック材料と比べて強度は弱いが、それらの材
料にはない優れた骨伝導能をもっている。そのため、ア
ルミナやジルコニア等の材料を基体としその骨と接する
表面にリン酸カルシウム材料を被覆した優れた骨伝導能
と強度を有する複合セラミック材料が提案されている。
2. Description of the Related Art Calcium phosphate materials such as hydroxyapatite and tricalcium phosphate have weaker strength than ceramic materials such as alumina and zirconia, but they have excellent osteoconductivity that these materials do not have. Therefore, there has been proposed a composite ceramic material having excellent osteoconductivity and strength, in which a material such as alumina or zirconia is used as a base and the surface in contact with the bone is coated with a calcium phosphate material.

【0003】この複合材料の作製方法としては、焼成前
の基体の表面にリン酸カルシウム材料よりなるスリップ
を塗布し、焼成する方法などが提案されてきた。
As a method for producing this composite material, a method has been proposed in which a slip made of a calcium phosphate material is applied to the surface of a substrate before firing and then fired.

【0004】[0004]

【従来技術の課題】しかしながら、上記従来技術には以
下のような問題点があった。すなわち、上記方法では、
表面からの深さに対するリン酸カルシウム材料の濃度を
正確に制御することができず、また、塗布したスリップ
は、塗布した表面の深さ方向のみでなく、平面方向にも
拡散していく傾向がある。このため、基体表面部内にお
ける上記リン酸カルシウム材料の濃度が低くなってしま
い、被覆層と基体の界面においてリン酸カルシウム材料
どうしの結合量が少ないので、接合強度に問題点があっ
た。さらに、従来技術では、表面にリン酸カルシウム材
料の被覆層を形成するので、基体に多孔質表面を形成す
ることも出来なかった。
However, the above prior art has the following problems. That is, in the above method,
The concentration of the calcium phosphate material with respect to the depth from the surface cannot be controlled accurately, and the applied slip tends to diffuse not only in the depth direction of the applied surface but also in the plane direction. For this reason, the concentration of the calcium phosphate material in the surface portion of the base becomes low, and the amount of binding between the calcium phosphate materials at the interface between the coating layer and the base is small, resulting in a problem in bonding strength. Furthermore, in the prior art, since the coating layer of the calcium phosphate material is formed on the surface, it was not possible to form the porous surface on the substrate.

【0005】[0005]

【発明の目的】上記従来技術の課題に鑑みて、本発明
は、リン酸カルシウム材料とそれ以外の生体為害性のな
いセラミック材料とからなる部材であって、リン酸カル
シウム材料の濃度分布を任意にコントロールし、骨との
癒合、固着力が大きく且つ強度が大きな生体補綴部材の
製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above problems of the prior art, the present invention is a member comprising a calcium phosphate material and a ceramic material which is not biohazardous other than that, wherein the concentration distribution of the calcium phosphate material is arbitrarily controlled, It is an object of the present invention to provide a method for manufacturing a bioprosthetic member that has a large degree of fusion with bones, a large fixing force, and a large strength.

【0006】[0006]

【課題を解決するための手段】前記従来技術の課題を解
決するため、本発明の生体補綴部材はリン酸カルシウム
材料と、それ以外の生体為害性のないセラミック材料と
からなる部材であって、骨固着面から離れるに従って上
記リン酸カルシウム材料の含有割合が段階的に減少する
ように、これら2種の材料の配合比を違えた多層状に構
成した。また、上記のような生体補綴部材を、上記2種
の材料粉末を異なる配合比でもって調整した複数枚のセ
ラミックグリーンシートを積層し、これを焼成する工程
によって製造する。
In order to solve the above-mentioned problems of the prior art, the bioprosthesis member of the present invention is a member composed of calcium phosphate material and other ceramic material which is not harmful to the living body and has bone fixation. In order to reduce the content ratio of the above calcium phosphate material stepwise as the distance from the surface increased, the composition ratio of these two kinds of materials was changed to a multilayer structure. Further, the bioprosthetic member as described above is manufactured by a process of stacking a plurality of ceramic green sheets prepared by adjusting the above-mentioned two kinds of material powders with different compounding ratios and firing them.

【0007】[0007]

【作用】本発明は、リン酸カルシウム材料とその他の生
体為害性のないセラミック材料とからなる生体補綴部材
において表面にリン酸カルシウム材料を多く含み、内部
にいくに従ってその含有割合が段階的に減少するとい
う、一種の組成比傾斜材料で生体補綴部材そのものを構
成したり、或いは基体の表面にそのような材料の構造体
を付着せしめた構成となっている。このような構成によ
り、生体補綴部材の表面はリン酸カルシウム材料が新生
骨と密着してその増生を促し、成長してきた新生骨と癒
合する。このような固着作用は、多数の連通孔を規則性
をもって形成することによって、アンカリング機能(機
械的な係合関係)が加わり、一層強化することができ
る。さらに、配合比が段階的に変わる界面部分でも、同
一材料が互いに接することにより、剪断応力に対する強
度が大きい。
The present invention is a type of bioprosthetic member composed of a calcium phosphate material and other non-biologically harmless ceramic materials, which contains a large amount of calcium phosphate material on the surface thereof, and the content ratio thereof gradually decreases toward the inside. The composition of the living body prosthesis itself is made of the material having a gradient composition ratio, or the structure of such a material is attached to the surface of the substrate. With this structure, the calcium phosphate material adheres to the new bone on the surface of the bioprosthesis member to promote the growth thereof and to be fused with the growing new bone. Such a fixing action can be further strengthened by adding an anchoring function (mechanical engagement relationship) by forming a large number of communication holes with regularity. Furthermore, even at the interface portion where the compounding ratio changes stepwise, the same materials are in contact with each other, so that the strength against shear stress is large.

【0008】また、上記構成の生体補綴部材は、電子部
品などにおけるセラミック多層技術を利用し、リン酸カ
ルシウム材料およびその他の生体為害性のないセラミッ
ク材料の粉末を異なる配合比でもって調整した複数枚の
セラミックグリーンシートを積層一体化し、これを焼成
する工程によって実現できるが、このような方法によれ
ば、リン酸カルシウム材料とセラミック材料の配合比を
任意、且つ確実に制御することができ、また機械を用い
てグリーンシートに孔を設け、孔の配置や大きさ、形態
などを自由に制御することで、骨が侵入しやすく且つア
ンカリング機能の点で最も有利な孔形状を得ることがで
きる。
Further, the bioprosthesis member having the above-mentioned structure utilizes a ceramic multi-layer technology in electronic parts and the like, and a plurality of ceramics prepared by adjusting powders of calcium phosphate material and other non-biologically harmless ceramic materials with different mixing ratios. This can be realized by a process of stacking and integrating green sheets and firing the same. According to such a method, the compounding ratio of the calcium phosphate material and the ceramic material can be controlled arbitrarily and surely, and a machine can be used. By providing holes in the green sheet and freely controlling the arrangement, size, form, etc. of the holes, it is possible to obtain the most advantageous hole shape from the viewpoint of easy bone penetration and anchoring function.

【0009】[0009]

【発明の実施の形態】以下、本発明を実施する形態を図
を用いて説明する。図1および図2は、本発明の一実施
形態による生体補綴部材1を示し、この生体補綴部材1
は、生体癒合能を有するとして知られているリン酸カル
シウム材料と、それ以外の生体為害性のないセラミック
材料とからなる部材であって、リン酸カルシウム材料と
上記セラミック材料の配合比の違いにより、同図に示す
ように同一層内では組成が均一な多層状に構成されてい
る。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 show a bioprosthesis member 1 according to an embodiment of the present invention.
Is a member composed of a calcium phosphate material known to have a bio-fusion ability and a ceramic material other than that which is not harmful to the living body. Due to the difference in the compounding ratio between the calcium phosphate material and the ceramic material, As shown in the figure, the same layer has a uniform composition in a multilayer structure.

【0010】なお、上記生体補綴部材1は、目視するの
みでは界面を確認しにくいことがあるかもしれないが、
多層状の確認方法としては、界面に対し垂直方向に波長
分散型X線マイクロアナライザー分析(EPMA)を行
うことにより、カルシウムとリンの段階的な濃度変化を
確認できる。
It may be difficult to confirm the interface of the bioprosthetic member 1 only by visual observation.
As a method for confirming the multi-layered structure, a stepwise concentration change of calcium and phosphorus can be confirmed by performing wavelength dispersive X-ray microanalyzer analysis (EPMA) in the direction perpendicular to the interface.

【0011】また、上記リン酸カルシウム材料として
は、水酸アパタイト[Ca10(PO4)6(OH)2 、リン酸三カル
シウム Ca3(PO4)2 、リン酸八カルシウム Ca8H2(PO4)6
・5H2Oなどがあり、他方、リン酸カルシウム材料以外の
生体為害性のないセラミック材料としては、アルミナや
ジルコニアセラミックスなどがある。
As the calcium phosphate material, hydroxyapatite [Ca 10 (PO 4 ) 6 (OH) 2 , tricalcium phosphate Ca 3 (PO 4 ) 2 and octacalcium phosphate Ca 8 H 2 (PO 4 ) 6
・ 5H 2 O, etc. are available. On the other hand, other biomaterials that are not harmful to the body other than calcium phosphate materials include alumina and zirconia ceramics.

【0012】上記生体補綴部材1は、上下面の双方が骨
固着面2、2となっており、これら骨固着面2、2を含
む表面層としての固着層3、3が主としてリン酸カルシ
ウム材料からなる(リン酸カルシウム材料のみからなる
層であってもよい)とともに、他方、上記固着層3、3
の内側は、骨固着面2、2から離れるに従ってリン酸カ
ルシウム材料の含有割合が段階的に減少する内部層4と
なっている。
In the bioprosthetic member 1, the upper and lower surfaces are both bone fixing surfaces 2 and 2, and the fixing layers 3 and 3 as a surface layer including the bone fixing surfaces 2 and 2 are mainly made of a calcium phosphate material. (Although it may be a layer consisting only of a calcium phosphate material), on the other hand, the above-mentioned fixing layers 3, 3
The inner side of the is an inner layer 4 in which the content ratio of the calcium phosphate material gradually decreases as the distance from the bone fixation surfaces 2 and 2 increases.

【0013】このように構成される生体補綴部材1にお
いて、骨固着面2におけるリン酸カルシウム材料の密度
が高いので、生体補綴部材1の表面はリン酸カルシウム
材料が新生骨と密着してその増生を促し、成長してきた
新生骨と癒合する。
In the bioprosthesis member 1 thus constructed, since the density of the calcium phosphate material on the bone fixing surface 2 is high, the calcium phosphate material on the surface of the bioprosthesis member 1 adheres to the new bone to promote its growth and grow. It heals with the new bone that has come.

【0014】また、リン酸カルシウム材料と上記セラミ
ック材料の配合比が変わる界面、すなわち固着層3と内
部層4の界面、あるいは異なる一対の内部層4、4の界
面では同一材料が接することから、該材料が固着してお
り、剪断応力に対しての強度が大きい。また、リン酸カ
ルシウム材料と上記セラミック材料の配合比が段階的に
変化していくが、熱膨張率も段階的に変化するので、隣
接する一対の層において、熱膨張率の違いも小さく、製
造工程においてワレが起こり難い。
Further, since the same material is in contact with the interface where the compounding ratio of the calcium phosphate material and the above ceramic material changes, that is, the interface between the fixed layer 3 and the inner layer 4, or the interface between the pair of different inner layers 4 and 4, the material is contacted. Are fixed and have a high strength against shear stress. In addition, although the compounding ratio of the calcium phosphate material and the ceramic material changes stepwise, the coefficient of thermal expansion also changes stepwise, so the difference in coefficient of thermal expansion between adjacent pairs of layers is small, and in the manufacturing process It is difficult for cracks to occur.

【0015】なお、隣接する一対の層におけるリン酸カ
ルシウム材料或いは上記セラミック材料の含有率の変化
量としては30%以下であることが好ましい。これは、
上記含有率が30%を越えると、層界面における剪断強
度が低下し、或いは熱膨張率の違いが大きくなり、製造
工程においてワレが起こる恐れがあるためである。
The amount of change in the content of the calcium phosphate material or the ceramic material in the pair of adjacent layers is preferably 30% or less. this is,
This is because if the content exceeds 30%, the shear strength at the layer interface decreases, or the difference in thermal expansion coefficient increases, and cracks may occur in the manufacturing process.

【0016】このように構成される上記生体補綴部材1
の使用法としては、上下の骨間に装着される人工椎間板
や人工椎体や、その他の骨間ブロックとしての使用があ
る。
The bioprosthesis member 1 thus configured
Examples of the method of use include use as an artificial intervertebral disc or artificial vertebral body mounted between the upper and lower bones, and other interosseous blocks.

【0017】上記生体補綴部材1の作製方法として、電
子部品などにおけるセラミック多層技術を応用すること
ができる。すなわち、公知の方法に基づいてリン酸カル
シウム材料およびその他のセラミック材料の粉末を異な
る配合比でもって調整した複数のグリーンシートを公知
の方法で積層一体化し、これを適温で焼成することによ
って、前述の如く、固着層3と内部層4を有する生体補
綴部材1を得ることができる。
As a method of manufacturing the bioprosthetic member 1, the ceramic multilayer technology in electronic parts and the like can be applied. That is, a plurality of green sheets prepared by adjusting powders of calcium phosphate material and other ceramic materials with different compounding ratios based on a known method are laminated and integrated by a known method, and the green sheets are fired at an appropriate temperature, as described above. The bioprosthesis member 1 having the fixing layer 3 and the inner layer 4 can be obtained.

【0018】このような製造方法の利点として、前記配
合比を任意、確実に制御することができるということが
あり、さらにグリーンシートの段階で、機械的応力をか
けて変形させることにより、例えば湾曲状のものや、そ
の他の形状に生体補綴部材1を成形することもできる。
An advantage of such a manufacturing method is that the compounding ratio can be controlled arbitrarily and surely, and further, when mechanical stress is applied to deform the green sheet, for example, bending can be achieved. The bioprosthesis member 1 can be formed into a shape or other shapes.

【0019】次に、図3は別態様による生体補綴部材1
の断面構造を示し、この生体補綴部材1は、上下の面の
うち一方のみが前記固着体3となっているもので、骨腫
瘍などで、骨の表面一部を削除した場合の骨補綴に用い
ることができる他、図4に示す如く、例えば基体として
の人工股関節、大腿骨コンポーネント5の骨接合面6に
設けた凹部7に生体補綴部材1を埋設し(固着層3を骨
側にして)、大腿骨コンポーネント5と骨との癒合を早
期化させることができる。
Next, FIG. 3 shows a bioprosthetic member 1 according to another embodiment.
The cross-sectional structure of the bioprosthesis member 1 is shown in which only one of the upper and lower surfaces is the fixed body 3, and is used as a bone prosthesis when a part of the surface of the bone is removed due to a bone tumor or the like. In addition to being usable, as shown in FIG. 4, for example, an artificial hip joint as a base, a bioprosthesis member 1 is embedded in a recess 7 provided in an osteosynthesis surface 6 of a femoral component 5 (with the fixing layer 3 on the bone side). ), The fusion between the femoral component 5 and the bone can be accelerated.

【0020】図5乃至図6は、他態様による生体補綴部
材1を示し、この生体補綴部材1は、骨固着面2に該骨
固着面2に開口する多数の柱状の孔8を垂直方向に形成
したもので、前述の生体補綴部材1の製造方法における
グリーンシートの段階で、図7に示すように積層前のグ
リーンシート9に多数の孔8をあけてから積層を行い、
上述のように孔8が垂直方向に連通するようにすればよ
い。
5 to 6 show a bioprosthesis member 1 according to another embodiment, in which the bioprosthesis member 1 has a plurality of columnar holes 8 which are opened in the bone fixation surface 2 in the vertical direction. At the stage of the green sheet in the method of manufacturing the bioprosthetic member 1 described above, a large number of holes 8 are formed in the green sheet 9 before lamination as shown in FIG.
As described above, the holes 8 may communicate with each other in the vertical direction.

【0021】また、図8は上記生体補綴部材1における
孔配置の変形例を示す断面図であり、同図に示すように
孔8は骨固着面2に開口するとともに、略一定の深さご
とに変位させなたものであり、上記生体補綴部材1にお
いて三次元的構造をなす孔8内に新生骨が増生進入し、
骨組織はその立体構造により生体内の生体補綴部材1を
強固に保持することが可能となる。その他、孔8の配置
や大きさ、形態などを自由に制御することで、骨が進入
しやすく且つアンカリング機能の点で最も有利な孔8形
状を得ることができる。
FIG. 8 is a cross-sectional view showing a modified example of the hole arrangement in the bioprosthesis member 1. As shown in the figure, the holes 8 open in the bone fixing surface 2 and at a substantially constant depth. The new bone grows into the hole 8 having a three-dimensional structure in the bioprosthetic member 1,
The three-dimensional structure of the bone tissue makes it possible to firmly hold the bioprosthetic member 1 in the living body. In addition, by freely controlling the arrangement, size, shape, and the like of the holes 8, it is possible to obtain the shape of the holes 8 that is most advantageous in terms of easy bone penetration and an anchoring function.

【0022】[0022]

【実施例】以下、本発明の実施例を説明する。Embodiments of the present invention will be described below.

【0023】(実施例1)平均粒径0.5μのジルコニ
ア粉末と仮焼粉砕した平均粒径1.0μのアパタイト粉
末を表1に示す割合で含む原料粉末100重量%に対し
て、分散剤0.8乃至3.0重量%、有機バインダー8
乃至14重量%、消泡剤0.2重量%を添加し、水30
乃至80重量%を加えてスリップの調整を行い、このス
リップを用いてドクターブレード法により厚さ0.2m
mのグリーンシートを作製した。このグリーンシートを
所望の大きさにカットし、パンチングによりグリーンシ
ートに多数の孔を形成した。
Example 1 A zirconia powder having an average particle diameter of 0.5 μ and an apatite powder having an average particle diameter of 1.0 μ obtained by calcination and pulverization were contained in a ratio shown in Table 1 in 100% by weight of a raw material powder, and a dispersant 0.8 to 3.0% by weight, organic binder 8
To 14% by weight and 0.2% by weight of antifoaming agent,
The slip is adjusted by adding to 80 wt% and the thickness is 0.2 m by the doctor blade method using this slip.
m green sheets were produced. This green sheet was cut into a desired size, and a large number of holes were formed in the green sheet by punching.

【0024】[0024]

【表1】 [Table 1]

【0025】孔のパターンは二種類で、A種はNo.
1,3,5の原料粉末により作製したグリーンシートに
直径1.0mmの丸孔を1.5mmピッチで開けたもの
である。B種はNo.1,2,4の原料粉末により作製
したグリーンシートに直径2.0mmの丸孔を3.0m
mピッチで開けたものである。
There are two types of hole patterns.
A green sheet made of 1, 3, and 5 raw material powder was provided with round holes with a diameter of 1.0 mm at a pitch of 1.5 mm. Type B is No. Round holes with a diameter of 2.0 mm were made 3.0 m on the green sheet made from raw material powders 1, 2, and 4.
It was opened at m pitch.

【0026】この6種のグリーンシートを(原料粉末N
o.・孔種)=1A,1A,1B,1A,2,3,4,
5[2〜5は無孔質]の順で8層積層して生体補綴部材
とした。
These six kinds of green sheets were used as raw material powder N
o.・ Pore type) = 1A, 1A, 1B, 1A, 2, 3, 4,
8 layers were laminated in the order of 5 [2 to 5 are non-porous] to obtain a bioprosthetic member.

【0027】次に、ジルコニア粉末と同材質のCIP成
形体より切り出した板材にこの生体補綴部材をジルコニ
ア粉末100vol%の上記原料粉末No.5の面でも
って接着し、乾燥させた後、酸化雰囲気中1300°C
で焼成し、アパタイト粉末のみから構成される固着層と
これに連続する3層が多孔質で、残りの層が無孔質の生
体補綴部材を得た。
Next, this bioprosthetic member was attached to a plate material cut out from a CIP compact of the same material as the zirconia powder, and the raw material powder No. 1 containing 100 vol% of the zirconia powder was used. After bonding and drying on the surface of No. 5, 1300 ° C in an oxidizing atmosphere
A bioprosthesis member was obtained by calcining in (1), and a fixed layer composed only of apatite powder and three layers continuous with the fixed layer were porous and the remaining layers were nonporous.

【0028】(実施例2)平均粒径0.1μのアルミナ
粉末と仮焼粉砕した平均粒径1.0μのアパタイト粉末
を表1に示す割合で含む原料粉末100重量%に対し
て、分散剤0.8乃至3.0重量%、有機バインダー1
0乃至16重量%、消泡剤0.2重量%を添加し、水3
0乃至80重量%を加えてスリップの調整を行い、この
スリップを用いて押し出し法により厚さ0.3mmのグ
リーンシートを作製した。このグリーンシートを所望の
大きさにカットし、No.1,2,3,4,5の順で5
層積層した。
Example 2 100% by weight of raw material powder containing alumina powder having an average particle size of 0.1 μ and apatite powder having an average particle size of 1.0 μ calcinated and pulverized was used as a dispersant. 0.8 to 3.0% by weight, organic binder 1
0 to 16% by weight, antifoaming agent 0.2% by weight, and water 3
The slip was adjusted by adding 0 to 80% by weight, and a green sheet having a thickness of 0.3 mm was produced by an extrusion method using this slip. This green sheet was cut into a desired size, and No. 5 in the order 1, 2, 3, 4, 5
The layers were laminated.

【0029】[0029]

【表2】 [Table 2]

【0030】次に、アルミナ粉末と同材質の鋳込み成形
法により作製した円柱の側面に、この積層したグリーン
シートをアルミナ粉末80vol%のNo.5の面で接
着し、乾燥の後、酸化雰囲気中で1300°Cの温度で
焼成を行い、表面がアパタイトで距離に応じて段階的に
アパタイトの含有割合が減少する本発明の生体補綴部材
を得た。
Next, on the side surface of the cylinder produced by the cast molding method using the same material as the alumina powder, the laminated green sheet was made of No. 80 vol% alumina powder. The surface of the bioprosthetic member of the present invention is adhered on the surface of No. 5, dried, and then fired at a temperature of 1300 ° C. in an oxidizing atmosphere so that the surface is apatite and the content ratio of the apatite is gradually reduced according to the distance. Obtained.

【0031】[0031]

【発明の効果】本発明の生体補綴部材は、リン酸カルシ
ウム材料と、それ以外の生体為害性のないセラミック材
料とからなる部材であって、骨固着面から離れるに従っ
て上記リン酸カルシウム材料の含有割合が段階的に減少
するようにこれら2種の材料の配合比を違えた多層状に
構成したので、表面はリン酸カルシウム材料が新生骨と
密着してその増生を促し、成長してきた新生骨と癒合す
る。さらに、配合比が段階的に変わる界面部分でも、同
一材料が互いに接することにより、剪断応力に対する強
度が大きい。
The bioprosthesis member of the present invention is a member composed of a calcium phosphate material and a ceramic material other than that, which is not harmful to the body, and the content ratio of the calcium phosphate material is gradually increased as the distance from the bone fixation surface increases. Since the composition ratio of these two kinds of materials is made different so as to decrease, the calcium phosphate material adheres to the new bone and promotes its growth on the surface, and the calcium bone material is fused with the newly grown bone. Furthermore, even at the interface portion where the compounding ratio changes stepwise, the same materials are in contact with each other, so that the strength against shear stress is large.

【0032】また、本発明の生体補綴部材の製造方法に
よれば、電子部品の多層技術を応用しているので上記2
種の材料の配合比を任意、且つ確実に制御することがで
き、また機械を用いてグリーンシートに孔を設け、孔の
配置や大きさ、形態などを自由に制御することで、骨が
侵入しやすく且つアンカリング機能の点で最も有利な孔
形状を得ることができる。
Further, according to the method for manufacturing a bioprosthetic member of the present invention, since the multilayer technology of electronic parts is applied, the above-mentioned 2
It is possible to control the blending ratio of various materials arbitrarily and reliably, and by using a machine to make holes in the green sheet and freely control the arrangement, size, and shape of the holes, bone invades. It is possible to obtain a hole shape that is the most advantageous in terms of ease of operation and anchoring function.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の生体補綴部材の斜視図である。FIG. 1 is a perspective view of a bioprosthetic member of the present invention.

【図2】図1のX−X線断面図である。FIG. 2 is a sectional view taken along line XX of FIG.

【図3】図1のX−X線断面図であって、別形態の生体
補綴部材を示す図である。
FIG. 3 is a cross-sectional view taken along the line XX of FIG. 1, showing a bioprosthetic member in another form.

【図4】本発明の生体補綴部材としての脛骨コンポーネ
ントの斜視図である。
FIG. 4 is a perspective view of a tibial component as a bioprosthetic member of the present invention.

【図5】本発明他形態の生体補綴部材の斜視図である。FIG. 5 is a perspective view of a bioprosthetic member according to another embodiment of the present invention.

【図6】図5のY−Y線断面図である。FIG. 6 is a sectional view taken along line YY of FIG. 5;

【図7】多数の孔をあけたグリーンシートを示す斜視図
である。
FIG. 7 is a perspective view showing a green sheet having a large number of holes.

【図8】図5のY−Y線断面図であって、孔配置の変形
例を示す図である。
8 is a cross-sectional view taken along the line YY of FIG. 5, showing a modification of the hole arrangement.

【符号の説明】[Explanation of symbols]

1 生体補綴部材 2 骨固着面 3 固着層 4 内部層 5 大腿骨コンポーネント 6 骨接合面 7 凹部 8 孔 9 グリーンシート DESCRIPTION OF SYMBOLS 1 Bioprosthetic member 2 Bone fixing surface 3 Fixing layer 4 Inner layer 5 Femoral component 6 Bone joint surface 7 Recessed portion 8 Hole 9 Green sheet

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 リン酸カルシウム材料とその他の生体為
害性のないセラミック材料とからなる生体補綴部材の少
なくとも表面の一部が骨固着面として主に上記リン酸カ
ルシウム材料を含み、且つ上記骨固着面から離れるに従
って上記リン酸カルシウム材料の含有割合を段階的に減
少せしめて成る生体補綴部材。
1. A bioprosthesis member comprising a calcium phosphate material and other non-biologically harmless ceramic material, at least a part of the surface of which mainly contains the calcium phosphate material as a bone-fixing surface, and is separated from the bone-bonding surface. A bioprosthesis member obtained by gradually reducing the content ratio of the calcium phosphate material.
【請求項2】 上記骨固着面には、該骨固着面に開口す
る多数の孔が規則性をもって形成してあることを特徴と
する請求項1の生体補綴部材。
2. The bioprosthesis member according to claim 1, wherein the bone fixation surface is formed with a number of holes that are open to the bone fixation surface in a regular manner.
【請求項3】 リン酸カルシウム材料およびその他の生
体為害性のないセラミック材料の粉末を異なる配合比で
もって調整した複数枚のセラミックグリーンシートを積
層一体化し、これを焼成する工程を含む生体補綴部材の
製造方法。
3. Production of a bioprosthesis member including a step of laminating and integrating a plurality of ceramic green sheets prepared by adjusting powders of a calcium phosphate material and other non-biologically harmless ceramic materials with different compounding ratios, and firing them. Method.
JP7337502A 1995-12-25 1995-12-25 Bioprocsthetic member and its manufacture Pending JPH09173436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7337502A JPH09173436A (en) 1995-12-25 1995-12-25 Bioprocsthetic member and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7337502A JPH09173436A (en) 1995-12-25 1995-12-25 Bioprocsthetic member and its manufacture

Publications (1)

Publication Number Publication Date
JPH09173436A true JPH09173436A (en) 1997-07-08

Family

ID=18309265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7337502A Pending JPH09173436A (en) 1995-12-25 1995-12-25 Bioprocsthetic member and its manufacture

Country Status (1)

Country Link
JP (1) JPH09173436A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11178913A (en) * 1997-12-22 1999-07-06 Kyocera Corp Organism prosthetic material
WO2008066106A1 (en) * 2006-11-30 2008-06-05 Nihon University Layered gradient material for biological use and method for producing the same
JP2009000546A (en) * 1999-05-31 2009-01-08 Nobel Biocare Ab (Publ) Layer arranged on implant for bone or tissue structure, such implant, and method for application of the layer
JP2010509336A (en) * 2006-11-09 2010-03-25 ニューヨーク ユニバーシティ Method for manufacturing sandwich material, glass / ceramic / glass composite structure, glass / ceramic / glass, medical or dental prosthesis, and glass / zirconia / glass sandwich material
CN112451185A (en) * 2020-12-30 2021-03-09 杭州电子科技大学 High-strength bioactive intervertebral fusion cage and manufacturing method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11178913A (en) * 1997-12-22 1999-07-06 Kyocera Corp Organism prosthetic material
JP2009000546A (en) * 1999-05-31 2009-01-08 Nobel Biocare Ab (Publ) Layer arranged on implant for bone or tissue structure, such implant, and method for application of the layer
US8152856B2 (en) 1999-05-31 2012-04-10 Nobel Biocare Ab (Publ.) Layer arranged on implant for bone or tissue structure, such an implant, and a method for application of the layer
JP2010509336A (en) * 2006-11-09 2010-03-25 ニューヨーク ユニバーシティ Method for manufacturing sandwich material, glass / ceramic / glass composite structure, glass / ceramic / glass, medical or dental prosthesis, and glass / zirconia / glass sandwich material
US8815327B2 (en) 2006-11-09 2014-08-26 New York University Graded glass/zirconia/glass structures for damage resistant ceramic dental and orthopedic prostheses
WO2008066106A1 (en) * 2006-11-30 2008-06-05 Nihon University Layered gradient material for biological use and method for producing the same
CN112451185A (en) * 2020-12-30 2021-03-09 杭州电子科技大学 High-strength bioactive intervertebral fusion cage and manufacturing method thereof

Similar Documents

Publication Publication Date Title
EP0719529B1 (en) A process of preparing a living body-supporting member
US20070116734A1 (en) Porous, load-bearing, ceramic or metal implant
US4969913A (en) Ceramics composites
US5071434A (en) Biologically active surface ceramic and process for producing the same
US7531004B2 (en) Pliable conformable bone restorative
Hsu et al. Fabrication of porous bioceramics with porosity gradients similar to the bimodal structure of cortical and cancellous bone
EP1449818A1 (en) Porous article of sintered calcium phosphate, process for producing the same and artificial bone and histomorphological scaffold using the same
WO1989011300A1 (en) Artificial bone structure for transplantation of bone
JPH0362104B2 (en)
US7416564B2 (en) Porous bioceramics for bone scaffold and method for manufacturing the same
EP0107476A2 (en) Bone graft substitute
Wong et al. Functionally graded tricalcium phosphate/fluoroapatite composites
Bae et al. Hydroxyapatite (HA) bone scaffolds with controlled macrochannel pores
RU2595703C1 (en) Zirconium oxide-based method for producing porous bioactive ceramics
US6776860B2 (en) Ceramic composite and manufacturing method thereof
WO2008066106A1 (en) Layered gradient material for biological use and method for producing the same
JPH09173436A (en) Bioprocsthetic member and its manufacture
Kalita et al. Porous calcium aluminate ceramics for bone-graft applications
WO2020161898A1 (en) Ceramic porous body, and method for producing ceramic porous body
US9114011B2 (en) Fabrication method of a novel artificial cortical bone using a multi-pass extrusion process
Hsu et al. Fabrication of porous calcium phosphate bioceramics as synthetic cortical bone graft
JP3634974B2 (en) Bioprosthetic material
KR100426446B1 (en) Cylindrical Porous Bone Filler and Process for Its Production
JPH11178913A (en) Organism prosthetic material
JP3670677B2 (en) Bone prosthesis for artificial hip joint