JPH09172091A - Cmos semiconductor device - Google Patents

Cmos semiconductor device

Info

Publication number
JPH09172091A
JPH09172091A JP7330575A JP33057595A JPH09172091A JP H09172091 A JPH09172091 A JP H09172091A JP 7330575 A JP7330575 A JP 7330575A JP 33057595 A JP33057595 A JP 33057595A JP H09172091 A JPH09172091 A JP H09172091A
Authority
JP
Japan
Prior art keywords
type
diffusion layer
well
substrate
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7330575A
Other languages
Japanese (ja)
Other versions
JP3188168B2 (en
Inventor
Mamoru Kaneko
守 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP33057595A priority Critical patent/JP3188168B2/en
Publication of JPH09172091A publication Critical patent/JPH09172091A/en
Application granted granted Critical
Publication of JP3188168B2 publication Critical patent/JP3188168B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To form a used capacitor irrespective of a P-type or N-type wafer substrate by a method wherein a capacitor is formed on an element forming area on one conductive and reverse conductive wells formed on a wafer substrate. SOLUTION: After a LOCOS oxide film 8 for element separation is formed on a substrate 1A, by use of the LOCOS oxide film 8 as a mask, the entire face of substrate is thermally oxidized to form a gate oxide film 9. Next, after a polysilicon film is formed on the entire face, it is patterned to form a gate electrode 10 on an element forming area. Then, it is possible to form P, N-type wells 2, 3 on the substrate 1A, an N channel type capacitor 4 on the P well 2, and a P channel type capacitor on the N well 3. When making mask design, it is possible to use the same capacitor irrespective of the P-type or N-type well substrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、CMOS半導体装
置において、特にP型、N型ウエハ基板にかかわらず機
能するキャパシタを提供する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for providing a capacitor that functions in a CMOS semiconductor device, particularly regardless of a P-type or N-type wafer substrate.

【0002】[0002]

【従来の技術】従来、CMOS半導体装置は、要求され
る回路特性、デバイス特性、その他の目的に応じて、P
型ウエハ基板とN型ウエハ基板を使い分けていた。ま
た、キャパシタは、ゲート酸化膜形成とゲート酸化膜工
程のプロセスモニター及び完成品の質を検査するため
に、必須のデバイスである。
2. Description of the Related Art Conventionally, a CMOS semiconductor device has a P-type semiconductor device depending on required circuit characteristics, device characteristics, and other purposes.
The type wafer substrate and the N type wafer substrate were used separately. Further, the capacitor is an indispensable device for inspecting the quality of the finished product and the process monitor of the gate oxide film formation and the gate oxide film process.

【0003】そして、現行ではP型ウエハ基板とN型ウ
エハ基板とでは、キャパシタ形状を変えなければならな
かった。以下、P型ウエハ基板とN型ウエハ基板の各キ
ャパシタ形状について、図6乃至図9に基づき説明す
る。尚、図6及び図7はP型ウエハ基板で、図7は図6
のA−A断面図で、図8及び図9はN型ウエハ基板で、
図9は図8のB−B断面図である。
At present, it has been necessary to change the capacitor shape between the P-type wafer substrate and the N-type wafer substrate. Hereinafter, each capacitor shape of the P-type wafer substrate and the N-type wafer substrate will be described with reference to FIGS. 6 to 9. 6 and 7 are P-type wafer substrates, and FIG.
8A and 9B are N-type wafer substrates,
9 is a sectional view taken along line BB of FIG.

【0004】先ず、P型ウエハ基板51を使用する場合
には、図6及び図7に示すように当該基板51上にP型
ウエル52及びN型ウエル53が形成され、該P型ウエ
ル52上にNチャネル型キャパシタ55が形成され、ま
たN型ウエル53上にPチャネル型キャパシタ56が形
成されている。そして、周知な方法によりゲート酸化膜
の膜質評価を行う際に、Nチャネル型キャパシタ55側
では、電荷が基板表面からP型ウエル52、そしてP型
基板51を通って直接基板裏面に抜け、Pチャネル型キ
ャパシタ56側では、電荷が基板表面からN型ウエル5
3を通って、N+ 型拡散層58、金属配線59、P+ 型
拡散層60、そしてP型基板51を通って基板裏面に抜
けるように形成されている。62はP型ウエル52内に
形成されたP+ 型拡散層である。尚、該拡散層62は、
P型ウエル52の電位固定に有効である。
First, when a P-type wafer substrate 51 is used, a P-type well 52 and an N-type well 53 are formed on the substrate 51 as shown in FIGS. An N channel type capacitor 55 is formed on the N type well 53, and a P channel type capacitor 56 is formed on the N type well 53. Then, when the film quality of the gate oxide film is evaluated by a well-known method, on the N-channel capacitor 55 side, electric charge is discharged from the substrate surface through the P-type well 52 and the P-type substrate 51 to the substrate rear surface directly, and P On the channel type capacitor 56 side, charges are transferred from the substrate surface to the N type well 5.
3 through the N + type diffusion layer 58, the metal wiring 59, the P + type diffusion layer 60, and the P type substrate 51 to the back surface of the substrate. Reference numeral 62 is a P + type diffusion layer formed in the P type well 52. The diffusion layer 62 is
This is effective for fixing the potential of the P-type well 52.

【0005】更に、N型ウエハ基板71を使用する場合
には、図8及び図9に示すように当該基板71上にP型
ウエル72及びN型ウエル73が形成され、該P型ウエ
ル72上にNチャネル型キャパシタ75が形成され、ま
たN型ウエル73上にPチャネル型キャパシタ76が形
成されている。そして、ゲート酸化膜の膜質評価を行う
際に、Nチャネル型キャパシタ75側では、電荷が基板
表面からP型ウエル72を通って、P+ 型拡散層78、
金属配線79、N+ 型拡散層80、そしてN型基板71
を通って基板裏面に抜け、Pチャネル型キャパシタ側7
6では、電荷が基板表面からN型ウエル73、そしてN
型基板71を通って直接基板裏面に抜けるように形成さ
れている。82はN型ウエル73内に形成されたN+ 型
拡散層である。尚、該拡散層82は、N型ウエル73の
電位固定に有効である。
Further, when the N-type wafer substrate 71 is used, a P-type well 72 and an N-type well 73 are formed on the substrate 71 as shown in FIGS. An N channel type capacitor 75 is formed on the N type well 73, and a P channel type capacitor 76 is formed on the N type well 73. Then, when the film quality of the gate oxide film is evaluated, on the N-channel capacitor 75 side, charges pass from the substrate surface through the P-type well 72 to the P + -type diffusion layer 78,
Metal wiring 79, N + type diffusion layer 80, and N type substrate 71
Through to the back surface of the substrate, and the P-channel capacitor side 7
6, the charge is transferred from the substrate surface to the N-type well 73, and N
It is formed so as to pass directly through the die substrate 71 to the back surface of the substrate. Reference numeral 82 is an N + type diffusion layer formed in the N type well 73. The diffusion layer 82 is effective for fixing the potential of the N-type well 73.

【0006】しかし、マスク設計をする際に、ウエハ基
板をP型あるいはN型に区別してキャパシタを設置する
のは、非常にわずらわしかった。また、キャパシタを誤
って使用すると、モニターできないとか、マスクを多数
枚修正しなければならず、不便であった。
However, when designing a mask, it has been very troublesome to distinguish the wafer substrate into P type or N type and install the capacitors. Further, if the capacitor is used by mistake, it is inconvenient because it cannot be monitored and many masks have to be corrected.

【0007】[0007]

【発明が解決しようとする課題】従って、本発明はP型
あるいはN型ウエハ基板にかかわらず、使用できるキャ
パシタを有するCMOS半導体装置を提供することを目
的とする。
SUMMARY OF THE INVENTION Therefore, it is an object of the present invention to provide a CMOS semiconductor device having a capacitor that can be used regardless of whether it is a P-type or N-type wafer substrate.

【0008】[0008]

【課題を解決するための手段】そこで、本発明はP型あ
るいはN型ウエハ基板上に形成されたP型ウエル2及び
N型ウエル3上の素子形成領域上に形成されたキャパシ
タ4、5と、前記P型ウエル2内の周辺部を囲むように
形成されたP+ 型拡散層12Aと、前記P+ 型拡散層1
2Aを囲むように前記P型ウエル2の外側に形成された
N+ 型拡散層13Aと、前記N型ウエル3内の周辺部を
囲むように形成されたN+ 型拡散層13Bと、前記N+
型拡散層13Bを囲むようにN型ウエル3の外側に形成
されたP+ 型拡散層12Bと、前記隣り合ったP+ 型拡
散層12A、12B及びN+ 型拡散層13A、13Bを
跨ぐ形で接続された金属配線16とから成るものであ
る。
SUMMARY OF THE INVENTION Therefore, according to the present invention, capacitors 4 and 5 are formed on an element formation region on a P-type well 2 and an N-type well 3 formed on a P-type or N-type wafer substrate. A P + type diffusion layer 12A formed so as to surround the peripheral portion of the P type well 2, and the P + type diffusion layer 1
2A, an N + type diffusion layer 13A formed outside the P type well 2, an N + type diffusion layer 13B formed so as to surround a peripheral portion of the N type well 3, and the N type diffusion layer 13B. +
The P + type diffusion layer 12B formed outside the N type well 3 so as to surround the type diffusion layer 13B and the P + type diffusion layers 12A and 12B and the N + type diffusion layers 13A and 13B adjacent to each other. And metal wiring 16 connected by.

【0009】また、本発明はP型あるいはN型ウエハ基
板上に隣り合うように形成されたP型ウエル2及びN型
ウエル3上の素子形成領域上に形成されたキャパシタ
4、5と、前記P型ウエル2内あるいはN型ウエル3内
の周辺部を囲むように形成されたP+ 型拡散層20ある
いはN+ 型拡散層21と、前記隣り合ったP+ 型拡散層
20及びN+ 型拡散層21を跨ぐ形で接続された金属配
線16とから成るものである。
Further, according to the present invention, capacitors 4 and 5 are formed on an element forming region on a P-type well 2 and an N-type well 3 formed adjacent to each other on a P-type or N-type wafer substrate, and The P + type diffusion layer 20 or the N + type diffusion layer 21 formed so as to surround the peripheral portion of the P type well 2 or the N type well 3, and the adjacent P + type diffusion layer 20 and N + type. The metal wiring 16 is connected so as to straddle the diffusion layer 21.

【0010】[0010]

【発明の実施の形態】本発明のCMOS半導体装置の一
実施の形態について、図1乃至図3の図面に基づき説明
する。尚、図2及び図3は図1のC−C断面図であり、
図2はP型ウエハ基板1Aを使用し、図3はN型ウエハ
基板1Bを使用している。以下、便宜的にP型ウエハ基
板1Aに形成されたCMOS半導体装置について説明す
る。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a CMOS semiconductor device of the present invention will be described with reference to the drawings of FIGS. 2 and 3 are sectional views taken along the line CC of FIG.
2 uses a P-type wafer substrate 1A, and FIG. 3 uses an N-type wafer substrate 1B. Hereinafter, for convenience, a CMOS semiconductor device formed on the P-type wafer substrate 1A will be described.

【0011】先ず、図2に示すように1AはP型ウエハ
基板で、当該基板1A上にP型ウエル2及びN型ウエル
3が形成され、該P型ウエル2上にNチャネル型キャパ
シタ4が形成され、またN型ウエル3上にPチャネル型
キャパシタ5が形成されている。即ち、基板1A上に素
子分離用のLOCOS酸化膜8が形成された後に、該L
OCOS酸化膜8をマスクにして基板全面が熱酸化さ
れ、ゲート酸化膜9が形成される。次に、全面にポリシ
リコン膜が形成された後に、周知な方法によりパターニ
ングされて素子形成領域上にゲート電極10が形成され
ている。
First, as shown in FIG. 2, 1A is a P-type wafer substrate, a P-type well 2 and an N-type well 3 are formed on the substrate 1A, and an N-channel type capacitor 4 is formed on the P-type well 2. A P-channel capacitor 5 is formed on the N-type well 3. That is, after the LOCOS oxide film 8 for element isolation is formed on the substrate 1A, the L
Using the OCOS oxide film 8 as a mask, the entire surface of the substrate is thermally oxidized to form a gate oxide film 9. Next, after a polysilicon film is formed on the entire surface, it is patterned by a known method to form the gate electrode 10 on the element formation region.

【0012】また、前記P型ウエル2内の周辺部を囲む
ようにP+ 型拡散層12Aが形成され、該P+ 型拡散層
12Aを囲むようにP型ウエル2の外側にN+ 型拡散層
13Aが形成されている。尚、前記拡散層12Aは、P
型ウエル2の電位固定に有効である。同様に、前記N型
ウエル3内の周辺部を囲むようにN+ 型拡散層13Bが
形成され、該N+ 型拡散層13Bを囲むようにN型ウエ
ル3の外側にP+ 型拡散層12Bが形成されている。
尚、前記拡散層13Bは、N型ウエル3の電位固定に有
効である。次に、全面に層間絶縁膜15が形成され(後
述するゲート酸化膜の膜質評価検査のため、ゲート電極
10の一部表面が露出している。)、該層間絶縁膜15
に隣り合う前記P+ 型拡散層12AとN+ 型拡散層13
A及びN+型拡散層13BとP+ 型拡散層12B上にコ
ンタクト孔が形成された後に、該コンタクト孔を介して
前記P+ 型拡散層12AとN+ 型拡散層13A及びN+
型拡散層13BとP+ 型拡散層12Bにコンタクトする
金属配線16が形成されている。同様にして、図3に示
すようにN型ウエル基板1BにもCMOS半導体装置が
形成される。
A P + type diffusion layer 12A is formed so as to surround the peripheral portion of the P type well 2, and an N + type diffusion layer is formed outside the P type well 2 so as to surround the P + type diffusion layer 12A. The layer 13A is formed. The diffusion layer 12A is made of P
This is effective for fixing the potential of the mold well 2. Similarly, an N + type diffusion layer 13B is formed so as to surround the peripheral portion of the N type well 3, and a P + type diffusion layer 12B is provided outside the N type well 3 so as to surround the N + type diffusion layer 13B. Are formed.
The diffusion layer 13B is effective for fixing the potential of the N-type well 3. Next, an interlayer insulating film 15 is formed on the entire surface (a part of the surface of the gate electrode 10 is exposed for a film quality evaluation inspection of a gate oxide film described later), and the interlayer insulating film 15 is formed.
The P + type diffusion layer 12A and the N + type diffusion layer 13 which are adjacent to each other
After a contact hole is formed on the A and N + type diffusion layer 13B and the P + type diffusion layer 12B, the P + type diffusion layer 12A and the N + type diffusion layers 13A and N + are formed through the contact hole.
A metal wiring 16 is formed to contact the type diffusion layer 13B and the P + type diffusion layer 12B. Similarly, a CMOS semiconductor device is also formed on the N-type well substrate 1B as shown in FIG.

【0013】以下、このようにして形成されたCMOS
半導体装置のゲート酸化膜の膜質評価について説明す
る。先ず、図2に示すようにP型ウエハ基板1Aを使用
したCMOS半導体装置のゲート酸化膜の膜質評価にお
いては、Nチャネル型キャパシタ4側では、電荷が基板
表面からP型ウエル2、そしてP型基板1Aを通って直
接基板裏面に抜け、Pチャネル型キャパシタ5側では、
電荷が基板表面からN型ウエル3を通って、N+ 型拡散
層13B、金属配線16、P+ 型拡散層12B、そして
P型基板1Aを通って基板裏面に抜ける(図面中の一点
鎖線参照)。
Hereinafter, the CMOS thus formed will be described.
The film quality evaluation of the gate oxide film of the semiconductor device will be described. First, in the film quality evaluation of the gate oxide film of the CMOS semiconductor device using the P-type wafer substrate 1A as shown in FIG. 2, on the N-channel capacitor 4 side, the charge is from the substrate surface to the P-type well 2 and then to the P-type well. It passes through the substrate 1A and directly goes out to the back surface of the substrate, and on the P-channel capacitor 5 side,
The charges pass from the surface of the substrate through the N-type well 3, through the N + type diffusion layer 13B, the metal wiring 16, the P + type diffusion layer 12B, and the P type substrate 1A to the back side of the substrate (see the alternate long and short dash line in the drawing). ).

【0014】また、図3に示すようにN型ウエハ基板1
Bを使用したCMOS半導体装置のゲート酸化膜の膜質
評価においては、Pチャネル型キャパシタ5側では、電
荷が基板表面からN型ウエル3、そしてN型基板1Bを
通って直接基板裏面に抜け、Nチャネル型キャパシタ4
側では、電荷が基板表面からP型ウエル2を通って、P
+ 型拡散層12A、金属配線16、N+ 型拡散層13
A、そしてN型基板1Bを通って基板裏面に抜ける(図
面中の一点鎖線参照)。
Further, as shown in FIG. 3, an N-type wafer substrate 1
In the film quality evaluation of the gate oxide film of the CMOS semiconductor device using B, on the P-channel capacitor 5 side, electric charge is discharged from the substrate surface through the N-type well 3 and the N-type substrate 1B to the back surface of the substrate directly. Channel type capacitor 4
On the side, the charge passes from the surface of the substrate through the P-type well 2 to P
+ Type diffusion layer 12A, metal wiring 16, N + type diffusion layer 13
It passes through A and the N-type substrate 1B and exits to the back surface of the substrate (see the alternate long and short dash line in the drawing).

【0015】このように本発明では、キャパシタのデザ
イン・ルールを工夫することにより、P型、N型ウエハ
基板にかかわらず、どちらでも機能するキャパシタが得
られる。また、図4及び図5に示すように前述したCM
OS半導体装置の微細化をはかるようにしても良い。
尚、図5は図4のD−D断面図である。
As described above, in the present invention, by devising the design rule of the capacitor, it is possible to obtain a capacitor that functions in both P-type and N-type wafer substrates. Also, as shown in FIG. 4 and FIG.
The OS semiconductor device may be miniaturized.
Incidentally, FIG. 5 is a sectional view taken along the line D-D of FIG.

【0016】即ち、図5に示すようにP型あるいはN型
ウエハ基板1上にP型ウエル2及びN型ウエル3を隣り
合わせに形成して微細化をはかった状態で、P型ウエル
2内の周辺部にP+ 型拡散層20を形成し、N型ウエル
3内の周辺部にN+ 型拡散層21を形成している。
That is, as shown in FIG. 5, the P-type well 2 and the N-type well 3 are formed adjacent to each other on the P-type or N-type wafer substrate 1 to be miniaturized, and then the inside of the P-type well 2 is formed. A P + type diffusion layer 20 is formed in the peripheral portion, and an N + type diffusion layer 21 is formed in the peripheral portion in the N type well 3.

【0017】[0017]

【発明の効果】以上、本発明のCMOS半導体装置によ
れば、マスク設計をする際に、ウエハ基板のP型、N型
にかかわらず、同じキャパシタを使用することができ、
作業性が向上する。また、キャパシタの選択を誤った場
合に、従来の検査ができないとか、マスクを修正しなけ
ればならないといった不都合が解消される。
As described above, according to the CMOS semiconductor device of the present invention, when designing a mask, the same capacitor can be used regardless of the P type or N type of the wafer substrate.
Workability is improved. Further, when the capacitor is selected incorrectly, the inconvenience that the conventional inspection cannot be performed and the mask has to be corrected is solved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のCMOS半導体装置を示す平面図であ
る。
FIG. 1 is a plan view showing a CMOS semiconductor device of the present invention.

【図2】図1のC−C断面図である。FIG. 2 is a sectional view taken along line CC of FIG.

【図3】図1のC−C断面図である。FIG. 3 is a sectional view taken along line CC of FIG. 1;

【図4】本発明の他のCMOS半導体装置を示す平面図
である。
FIG. 4 is a plan view showing another CMOS semiconductor device of the present invention.

【図5】図4のD−D断面図である。FIG. 5 is a sectional view taken along the line DD of FIG. 4;

【図6】従来のCMOS半導体装置を示す平面図であ
る。
FIG. 6 is a plan view showing a conventional CMOS semiconductor device.

【図7】図6のA−A断面図である。7 is a cross-sectional view taken along the line AA of FIG.

【図8】従来のCMOS半導体装置を示す平面図であ
る。
FIG. 8 is a plan view showing a conventional CMOS semiconductor device.

【図9】図8のB−B断面図である。FIG. 9 is a sectional view taken along line BB of FIG. 8;

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ウエハ基板上に形成された一導電型及び
逆導電型ウエル上の素子形成領域上に形成されたキャパ
シタと、 前記一導電型ウエル内の周辺部を囲むように形成された
一導電型拡散層と、 前記一導電型拡散層を囲むように前記一導電型ウエルの
外側に形成された逆導電型拡散層と、 前記逆導電型ウエル内の周辺部を囲むように形成された
逆導電型拡散層と、 前記逆導電型拡散層を囲むように前記逆導電型ウエルの
外側に形成された一導電型拡散層と、 前記隣り合った一導電型拡散層及び逆導電型拡散層を跨
ぐ形で接続された金属配線とから成ることを特徴とする
CMOS半導体装置。
1. A capacitor formed on an element formation region on a well of one conductivity type and an opposite conductivity type formed on a wafer substrate, and one formed so as to surround a peripheral portion in the well of one conductivity type. A conductive type diffusion layer, a reverse conductive type diffusion layer formed outside the one conductive type well so as to surround the one conductive type diffusion layer, and a peripheral portion inside the reverse conductive type well. An opposite conductivity type diffusion layer, a one conductivity type diffusion layer formed outside the opposite conductivity type well so as to surround the opposite conductivity type diffusion layer, the adjacent one conductivity type diffusion layer and the opposite conductivity type diffusion layer A CMOS semiconductor device, comprising: a metal wiring connected in such a manner as to straddle over.
【請求項2】 ウエハ基板上に隣り合うように形成され
た一導電型及び逆導電型ウエル上の素子形成領域上に形
成されたキャパシタと、 前記一導電型ウエル内あるいは逆導電型ウエル内の周辺
部を囲むように形成された一導電型拡散層あるいは逆導
電型拡散層と、 前記隣り合った一導電型拡散層及び逆導電型拡散層を跨
ぐ形で接続された金属配線とから成ることを特徴とする
CMOS半導体装置。
2. A capacitor formed on an element forming region on a well of one conductivity type and a well of opposite conductivity formed adjacently on a wafer substrate, and a capacitor in the well of one conductivity type or in the well of opposite conductivity type. A diffusion layer of one conductivity type or a diffusion layer of opposite conductivity type formed so as to surround the peripheral portion, and a metal wiring connected so as to straddle the adjacent diffusion layer of one conductivity type and the diffusion layer of opposite conductivity type. A CMOS semiconductor device characterized by:
JP33057595A 1995-12-19 1995-12-19 CMOS semiconductor device Expired - Fee Related JP3188168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33057595A JP3188168B2 (en) 1995-12-19 1995-12-19 CMOS semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33057595A JP3188168B2 (en) 1995-12-19 1995-12-19 CMOS semiconductor device

Publications (2)

Publication Number Publication Date
JPH09172091A true JPH09172091A (en) 1997-06-30
JP3188168B2 JP3188168B2 (en) 2001-07-16

Family

ID=18234194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33057595A Expired - Fee Related JP3188168B2 (en) 1995-12-19 1995-12-19 CMOS semiconductor device

Country Status (1)

Country Link
JP (1) JP3188168B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6531746B2 (en) 1999-11-30 2003-03-11 Nec Corporation Semiconductor device with high-speed switching circuit implemented by MIS transistors and process for fabrication thereof
US7864384B2 (en) 1999-12-06 2011-01-04 Canon Kabushiki Kaisha Solid-state imaging device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6531746B2 (en) 1999-11-30 2003-03-11 Nec Corporation Semiconductor device with high-speed switching circuit implemented by MIS transistors and process for fabrication thereof
US7864384B2 (en) 1999-12-06 2011-01-04 Canon Kabushiki Kaisha Solid-state imaging device
US7936487B2 (en) 1999-12-06 2011-05-03 Canon Kabushiki Kaisha Solid-state imaging device
US8248677B2 (en) 1999-12-06 2012-08-21 Canon Kabushiki Kaisha Solid-state imaging device
US8416473B2 (en) 1999-12-06 2013-04-09 Canon Kabushiki Kaisha Solid-state imaging device

Also Published As

Publication number Publication date
JP3188168B2 (en) 2001-07-16

Similar Documents

Publication Publication Date Title
JPH0521557A (en) Semiconductor device
EP0178991B1 (en) A complementary semiconductor device having high switching speed and latchup-free capability
US5733812A (en) Semiconductor device with a field-effect transistor having a lower resistance impurity diffusion layer, and method of manufacturing the same
US5643832A (en) Semiconductor device and method for fabrication thereof
JPH09172091A (en) Cmos semiconductor device
US6153918A (en) Semiconductor device with improved planarity and reduced parasitic capacitance
US5438214A (en) Metal oxide semiconductor device having a common gate electrode for N and P channel MOS transistors
JPH02862B2 (en)
US6611030B1 (en) Cmosfet with conductive, grounded backside connected to the wiring layer through a hole that separates the Mosfets
JPS60200541A (en) Semiconductor device
JP3125929B2 (en) Method for manufacturing semiconductor device
JPH04146665A (en) Resistance element
US6013931A (en) Semiconductor device and method for producing the same
JPH10326896A (en) Semiconductor device and manufacture thereof
JP3138263B2 (en) Method for manufacturing semiconductor device
JPH11126828A (en) Semiconductor device and its manufacture
JP2993041B2 (en) Complementary MOS semiconductor device
US6043546A (en) Planar channel-type MOS transistor
JPH07183518A (en) Semiconductor device and manufacture thereof
JPH09120964A (en) Formation method wiring and semiconductor element
JP2956080B2 (en) Semiconductor device and manufacturing method thereof
JP2940954B2 (en) Method for manufacturing semiconductor device
JPH05145023A (en) Semiconductor device
JPH04354137A (en) Semiconductor device and manufacture thereof
JP2000196033A (en) Semiconductor device and manufacture of the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080511

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees