JPH09171892A - Organic thin film el element - Google Patents

Organic thin film el element

Info

Publication number
JPH09171892A
JPH09171892A JP7330220A JP33022095A JPH09171892A JP H09171892 A JPH09171892 A JP H09171892A JP 7330220 A JP7330220 A JP 7330220A JP 33022095 A JP33022095 A JP 33022095A JP H09171892 A JPH09171892 A JP H09171892A
Authority
JP
Japan
Prior art keywords
organic thin
light
thin film
light emitting
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7330220A
Other languages
Japanese (ja)
Other versions
JP2773720B2 (en
Inventor
Takeshi Kawakami
威 川上
Koji Utsuki
功二 宇津木
Shigemasa Takano
繁正 高野
Kenichi Kasahara
健一 笠原
Yoshimasa Sugimoto
喜正 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7330220A priority Critical patent/JP2773720B2/en
Publication of JPH09171892A publication Critical patent/JPH09171892A/en
Application granted granted Critical
Publication of JP2773720B2 publication Critical patent/JP2773720B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device with low power consumption by making the light emitting side of a base into lens structure, and setting the flat part thickness of the base, the lens part thickness, and the curvature radius to specified ratios. SOLUTION: The diameter Al of an organic EL light emitting part 2 is set to 1mm, the thickness d1 of a base flat part to 1.1mm, the thickness d2 of a base lens part to 0.4mm, the curvature radius R2 of the base surface lens to 4mm, and the output of the organic EL emitting part to 1mW. The light emitting side of a base 3 adjacent to such an organic EL emitting part 2 is made into lens structure, whereby the emitted light can be efficiently converged. Since the ratio in which the incident angle on the base surface becomes less than a critical angle is increased, the brightness is improved, even when seen from the angle other than the optical axis. Further, d1+d2=1.5mm is set smaller than R2=4mm, whereby the field angle can be increased. The light emitting side of the base is made into lens structure, and d1+d is set to R2 or less, whereby a device with low power consumption can be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はセグメントやドット
表示等の光源に用いる有機薄膜EL素子に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic thin film EL device used as a light source for displaying segments or dots.

【0002】[0002]

【従来の技術】タンク(Tang)らによって報告され
た新しいタイプの有機薄膜EL素子(アプライド・フィ
ジックス・レターズ(Applied Physics
Letters)、51巻、913ページ、1987
年)は、フラット基板、陽極、正孔輸送層、発光層、陰
極によって構成されている。陽極としてはフラットなガ
ラス基板に形成された酸化インジウム錫合金(IT
O)、正孔輸送層は1,1′−ビス(4−N,N′−ジ
トリルアミノフェニル)シクロヘキサン、発光層はトリ
ス(8−ヒドロキシキノリノールアルミニウム)及び陰
極はマグネシウム−銀合金から形成されている。
2. Description of the Related Art A new type of organic thin film EL device reported by Tang et al. (Applied Physics Letters).
Letters), 51, 913, 1987.
Year) is composed of a flat substrate, an anode, a hole transport layer, a light emitting layer, and a cathode. As the anode, an indium tin oxide alloy (IT) formed on a flat glass substrate
O), the hole transport layer is formed of 1,1'-bis (4-N, N'-ditolylaminophenyl) cyclohexane, the light emitting layer is formed of tris (8-hydroxyquinolinol aluminum), and the cathode is formed of a magnesium-silver alloy. ing.

【0003】タングらの有機薄膜EL素子の発光動作原
理を簡単に説明すると、まず陽極から正孔輸送層に注入
された正孔が、発光層界面に向かって移動し、陰極から
は電子が発光層に注入され発光層内を移動する。そして
発光層内に注入された正孔と電子が発光層内で再結合
し、励起状態を経て発光する。この時、有機薄膜EL素
子の外部量子効率はEL量子効率と光取り出し効率の積
で示される。そしてEL量子効率は発光材料や素子構造
に大きく依存し、また一方の光取り出し効率は基板や有
機薄膜の光の屈折率に大きく依存することになる。
The principle of light emission operation of the organic thin film EL device of Tang et al. Is briefly described. First, holes injected from the anode into the hole transport layer move toward the interface of the light emitting layer, and electrons are emitted from the cathode. It is injected into the layer and moves through the light emitting layer. Then, the holes and electrons injected into the light emitting layer recombine in the light emitting layer, and emit light through an excited state. At this time, the external quantum efficiency of the organic thin film EL device is represented by the product of the EL quantum efficiency and the light extraction efficiency. The EL quantum efficiency greatly depends on the light emitting material and the element structure, and the light extraction efficiency on the other hand largely depends on the refractive index of light of the substrate or the organic thin film.

【0004】現在開発されている有機薄膜EL素子は基
本的には、タングらの報告した素子構成及び材料の概念
を基に素子構成の改良をはじめ有機材料や電極等の改良
が加えられ進展したものであるが、発光の強度を上げる
ことを目的としたものとして、発光層にキナクリドン誘
導体を微量添加することにより4.1%(photon
/electron)の外部量子効率のEL素子を開発
したもの(“有機半導体の実用化技術”サイエンスフォ
ーラム,New Trigger Series、95
−116頁(1993))が脇本らにより報告されてい
る。
[0004] Basically, the organic thin-film EL devices currently being developed have basically been improved based on the device structure and material concepts reported by Tongue et al., With improvements in organic materials and electrodes, as well as improvements in device structures. The purpose of the present invention is to increase the light emission intensity by adding a small amount of a quinacridone derivative to the light emitting layer to obtain 4.1% (photon).
/ ELECTRON ELECTRONIC DEVICE WITH EXTERNAL QUANTITY EFFICIENCY ("Practical use technology of organic semiconductor", Science Forum, New Trigger Series, 95)
-116 (1993)) has been reported by Wakimoto et al.

【0005】[0005]

【発明が解決しようとする課題】一重項励起子の生成確
率が最大でも40%であること以外に、有機薄膜内で発
生→放射される光を有効に外部に取り出していないこ
と、すなわち光の取り出し効率が低いことに起因して、
理論的に面状発光の有機薄膜ELの外部量子効率は最大
でも約8%しか得られないことが報告されている(有機
エレクトロニクス材料研究会(The Japanes
e Research Association fo
r Organic Electronics Mat
erials)WORKSHOP95、1〜6頁、19
95年)。
In addition to the fact that the generation probability of singlet excitons is 40% at the maximum, light generated in the organic thin film → radiated light is not effectively extracted to the outside, that is, light Due to the low extraction efficiency,
It has been reported that the external quantum efficiency of an organic thin film EL that emits planar light is theoretically only about 8% at a maximum (The Organic Electronics Materials Research Group (The Japanes).
e Research Association fo
r Organic Electronics Mat
erials) WORKSHOP 95, pp. 1-6, 19
1995).

【0006】また光の取り出し効率が低い原因として
は、次のようなことが考えられる。通常の有機薄膜EL
素子では図6に示すように、フラット基板4の裏面に有
機薄膜EL素子の発光部2が直接接続されている。この
発光部2からの出力光は、フラット基板4の裏面から基
板の中を透過して表面から取り出される。しかしながら
このような構造の有機薄膜EL素子においては、等方発
光源である有機薄膜層からの光は、図6に示したように
光取り出し側の基板面や透明電極表面への入射角が臨界
角を越えてしまうと全反射されるため、基板から外部に
取り出すことができない。例えば、有機EL発光部2の
径をA1 、基板の厚さをd1 として、A1が1mmでフラ
ット基板4の厚さd1 が1.1mmのときには、光の取り
出し効率はおおよそ25%になってしまう。
[0006] The cause of the low light extraction efficiency is considered as follows. Normal organic thin film EL
In the element, as shown in FIG. 6, the light emitting section 2 of the organic thin film EL element is directly connected to the back surface of the flat substrate 4. The output light from the light emitting section 2 passes through the inside of the flat substrate 4 from the back surface and is extracted from the front surface. However, in the organic thin-film EL element having such a structure, the light from the organic thin-film layer, which is the isotropic light-emitting source, has a critical angle of incidence on the substrate surface or the transparent electrode surface on the light extraction side as shown in FIG. If the angle is exceeded, the light is totally reflected and cannot be taken out of the substrate. For example, when the diameter of the organic EL light emitting portion 2 is A 1 and the thickness of the substrate is d 1 , and A 1 is 1 mm and the thickness d 1 of the flat substrate 4 is 1.1 mm, the light extraction efficiency is approximately 25%. Become.

【0007】このため、従来のような構成では有機薄膜
EL素子からの光を有効に取り出せていない分、高輝度
が要求される場合、更に高い電圧をかけなければならず
消費電力の増加を招く結果となっていた。
For this reason, in the conventional configuration, since light from the organic thin-film EL element cannot be effectively extracted, if a higher luminance is required, a higher voltage must be applied, resulting in an increase in power consumption. The result was.

【0008】本発明は有機薄膜EL素子の光の取り出し
効率を上げることにより素子の外部量子効率を上げ、低
消費電力で駆動させることができる有機薄膜EL素子を
提供することを目的とする。
An object of the present invention is to provide an organic thin film EL device which can be driven with low power consumption by increasing the external quantum efficiency of the device by increasing the light extraction efficiency of the organic thin film EL device.

【0009】[0009]

【課題を解決するための手段】本発明の有機薄膜EL素
子では光透過部位を有する有機薄膜EL素子において、
前記基板の光取り出し側がレンズ構造であることを特徴
とする。またレンズ構造が発光部の中央を中心とする曲
率を有することを特徴とする。
In the organic thin film EL element of the present invention, an organic thin film EL element having a light transmitting portion is
The light extraction side of the substrate has a lens structure. Further, the lens structure has a curvature centered on the center of the light emitting portion.

【0010】さらに光透過部位が、基板の厚さd1 、基
板表面からレンズ構造の頂点との距離d2 、レンズの曲
率半径R2 との間にd1 +d2 ≦R2 が成り立つことを
特徴とする。また前記レンズ構造が分布屈折率を有する
基板であることを特徴とする。
Further, the light transmitting portion is such that d 1 + d 2 ≤R 2 is established between the thickness d 1 of the substrate, the distance d 2 from the substrate surface to the apex of the lens structure, and the radius of curvature R 2 of the lens. Characterize. Further, the lens structure is a substrate having a distributed refractive index.

【0011】本発明では、基板表面に有機EL発光部を
形成してなる有機薄膜EL素子において、出力光を取り
出す透明基板又は透明電極の表面に極率半径を有するレ
ンズ構造を設けている。このレンズ構造により、光軸以
外の方向に放射された光が光軸方向に集光されるため、
光軸方向から見た照度が向上することになる。また光源
から等方に放射した光が見る基板表面での入射角が臨界
角以下となる割合が増える、すなわち大きい立体角に放
射された光を取り出すことができるので、光軸以外の方
向から見た場合の照度も向上することになる。
In the present invention, a lens structure having a radius of curvature is provided on a surface of a transparent substrate or a transparent electrode from which output light is extracted, in an organic thin film EL element having an organic EL light emitting portion formed on a substrate surface. With this lens structure, light emitted in directions other than the optical axis is collected in the optical axis direction,
The illuminance seen from the optical axis direction is improved. In addition, the rate at which the angle of incidence on the substrate surface where light radiated from the light source is viewed is less than the critical angle increases, that is, light radiated at a large solid angle can be extracted, so that light viewed from a direction other than the optical axis can be obtained. In this case, the illuminance will be improved.

【0012】さらにこのレンズ構造が有機薄膜EL素子
の発光部の中央を中心とする曲率とすることでさらに光
取り出し効率をあげることができる。
Further, when the lens structure has a curvature centered on the center of the light emitting portion of the organic thin film EL element, the light extraction efficiency can be further increased.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を用いて詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0014】図1は本発明の第1の実施の形態における
有機薄膜EL素子を示す断面図である。第1の実施の形
態では有機薄膜EL素子の発光部2に接している基板3
の光出射側がレンズ状構造を有している。ここで図では
有機薄膜EL素子の有機EL発光部2のみを記しその他
の構造は省略している。
FIG. 1 is a sectional view showing an organic thin film EL device according to a first embodiment of the present invention. In the first embodiment, the substrate 3 in contact with the light emitting portion 2 of the organic thin film EL element
Has a lens-like structure on the light emission side. Here, only the organic EL light emitting portion 2 of the organic thin film EL element is shown in the figure, and other structures are omitted.

【0015】第1の実施の形態では発光部に接する基板
の光出射側をレンズ状構造とすることにより有機EL発
光部2からの光を効率よく集光することができ、かつ、
基板表面での入射角が臨界角以下となる割合が増えるの
で光軸以外の角度から見ても照度が向上する。
In the first embodiment, the light from the organic EL light emitting section 2 can be efficiently collected by forming the light emitting side of the substrate in contact with the light emitting section with a lens-like structure.
Since the ratio of the incident angle on the substrate surface being equal to or less than the critical angle increases, the illuminance is improved even when viewed from an angle other than the optical axis.

【0016】図2は有機EL発光部の出力を1mWとし
た場合に有機薄膜EL素子の発光部の中心から外部のθ
方向から見たときの光強度分布を示す図である。
FIG. 2 shows the case where the output of the organic EL light emitting portion is 1 mW and the angle θ from the center of the light emitting portion of the organic thin film EL element to the outside θ.
It is a figure which shows the light intensity distribution when it sees from a direction.

【0017】図1に示した第1の実施の形態の実施例1
の例を説明する。有機EL発光部2の径をA1 、基板の
フラット部分の厚さをd1 、基板のレンズ部分の厚さを
2、基板表面のレンズ構造の曲率半径をR2 として、
1 =1mm、d1 =1.1mm、d2 =0.4mm、R2
4mm、有機EL発光部の出力を1mWとした。このとき
の実施例1の光強度分布は、図2の2のような分布にな
り、照度の向上ならびに均一性が向上することが分か
る。
Example 1 of the first embodiment shown in FIG.
Will be described. Let A 1 be the diameter of the organic EL light emitting portion 2, d 1 be the thickness of the flat portion of the substrate, d 2 be the thickness of the lens portion of the substrate, and R 2 be the radius of curvature of the lens structure on the substrate surface.
A 1 = 1 mm, d 1 = 1.1 mm, d 2 = 0.4 mm, R 2 =
4 mm, and the output of the organic EL light emitting unit was 1 mW. At this time, the light intensity distribution of Example 1 is as shown in 2 in FIG. 2, and it can be seen that the illuminance and the uniformity are improved.

【0018】ここで基板のフラット部分の厚さをd1
び基板のレンズ部分の厚さをd2 と基板表面のレンズ構
造の曲率半径をR2 を変えたときの光強度分布と視野角
の関係を図5に示す。図中に実線で示された光強度分布
は実施例1の有機薄膜EL素子、破線で示された光強度
分布はd1 +d2 (=6.0mm)>R2 (=2.3mm)
としたものである。破線の例では若干の輝度の向上が見
られるが、実施例1と比較して視野角が大きく減少して
しまっている。したがって、視野角を大きくするために
はd1 +d2 ≦R2 とする必要がある。
Here, when the thickness of the flat portion of the substrate is d 1 , the thickness of the lens portion of the substrate is d 2, and the radius of curvature of the lens structure on the substrate surface is R 2 , the light intensity distribution and the viewing angle are changed. FIG. 5 shows the relationship. In the figure, the light intensity distribution indicated by the solid line is the organic thin film EL device of Example 1, and the light intensity distribution indicated by the broken line is d 1 + d 2 (= 6.0 mm)> R 2 (= 2.3 mm).
It is what it was. In the example of the broken line, the brightness is slightly improved, but the viewing angle is greatly reduced as compared with the first embodiment. Therefore, it is necessary to satisfy d 1 + d 2 ≦ R 2 in order to increase the viewing angle.

【0019】次に図1に示した第1の実施の形態の実施
例2の例を説明する。実施例2ではレンズ構造の曲率中
心を有機EL発光部の中央を中心としている。この場合
光の取り出し効率を50%まで引き上げることが可能と
なる。このときの有機薄膜EL素子は、A1 =1mm、d
1 =1.1mm、d2 =1.2mm、R2 =2.3mmとし
た。実施例2のときの有機EL発光部の出力を1mWと
した場合の光強度分布を、図2の1に示す。この場合、
同じ条件でフラット基板を用いた場合よりも約2倍の光
取り出し効率を達成できる。
Next, an example of Example 2 of the first embodiment shown in FIG. 1 will be described. In the second embodiment, the center of curvature of the lens structure is centered on the center of the organic EL light emitting unit. In this case, the light extraction efficiency can be increased to 50%. At this time, the organic thin-film EL element has A 1 = 1 mm, d
1 = 1.1mm, d 2 = 1.2mm , was R 2 = 2.3 mm. The light intensity distribution when the output of the organic EL light emitting unit is 1 mW in Example 2 is shown in FIG. in this case,
Under the same conditions, it is possible to achieve about twice the light extraction efficiency as compared with the case where a flat substrate is used.

【0020】本発明の第1の実施の形態に用いた有機薄
膜EL素子の断面構造を図3に示す。第1の実施の形態
では図3に示すようにレンズ状構造物1の付いたガラス
基板3に陽極21と陽極界面層22が形成され、さらに
正孔輸送層23、発光層24、電子輸送層25、陰極2
6、陰極保護層27が形成された構造となっている。
FIG. 3 shows a cross-sectional structure of the organic thin film EL device used in the first embodiment of the present invention. In the first embodiment, as shown in FIG. 3, an anode 21 and an anode interface layer 22 are formed on a glass substrate 3 having a lens-shaped structure 1, and a hole transport layer 23, a light emitting layer 24, and an electron transport layer 25, cathode 2
6. A structure in which the cathode protection layer 27 is formed.

【0021】以下に実施例3として第1の実施の形態に
おける有機薄膜EL素子の作成手順について説明する。
はじめにレンズ状構造物1の付いたガラス基板3はNC
加工により切断した金型を作製し、これをレプリカとし
た成形によりレンズ構造を形成する。ガラス基板3の厚
さd1 は0.3mmである。光の屈折率は1.5である。
また曲率半径R2 =2.5mm、レンズの厚さd2 =2.
5mmである。
The procedure for fabricating the organic thin film EL device according to the first embodiment will be described below as Example 3.
First, the glass substrate 3 with the lens-like structure 1 is NC
A mold cut by processing is produced, and a lens structure is formed by molding using the mold as a replica. The thickness d 1 of the glass substrate 3 is 0.3 mm. The refractive index of light is 1.5.
In addition, the radius of curvature R 2 = 2.5 mm, and the thickness d 2 of the lens is 2.
5 mm.

【0022】次にガラス基板3上のレンズ構造物1とは
反対側にITOをスパッタリングによってシート抵抗が
15Ω/□になるように製膜し、エッチングによって2
mm幅の陽極21を形成した。その上に陽極界面層22と
して銅フタロシアニンをMBE法を用いて、7.0×1
-9Torr真空下、5nm形成した。
Next, ITO is formed on the glass substrate 3 on the side opposite to the lens structure 1 by sputtering so that the sheet resistance becomes 15 Ω / □, and the film is etched by etching.
An anode 21 having a width of mm was formed. Then, copper phthalocyanine as an anode interface layer 22 was 7.0 × 1 by MBE.
5 nm was formed under 0 -9 Torr vacuum.

【0023】次に正孔輸送層として、α−NPDをMB
E法を用いて5.8×10-9Torr真空下、60nm形
成した。次に発光層24として、トリス(8−ヒドロキ
シキノリノールアルミニウム)とキナクリドンをMBE
法にてキナクリドンが発光層24の0.5モル%含有す
るようにMBE法にて別々の蒸発源(K−セル)からの
同時蒸着によって5.6×10-9Torr真空下、20
nm形成した。
Next, α-NPD was used as a hole transport layer in MB.
The film was formed to a thickness of 60 nm under a vacuum of 5.8 × 10 −9 Torr using the E method. Next, as the light emitting layer 24, tris (8-hydroxyquinolinol aluminum) and quinacridone were MBE
Under 5.6 × 10 −9 Torr vacuum by simultaneous evaporation from separate evaporation sources (K-cells) by MBE so that quinacridone contains 0.5 mol% of the light-emitting layer 24 by the method 20.
nm formed.

【0024】更に、電子輸送層25として、トリス(8
−ヒドロキシキノリノールアルミニウム)をMBE法に
よって4.3×10-9Torr真空下、40nm形成し
た。尚、陽極界面層21〜電子輸送層25までの有機薄
膜は陽極21の端子取り出し部分以外の基板全面に形成
した。
Further, as the electron transport layer 25, tris (8
-Hydroxyquinolinol aluminum) was formed to a thickness of 40 nm by a MBE method under a vacuum of 4.3 × 10 −9 Torr. Note that the organic thin films from the anode interface layer 21 to the electron transport layer 25 were formed on the entire surface of the substrate except for the terminal extraction portion of the anode 21.

【0025】次に真空を破ることなく、ロードロック機
構を用いてステンレス製のシャドーマスク上に有機膜の
形成された基板3を設置し、陰極としてスカンジウムが
1モル%含まれるアルミニウム合金をアルゴンガス中で
RFスパッタ法で蒸発し、リチウムを別の蒸発源より蒸
発させる方法でリチウムが陰極の0.3モル%を占める
ように20nm形成した。
Next, the substrate 3 on which the organic film is formed is placed on a stainless steel shadow mask using a load lock mechanism without breaking the vacuum, and an aluminum alloy containing 1 mol% of scandium is used as a cathode with an argon gas. In this method, lithium was evaporated by an RF sputtering method, and lithium was evaporated from another evaporation source, so that lithium was formed to a thickness of 20 nm so as to occupy 0.3 mol% of the cathode.

【0026】更に、陰極の保護層27としてスカンジウ
ムが1モル%含まれるアルミニウム合金をアルゴンガス
中のRFスパッタ法により300nm形成した。このよう
にして、発光面積が2mm×2mmでレンズ構造の曲率中心
を有機EL発光部の中央を中心とした有機薄膜EL素子
が完成する。
Further, as the protective layer 27 of the cathode, an aluminum alloy containing 1 mol% of scandium was formed to a thickness of 300 nm by RF sputtering in argon gas. Thus, an organic thin-film EL element having a light-emitting area of 2 mm × 2 mm and a center of curvature of the lens structure centered on the center of the organic EL light-emitting portion is completed.

【0027】このように作製した実施例3の有機薄膜E
L素子について定電流駆動させたときの光出力をパワメ
ーターを用いて測定した結果を図4に示す。縦軸が光出
力(μW)、横軸が電流(μA)となっている。図中に
実施例3の有機薄膜EL素子とフラット基板を用いた従
来の有機薄膜EL素子との比較値を示す。ここで従来の
有機薄膜EL素子はレンズ構造を持たないガラス基板
(曲率半径R2 =∞、d1 =0.3mm)とした。
The thus prepared organic thin film E of Example 3
FIG. 4 shows the results of measuring the optical output of the L element when driven at a constant current using a power meter. The vertical axis represents the light output (μW), and the horizontal axis represents the current (μA). The figure shows a comparison between the organic thin film EL device of Example 3 and a conventional organic thin film EL device using a flat substrate. Here, the conventional organic thin film EL element was a glass substrate having no lens structure (radius of curvature R 2 = ∞, d 1 = 0.3 mm).

【0028】図から分かるように実施例3における電流
−光出力特性は、従来の有機薄膜EL素子と比べて同じ
電流において光出力が約2.6倍大きくなる。これは本
発明の有機薄膜EL素子を用いることで、光の取り出し
効率が約2.6倍向上することを示している。
As can be seen from the figure, the current-light output characteristics in the third embodiment are such that the light output is about 2.6 times larger at the same current as compared with the conventional organic thin film EL device. This indicates that the use of the organic thin film EL device of the present invention improves the light extraction efficiency by about 2.6 times.

【0029】またフラット部分の基板の厚さを変えた以
外は実施例3と同様にレンズ構造を有する有機薄膜EL
素子を作成し、電流−光出力特性同様の評価を行った。
このとき実施例4としてd1 が0.8mmとしたときは従
来の有機薄膜EL素子と比較して光出力が約2倍向上し
た。さらに実施例5としてd1 が1.3mmのときは光出
力が約1.6倍向上するという結果となった。
An organic thin film EL having a lens structure in the same manner as in Example 3 except that the thickness of the substrate in the flat portion was changed.
An element was prepared, and the same evaluation as the current-light output characteristic was performed.
When d 1 is set to 0.8mm as in Example 4 this time the light output is improved by about 2 times compared with the conventional organic thin film EL element. Further, as Example 5, when d 1 was 1.3 mm, the light output was improved by about 1.6 times.

【0030】以上、一つの有機薄膜EL素子の例につい
て述べてきたが、有機薄膜EL素子を表示装置に適用す
るために有機薄膜EL素子をアレイ状とする場合には、
有機薄膜EL素子の発光部の径A1 と素子のピッチpに
対して、下に記すような数1の関係が必要となる。
Although one example of an organic thin-film EL element has been described above, when the organic thin-film EL elements are arranged in an array in order to apply the organic thin-film EL element to a display device,
The pitch p of the diameter A 1 and the element of the light emitting portion of the organic thin film EL element, it is necessary to number 1 relationship as denoted below.

【0031】[0031]

【数1】 [Equation 1]

【0032】本発明の有機薄膜EL素子を構成するレン
ズ構造を兼ね備えた光透過部位は基板、あるいはこれら
に接するレンズ状構造物などがあげられる。また基板に
設けるレンズ構造としては、低屈折率イオンを含む平板
基板ガラスにパターニングを施し高屈折率イオン溶融塩
中に浸漬させることにより選択的にイオン交換を行い形
成する埋め込み型3次元分布屈折率レンズ、NC加工に
より切削した金型をレプリカとした成形により形成する
ガラスあるいはプラスティックスレンズ、さらにはプラ
スティックスレンズレットアレイ等がある。
Examples of the light transmitting portion having the lens structure which constitutes the organic thin film EL element of the present invention include a substrate or a lens-like structure in contact with these. As a lens structure provided on the substrate, a buried type three-dimensional distributed refractive index is formed by patterning a flat substrate glass containing low-refractive-index ions and immersing it in a high-refractive-index ion molten salt to selectively perform ion exchange. There are a lens, a glass or plastics lens formed by molding using a mold cut by NC processing as a replica, and a plastics lenslet array.

【0033】本発明に適用されうる有機薄膜EL素子の
有機薄膜層は特に限定されないが、発光層だけの単層構
造のものや正孔輸送帯層、電子輸送帯層、陽極界面層、
陰極界面層などを有するもの等あらゆる薄膜構造が適用
可能である。また、発光層以外を形成する薄膜層として
は、有機物質に限らず無機物質を用いた薄膜や有機物質
と金属の混合体などの薄膜であっても有効である。
The organic thin-film layer of the organic thin-film EL element applicable to the present invention is not particularly limited, but has a single-layer structure of only a light-emitting layer, a hole transport layer, an electron transport layer, an anode interface layer,
Any thin film structure such as one having a cathode interface layer or the like is applicable. Further, the thin film layer other than the light emitting layer is not limited to an organic substance, but is effective even if it is a thin film using an inorganic substance or a thin film of a mixture of an organic substance and a metal.

【0034】本発明の有機薄膜EL素子の有機薄膜層
は、真空蒸着法、分子線蒸着法(MBE法)あるいは溶
媒に溶かした溶液のディッピング法、スピンコーティン
グ法、キャスティング法、バーコート法、ロールコート
法等の塗布法による公知の方法で形成することができ
る。
The organic thin film layer of the organic thin film EL device of the present invention may be formed by vacuum evaporation, molecular beam evaporation (MBE), dipping of a solution dissolved in a solvent, spin coating, casting, bar coating, roll coating, or the like. It can be formed by a known method such as a coating method such as a coating method.

【0035】また、本発明においては、正孔輸送帯層の
材料としては特に限定されないが、例えばトリフェニル
ジアミン誘導体、オキサジアゾール誘導体、ポルフィリ
ン誘導体、スチルベン誘導体、アリールアミン誘導体な
どを用いることができる。
In the present invention, the material of the hole transporting layer is not particularly limited, but for example, triphenyldiamine derivative, oxadiazole derivative, porphyrin derivative, stilbene derivative, arylamine derivative and the like can be used. .

【0036】更に、正孔輸送化合物を既知の高分子を媒
体として、これに分散した層として用いることもでき
る。
Further, the hole transporting compound can be used as a layer dispersed in a known polymer as a medium.

【0037】前記高分子としては、正孔輸送性を極度に
阻害しないものが望ましく、例えば、ポリ−(N−ビニ
ルカルバゾール)、ポリカーボネート、ポリメチルアク
リレート、ポリメチルメタクリレート、ポリスチレン系
重合体、ポリシリレン系重合体、ポリチオフェン、ポリ
アニリン、ポリフェニレンピニレンなどが適用できる。
The polymer is preferably one that does not extremely impair the hole transporting property. Examples thereof include poly- (N-vinylcarbazole), polycarbonate, polymethyl acrylate, polymethyl methacrylate, polystyrene-based polymer, and polysilylene-based polymer. A polymer, polythiophene, polyaniline, polyphenylene pinylene, or the like can be used.

【0038】陽極界面層は安定な正孔注入を達成すべく
導入するものであるが、有機薄膜層と陽極の密着性を保
持する役目を担う必要がある。不必要に膜厚を大きくす
ることは、発光の駆動電圧を大きくしたり、薄膜表面に
不均一発光を招く凹凸をもたらす可能性があり、前記陽
極界面層は30nm以下の膜厚が望ましい。
The anode interface layer is introduced in order to achieve stable hole injection, but it must play a role of maintaining the adhesiveness between the organic thin film layer and the anode. Unnecessarily increasing the film thickness may increase the driving voltage for light emission or cause unevenness on the surface of the thin film to cause uneven light emission. The anode interface layer preferably has a film thickness of 30 nm or less.

【0039】本発明において適用できる陽極界面層は例
えば“色素ハンドブック:講談社’86年”に記載され
ているスピロ化合物、アゾ化合物、キノン化合物、イン
ジゴ化合物、ジフェニルメタン化合物、キナクリドン化
合物、ポリメチン化合物、アクリジン化合物、ポルフィ
リン化合物等の結合多環系の色素が適用できる。
The anode interface layer applicable in the present invention is, for example, a spiro compound, an azo compound, a quinone compound, an indigo compound, a diphenylmethane compound, a quinacridone compound, a polymethine compound, an acridine compound described in "Dye Handbook: Kodansha '86". , Porphyrin compounds and the like, and bonded polycyclic dyes can be applied.

【0040】また、芳香族アミン等の“オーガニック
セミコンダクターズ:フェルラックケミエ社’74年
(ORGANIC SEMICONDUCTORS :
VERLAG CHEMIE’74)”に記載されてい
る低分子有機P型半導体も適用できる。
In addition, "organic" such as aromatic amine
Semiconductors: Ferrac Chemie, 1974 (ORGANIC SEMICONDUCTORS:
VERLAG CHEMIE '74) ".

【0041】本発明において、有機薄膜EL素子の発光
層材料は特に限定されず、公知の発光材料を適用でき
る。例えば、8−ヒドロキシキノリノール及びその誘導
体の金属錯体、テトラフェニルブタジエン誘導体、ジス
チリルアリール誘導体、クマリン系誘導体、キナクリド
ン誘導体、ペリレン系誘導体、ポリメチン系誘導体、ア
ントラセン誘導体、ポリビニルカルバゾールなどが挙げ
られる。発光層は単一成分でも他の発光材料をドーピン
グする系でも良い。
In the present invention, the light emitting layer material of the organic thin film EL element is not particularly limited, and known light emitting materials can be applied. For example, a metal complex of 8-hydroxyquinolinol and a derivative thereof, a tetraphenylbutadiene derivative, a distyrylaryl derivative, a coumarin derivative, a quinacridone derivative, a perylene derivative, a polymethine derivative, an anthracene derivative, and polyvinyl carbazole can be given. The light emitting layer may be a single component or a system doped with another light emitting material.

【0042】本発明においては必要に応じて電子輸送層
を発光層と陰極の間に設けても良い。電子輸送材料は特
に限定されるものではないが、8−ヒドロキシキノリノ
ール及びその誘導体、オキサジアゾール誘導体、ジフェ
ニルキノン誘導体などの適用が可能である。
In the present invention, an electron transport layer may be provided between the light emitting layer and the cathode, if necessary. The electron transport material is not particularly limited, but 8-hydroxyquinolinol and its derivatives, oxadiazole derivatives, diphenylquinone derivatives and the like can be applied.

【0043】有機薄膜EL素子の陽極は、正孔を正孔輸
送帯層に注入する役割を担うものであり、4.5eV以
上の仕事関数を有することが効果的である。有機薄膜E
L素子に用いる陽極材料の具体例としては、酸化インジ
ウム錫合金(ITO)、酸化錫(NESA)、金、銀、
白金、銅等が適用できる。また陰極材料としては、電子
輸送帯又は発光層に電子を注入する目的で、仕事関数の
小さい材料が好ましく、具体的にはインジウム、アルミ
ニウム、マグネシウム、マグネシウム−インジウム合
金、マグネシウム−アルミニウム合金、アルミニウム−
リチウム合金、アルミニウム−スカンジウム合金等を主
成分とする金属が使用できる。尚、素子を酸素や湿気か
ら守る目的で、金属酸化物、金属硫化物、金属沸化物、
有機化合物から成る公知の封止材料等から形成される封
止層を設けることも有効である。
The anode of the organic thin film EL element plays a role of injecting holes into the hole transporting layer, and it is effective that the anode has a work function of 4.5 eV or more. Organic thin film E
Specific examples of the anode material used for the L element include indium tin oxide (ITO), tin oxide (NESA), gold, silver,
Platinum, copper, etc. can be applied. As the cathode material, a material having a small work function is preferable for the purpose of injecting electrons into the electron transport band or the light-emitting layer, and specifically, indium, aluminum, magnesium, a magnesium-indium alloy, a magnesium-aluminum alloy, an aluminum-
Metals containing a lithium alloy, an aluminum-scandium alloy, or the like as a main component can be used. In order to protect the element from oxygen and moisture, metal oxides, metal sulfides, metal sulfides,
It is also effective to provide a sealing layer formed of a known sealing material or the like made of an organic compound.

【0044】[0044]

【発明の効果】以上のように、本発明における有機薄膜
EL素子の構造は光の取り出し効率が改善されるため、
必要とする光出力を得るための電流が少なくて済み、低
消費電力の有機薄膜ELデバイスが得られる。また本発
明の有機薄膜EL素子を、セグメント表示やマトリクス
型の有機薄膜ELディスプレイ等へ適用することで消費
電力の少ない光表示あるいは光出力装置が得られる。
As described above, since the structure of the organic thin film EL element in the present invention improves the light extraction efficiency,
A small amount of current is required to obtain the required light output, and an organic thin-film EL device with low power consumption can be obtained. Further, by applying the organic thin-film EL element of the present invention to a segment display, a matrix-type organic thin-film EL display, or the like, an optical display or optical output device with low power consumption can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態1の有機薄膜EL素
子を表す概念図である。
FIG. 1 is a conceptual diagram illustrating an organic thin-film EL device according to a first embodiment of the present invention.

【図2】本発明の第1の実施の形態における実施例2の
有機薄膜EL素子の光強度分布を示す図である。
FIG. 2 is a diagram showing a light intensity distribution of an organic thin film EL device of Example 2 according to the first embodiment of the present invention.

【図3】本発明の第1の実施の形態の有機薄膜EL素子
の断面図である。
FIG. 3 is a sectional view of the organic thin film EL device according to the first embodiment of the present invention.

【図4】本発明の実施例3〜実施例5及び従来の有機薄
膜EL素子の電流−光出力特性を示すグラフ図である。
FIG. 4 is a graph showing current-light output characteristics of Examples 3 to 5 of the present invention and a conventional organic thin film EL element.

【図5】基板のフラット部分の厚さをd1 及び基板のレ
ンズ部分の厚さをd2 と基板表面のレンズ構造の曲率半
径をR2 を変えたときの光強度分布と視野角の関係を示
す図である。
FIG. 5 shows the relationship between the light intensity distribution and the viewing angle when the thickness of the flat portion of the substrate is d 1 , the thickness of the lens portion of the substrate is d 2, and the radius of curvature of the lens structure on the substrate surface is R 2. FIG.

【図6】従来の有機薄膜EL素子を示す構造図である。FIG. 6 is a structural view showing a conventional organic thin film EL element.

【符号の説明】[Explanation of symbols]

1 レンズ状構造物 2 有機EL発光部 3 基板 4 フラット基板 A1 有機EL発光部の径 R2 レンズ状構造物の曲率半径 d1 基板の厚さ d2 レンズの厚さ θ 観測方向と光軸のなす角 n1 基板の屈折率 21 ITO透明電極 22 陽極界面層 23 正孔輸送層 24 発光層 25 電子輸送層 26 陰極 27 陰極保護層1 lens-like structure 2 organic EL light emitting part 3 substrate 4 flat substrate A 1 diameter of organic EL light emitting part R 2 radius of curvature of lens-like structure d 1 thickness of substrate d 2 lens thickness θ observation direction and optical axis Angle formed by n1 Substrate refractive index 21 ITO transparent electrode 22 Anode interface layer 23 Hole transport layer 24 Light emitting layer 25 Electron transport layer 26 Cathode 27 Cathode protection layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 笠原 健一 東京都港区芝五丁目7番1号 日本電気株 式会社内 (72)発明者 杉本 喜正 東京都港区芝五丁目7番1号 日本電気株 式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Kenichi Kasahara 5-7-1, Shiba, Minato-ku, Tokyo Inside NEC Corporation (72) Inventor Yoshimasa Sugimoto 5-7-1, Shiba, Minato-ku, Tokyo Japan Electric stock company

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】光透過部位を有する有機薄膜EL素子にお
いて、前記基板の光取り出し側がレンズ構造であること
を特徴とする有機薄膜EL素子。
1. An organic thin film EL element having a light transmitting portion, wherein the light extraction side of the substrate has a lens structure.
【請求項2】前記レンズ構造が発光部の中央を中心とす
る曲率を有することを特徴とする請求項1に記載の有機
薄膜EL素子。
2. The organic thin film EL element according to claim 1, wherein the lens structure has a curvature centered on the center of the light emitting portion.
【請求項3】前記光透過部位が基板であり、基板の厚さ
1 、基板表面からレンズ構造の頂点との距離d2 、レ
ンズの曲率半径R2 との間に、d1 +d2 ≦R2 が成り
立つことを特徴とする請求項1に記載の有機薄膜EL素
子。
3. The light-transmitting portion is a substrate, the thickness d 1 of the substrate, the distance d 2 from the substrate surface to the apex of the lens structure, and the radius of curvature R 2 of the lens are d 1 + d 2 ≦ The organic thin film EL element according to claim 1, wherein R 2 is satisfied.
【請求項4】前記レンズ構造が分布屈折率を有する基板
であることを特徴とする請求項1に記載の有機薄膜EL
素子。
4. The organic thin film EL according to claim 1, wherein the lens structure is a substrate having a distributed refractive index.
element.
JP7330220A 1995-12-19 1995-12-19 Organic thin film EL device Expired - Lifetime JP2773720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7330220A JP2773720B2 (en) 1995-12-19 1995-12-19 Organic thin film EL device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7330220A JP2773720B2 (en) 1995-12-19 1995-12-19 Organic thin film EL device

Publications (2)

Publication Number Publication Date
JPH09171892A true JPH09171892A (en) 1997-06-30
JP2773720B2 JP2773720B2 (en) 1998-07-09

Family

ID=18230201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7330220A Expired - Lifetime JP2773720B2 (en) 1995-12-19 1995-12-19 Organic thin film EL device

Country Status (1)

Country Link
JP (1) JP2773720B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100298272B1 (en) * 1998-06-18 2001-11-01 가네꼬 히사시 Color organic EL display and fabrication method thereof
US6818324B1 (en) 1997-10-09 2004-11-16 Samsung Sdi Co., Ltd. Organic thin-film EL device
WO2005086252A3 (en) * 2004-03-03 2005-10-20 Cambridge Display Tech Ltd Organic light emitting diode comprising microlens
US7084565B2 (en) 2003-03-06 2006-08-01 Samsung Sdi Co., Ltd. Assembly of organic electroluminescence display device
WO2008001241A3 (en) * 2006-06-14 2008-09-25 Philips Intellectual Property Structured oled with micro optics for generating directed light
US7705868B2 (en) * 2003-07-28 2010-04-27 Ricoh Company, Ltd. Light emitting array with improved characteristics, optical writing unit, and image forming apparatus
US8026872B2 (en) 2006-10-30 2011-09-27 Au Optronics Corp. Electroluminescent display
EP2424335A1 (en) 2010-08-31 2012-02-29 Nitto Denko Corporation Organic electroluminescent light emitting device
WO2012088260A3 (en) * 2010-12-23 2012-11-08 Universal Display Corporation Light extraction block with curved surface
US8373341B2 (en) 2007-07-10 2013-02-12 University Of Florida Research Foundation, Inc. Top-emission organic light-emitting devices with microlens arrays

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4053260B2 (en) 2000-10-18 2008-02-27 シャープ株式会社 Organic electroluminescence display element
TW527848B (en) 2000-10-25 2003-04-11 Matsushita Electric Ind Co Ltd Light-emitting element and display device and lighting device utilizing thereof
US6833667B2 (en) 2002-02-27 2004-12-21 Matsushita Electric Industrial Co., Ltd. Organic electroluminescence element and image forming apparatus or portable terminal unit using thereof
KR20130046434A (en) 2010-07-26 2013-05-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting device and lighting device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63314795A (en) * 1987-06-18 1988-12-22 Komatsu Ltd Film type el element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63314795A (en) * 1987-06-18 1988-12-22 Komatsu Ltd Film type el element

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6818324B1 (en) 1997-10-09 2004-11-16 Samsung Sdi Co., Ltd. Organic thin-film EL device
KR100298272B1 (en) * 1998-06-18 2001-11-01 가네꼬 히사시 Color organic EL display and fabrication method thereof
US7084565B2 (en) 2003-03-06 2006-08-01 Samsung Sdi Co., Ltd. Assembly of organic electroluminescence display device
US7705868B2 (en) * 2003-07-28 2010-04-27 Ricoh Company, Ltd. Light emitting array with improved characteristics, optical writing unit, and image forming apparatus
GB2426622B (en) * 2004-03-03 2008-12-31 Cambridge Display Tech Ltd Organic light emitting diode comprising microlens
GB2426622A (en) * 2004-03-03 2006-11-29 Cambridge Display Tech Ltd Organic light emitting diode comprising microlens
WO2005086252A3 (en) * 2004-03-03 2005-10-20 Cambridge Display Tech Ltd Organic light emitting diode comprising microlens
WO2008001241A3 (en) * 2006-06-14 2008-09-25 Philips Intellectual Property Structured oled with micro optics for generating directed light
US8125138B2 (en) 2006-06-14 2012-02-28 Koninklijke Philips Electronics N.V. Structured OLED with micro optics for generating directed light
US8026872B2 (en) 2006-10-30 2011-09-27 Au Optronics Corp. Electroluminescent display
US8373341B2 (en) 2007-07-10 2013-02-12 University Of Florida Research Foundation, Inc. Top-emission organic light-emitting devices with microlens arrays
EP2424335A1 (en) 2010-08-31 2012-02-29 Nitto Denko Corporation Organic electroluminescent light emitting device
WO2012088260A3 (en) * 2010-12-23 2012-11-08 Universal Display Corporation Light extraction block with curved surface

Also Published As

Publication number Publication date
JP2773720B2 (en) 1998-07-09

Similar Documents

Publication Publication Date Title
US7696687B2 (en) Organic electroluminescent display device with nano-porous layer
US7741771B2 (en) Light-emitting element and display device and lighting device using same
CN100420062C (en) Display devices
US8026662B2 (en) Organic light-emitting element, image display device and production method thereof
US7413916B2 (en) Light-emitting device and manufacturing method thereof
JP2773720B2 (en) Organic thin film EL device
JP2692671B2 (en) Resonator type organic thin film EL device
JP4060113B2 (en) Light emitting device
US7855506B2 (en) Electric field light emitting element
US6541908B1 (en) Electronic light emissive displays incorporating transparent and conductive zinc oxide thin film
KR100478525B1 (en) Light-Emitting Device and Display Device Employing Electroluminescence with no Light Leakage and Improved Light Extraction Efficiency
US6313261B1 (en) Polymer light emitting diode
US20020094422A1 (en) Organic light-emitting device
EP0956741A4 (en) Light emitting articles with light reflecting structures
JP2947250B2 (en) Organic electroluminescence device and method of manufacturing the same
JP2001338770A (en) Luminescent display device and its manufacturing method
JP2001217078A (en) Organic light emitting element and manufacturing method
JP2848386B1 (en) Organic electroluminescence device and method of manufacturing the same
KR20020076171A (en) Organic light-emitting device capable of high-quality display
JP2002299062A (en) Organic electroluminescent device
JP4104339B2 (en) LIGHT EMITTING ELEMENT, MANUFACTURING METHOD THEREOF, AND DISPLAY DEVICE
KR100590254B1 (en) Electro-Luminescence Device and the Manufacturing Method
JP4423103B2 (en) Organic electroluminescence light emitting device
KR100552971B1 (en) Organic electro luminescence display
JP3253368B2 (en) EL device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980324

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090424

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090424

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090424

Year of fee payment: 11

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090424

Year of fee payment: 11

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090424

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090424

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100424

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110424

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 15

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 15

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 16

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term