JPH09170045A - Building steel for low temperature use excellent in fire resistance - Google Patents

Building steel for low temperature use excellent in fire resistance

Info

Publication number
JPH09170045A
JPH09170045A JP32757295A JP32757295A JPH09170045A JP H09170045 A JPH09170045 A JP H09170045A JP 32757295 A JP32757295 A JP 32757295A JP 32757295 A JP32757295 A JP 32757295A JP H09170045 A JPH09170045 A JP H09170045A
Authority
JP
Japan
Prior art keywords
low
yield ratio
low temperature
temperature
fire resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32757295A
Other languages
Japanese (ja)
Inventor
Ryuji Muraoka
隆二 村岡
Noriki Wada
典己 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP32757295A priority Critical patent/JPH09170045A/en
Publication of JPH09170045A publication Critical patent/JPH09170045A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a building steel excellent in fire resistance and having a low yield ratio at a low temp. by specifying the components and structure of an iron base alloy. SOLUTION: This iron base alloy satisfies the following requirements: by weight, 0.1 to 0.6% Mo, 0.005 to 0.1% V, <=30ppm O and also 0.12<=(Mo+3.5V)<=0.8. Among which, the regulation of the O content is particularly important, and, by this, stable low temp. toughness can be obtd. This alloy is, e.g. subjected to [low temp. heating]+[high temp. finish rolling]+[controlled cooling in which intensive cooling is executed as it goes to a low temp. region] to obtain a mixed structure of ferrite and bainite 'α+B'. This structure has an advantage of being smaller in the rising rate of the yield ratio at a low temp. than that of the ferritic-pearlitic structure 'α+P'.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、新耐震設計法で設
計される建築分野において、寒冷地の建築物等の使用環
境温度が室温以下の建築物に好適な低温で低降伏比を有
し、耐火性に優れかつ低温靱性に優れた建築用鋼材に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a building field designed by the new seismic design method, and has a low yield ratio at a low temperature suitable for a building such as a building in a cold region where the operating environment temperature is room temperature or lower. , A steel material for construction having excellent fire resistance and low temperature toughness.

【0002】[0002]

【従来の技術】昭和56年に改正施行された建築物の耐
震設計法は、それまでの構造体各部に生ずる応力度を鋼
材の降伏点以内に留めるという弾性設計に変え、鋼材が
降伏後最大強さに達するまでの塑性域での変形能力を活
用して、地震入力エネルギーを吸収させ、建築物の耐震
安全性を確保しようとするものである。このことから、
新耐震設計法が適用される建築物の鋼材は、降伏後の変
形能を表わすパラメータである降伏比(YR値)が低い
こと、すなわち低降伏比が求められるようになった。T
S500MPa級の鋼材は、熱間圧延を再結晶域で仕上
げ、組織の粗粒化を図り、さらに、フェライトとベイナ
イトあるいはマルテンサイトの混合組織にすることで低
降伏比を確保している。温暖地域でのオフィスや住宅用
の建築物などのいわゆるビルは使用温度が主に常温(0
〜30℃)であるため、上述の耐震設計法も常温を前提
になされている。したがって、従来の低降伏比鋼も常温
でのYR値が80%以下あるいは75%以下になる様に
製造されている。しかし、地域によっては、寒冷地の様
に冬場の気温が常時0〜−40℃以下になる場合や、温
暖地であっても一時的に夜間の気温が0℃以下になる場
合がある。また、低温倉庫などの様に使用目的が低温で
あるため常時−55℃程度におかれる場合もある。この
ような環境にさらされる低温用建築物にも新耐震設計法
を適用し耐震安全性を確保するためには、低温で低降伏
比を有する鋼材が必要となる。しかし、従来の低降伏比
鋼は常温での使用を前提としているため常温の降伏比は
示されてはいるものの、低温での降伏比は明らかでな
い。
2. Description of the Related Art The seismic design method for buildings, which was revised and implemented in 1981, was changed to an elastic design in which the stress level in each part of the structure up to that point was kept within the yield point of the steel material, and the steel material became the maximum after yielding. By utilizing the deformation capacity in the plastic range until the strength is reached, the seismic input energy is absorbed and the seismic safety of the building is secured. From this,
Steel materials for buildings to which the new seismic design method is applied are required to have a low yield ratio (YR value), which is a parameter indicating the deformability after yield, that is, a low yield ratio. T
The steel of S500 MPa class has a low yield ratio secured by finishing the hot rolling in the recrystallized region to make the structure coarse and further to form a mixed structure of ferrite and bainite or martensite. In so-called buildings such as offices and residential buildings in warm regions, the operating temperature is mainly at room temperature (0
Since the temperature is up to 30 ° C), the above-mentioned seismic design method is also premised on room temperature. Therefore, the conventional low yield ratio steel is also manufactured so that the YR value at room temperature is 80% or less or 75% or less. However, depending on the region, the temperature in winter may always be 0 to −40 ° C. or lower, as in a cold region, or the temperature at night may be temporarily 0 ° C. or lower even in a warm region. In addition, since the purpose of use is low, such as in a low temperature warehouse, it may be kept at about -55 ° C at all times. To secure the seismic safety by applying the new seismic design method to low-temperature buildings exposed to such an environment, steel materials having a low yield ratio at low temperatures are required. However, although the conventional low yield ratio steel is premised on use at room temperature, the yield ratio at room temperature is shown, but the yield ratio at low temperature is not clear.

【0003】[0003]

【発明が解決しようとする課題】そこで、本発明者ら
は、従来の低降伏比鋼の低温での引張特性並びに靱性に
ついて検討した。多くの低降伏比鋼は低降伏比を得るた
めに粗粒であり、そのため低温靱性が低く、外気温が−
20℃以下になる寒冷地での建築物や−55℃使用の低
温用倉庫等には使用できないことがわかった。低温靱性
に優れた低降伏比鋼に関する従来技術として、特開平2
−197522号公報や特開平5−21440号公報が
報告されている。両公報に記載された発明に沿って試作
した鋼の低温引張特性について調べると、たとえば−6
0℃では降伏比が80%以上になってしまうことが判明
した。また、靱性に関しても、必ずしも良い値ばかりで
なくばらつく結果となった。
Therefore, the present inventors examined the tensile properties and toughness of conventional low yield ratio steels at low temperatures. Many low-yield ratio steels are coarse-grained in order to obtain low-yield ratios, which results in low low-temperature toughness and low ambient temperature.
It was found that it cannot be used for buildings in cold regions where the temperature is 20 ° C. or lower, and low-temperature warehouses that use −55 ° C. As a conventional technique relating to a low yield ratio steel excellent in low temperature toughness, Japanese Patent Application Laid-Open No. Hei 2
-197522 and JP-A-5-21440 have been reported. Examining the low temperature tensile properties of the steel made in accordance with the inventions described in both publications, for example, -6
It was found that the yield ratio was 80% or more at 0 ° C. Also, regarding toughness, not only a good value but also a variation result.

【0004】また、建築物の火災に関して、耐火設計の
見直しが行われたことにより、高温強度に優れた耐火鋼
材を用いて耐火被覆を減らすことが可能となった。耐火
鋼材の使用は、工期の短縮、工事費の削減、建築物内の
有効面積の拡張を図ることにつながるため、こういった
新しい設計法が盛んになってきている。低降伏比と耐火
性を兼ね備えた建築用鋼材については、特開平4−83
821号公報、特開平4−56723号公報、特開平4
−56362号公報等が提案されている。これらに記載
された発明に沿って試作した鋼について低温での引張特
性を調べると、前述した発明鋼(特開平2−19752
2号公報や特開平5−21440号公報)と同様に、−
60℃での降伏比が80%以上になってしまうことが判
明した。
With respect to the fire of a building, a review of the fireproof design has made it possible to reduce the fireproof coating by using a fireproof steel material excellent in high temperature strength. The use of refractory steels has led to shorter construction periods, lower construction costs, and an increase in the effective area of buildings. For construction steel materials having both low yield ratio and fire resistance, see JP-A-4-83.
821, JP-A-4-56723, JP-A-4-56723
Japanese Patent Application No. 56362/1996 has been proposed. When the tensile properties at low temperature of the steels produced according to the inventions described in these documents were examined, the above-mentioned invention steels (JP-A-2-19752) were used.
2 and Japanese Patent Laid-Open No. 5-21440).
It was found that the yield ratio at 60 ° C was 80% or more.

【0005】以上のことから、本発明が解決しようとす
る課題は、安定した低温靱性を有し、かつ低温で低降伏
比(YR≦80%)を示し、さらに耐火性に優れた、新
耐震設計と耐火設計を組み合わせた設計法を可能にする
耐火性に優れた低温低降伏比建築鋼材を提供するもので
ある。
From the above, the problem to be solved by the present invention is to provide a new seismic resistance having stable low temperature toughness, low yield ratio (YR≤80%) at low temperature, and excellent fire resistance. A low-temperature low-yield ratio building steel material having excellent fire resistance, which enables a design method combining design and fire-resistant design.

【0006】[0006]

【課題を解決するための手段】第一の発明は、重量%
で、Mo:0.1〜0.6%、V:0.005〜0.1
%、O:30ppm以下で、かつ0.12%≦(Mo+
3.5V)%≦0.8%を満足する鉄基合金で、フェラ
イトとベイナイト主体の混合組織を有し、耐火性に優れ
た低温で低降伏比を満足する低温用建築鋼材である。
[Means for Solving the Problems] The first invention is weight%.
And Mo: 0.1-0.6%, V: 0.005-0.1
%, O: 30 ppm or less, and 0.12% ≦ (Mo +
It is an iron-based alloy satisfying 3.5 V)% ≦ 0.8%, has a mixed structure mainly composed of ferrite and bainite, and has excellent fire resistance and is a low-temperature building steel material satisfying a low yield ratio at low temperatures.

【0007】第二の発明は、重量%で、Mo:0.1〜
0.6%、V:0.005〜0.1%、Nb:0.00
5〜0.04%、O:30ppm以下で、かつ0.12
%≦(Mo+3.5V+20Nb)%≦0.8%を満足
する鉄基合金で、フェライトとベイナイト主体の混合組
織を有し、耐火性に優れた低温で低降伏比を満足する低
温用建築鋼材である。
The second invention is, by weight%, Mo: 0.1 to 0.1.
0.6%, V: 0.005-0.1%, Nb: 0.00
5 to 0.04%, O: 30 ppm or less, and 0.12
%-(Mo + 3.5V + 20Nb)% ≤0.8% is an iron-based alloy that has a mixed structure mainly composed of ferrite and bainite, and has excellent fire resistance and is a low-temperature building steel material that satisfies a low yield ratio at low temperatures. is there.

【0008】これら発明の具体例を挙げれば、重量%
で、C:0.06〜0.18%、Si:0.05〜0.
4%、Mn:0.6〜1.6%、Mo:0.1〜0.6
%、V:0.005〜0.1%、Al:0.001〜
0.06%、N:30ppm以下、O:30ppm以下
を含有し、かつ0.12%≦(Mo+3.5V)%≦
0.8%を満足する残部がFeおよび不可避的な不純物
からなる耐火性に優れかつ低温靱性に優れた低温で低降
伏比を満足する低温用建築鋼材である。
[0008] To give concrete examples of these inventions, weight%
C: 0.06 to 0.18%, Si: 0.05 to 0.
4%, Mn: 0.6 to 1.6%, Mo: 0.1 to 0.6
%, V: 0.005-0.1%, Al: 0.001-
0.06%, N: 30 ppm or less, O: 30 ppm or less, and 0.12% ≦ (Mo + 3.5V)% ≦
A balance of 0.8% is Fe and unavoidable impurities, and is a low-temperature building steel material excellent in fire resistance and excellent in low-temperature toughness and satisfying a low yield ratio at low temperatures.

【0009】また、重量%で、C:0.06〜0.18
%、Si:0.05〜0.4%、Mn:0.6〜1.6
%、Mo:0.1〜0.6%、V:0.005〜0.1
%、Al:0.001〜0.06%、N:30ppm以
下、O:30ppm以下に加えて、Cu:0.05〜
0.6%、Ni:0.05〜0.6%、Cr:0.05
〜1.0%、Ti:0.005〜0.015%の内1種
または2種以上を含み、かつ0.12%≦(Mo+3.
5V)%≦0.8%を満足する残部がFeおよび不可避
的な不純物からなる耐火性に優れかつ低温靱性に優れた
低温で低降伏比を満足する低温用建築鋼材である。
Further, in% by weight, C: 0.06 to 0.18
%, Si: 0.05 to 0.4%, Mn: 0.6 to 1.6
%, Mo: 0.1 to 0.6%, V: 0.005 to 0.1
%, Al: 0.001 to 0.06%, N: 30 ppm or less, O: 30 ppm or less, Cu: 0.05 to
0.6%, Ni: 0.05 to 0.6%, Cr: 0.05
.About.1.0%, Ti: 0.005 to 0.015%, containing one or more kinds, and 0.12% .ltoreq. (Mo + 3.
5V)% ≤ 0.8%, the balance being Fe and unavoidable impurities, which is a low-temperature building steel material excellent in fire resistance and low-temperature toughness and satisfying a low yield ratio at low temperatures.

【0010】さらに、これら鋼材に、更にNb:0.0
05〜0.04%を含有し、かつ0.12%≦(Mo+
3.5V+20Nb)%≦0.8%を満足する耐火性に
優れかつ低温靱性に優れた低温で低降伏比を満足する低
温用建築鋼材である。
Furthermore, Nb: 0.0 is added to these steel materials.
0.05 to 0.04% and 0.12% ≦ (Mo +
It is a structural steel material for low temperature satisfying 3.5V + 20Nb)% ≦ 0.8%, which is excellent in fire resistance and excellent in low temperature toughness and which satisfies a low yield ratio at low temperature.

【0011】本発明において、「フェライトとベイナイ
ト主体の混合組織を有し」とは、フェライトとベイナイ
トのみからなる金属組織に限らず、他の組織が混在して
いても、フェライトとベイナイトの混合組織の特性(後
述する)を備えていればよい。
In the present invention, "having a mixed structure mainly composed of ferrite and bainite" is not limited to a metallic structure consisting of only ferrite and bainite, and a mixed structure of ferrite and bainite is present even if other structures are mixed. It suffices to have the characteristics (described later).

【0012】[0012]

【発明の実施の形態】本発明の耐火性に優れた低温用建
築鋼材は、鉄基合金の金属組織を、フェライトとベイナ
イト主体の混合組織に限定する。この理由は、フェライ
トとベイナイト主体の混合組織は、フェライト・パーラ
イト組織よりも低温でのYR値の上昇程度が少ない傾向
があるためである。すなわち、本発明者らは、ミクロ組
織と低温でのYR値(降伏比)の関係を検討した。その
結果を第1図に示す。図1に示すように、引張試験温度
が低温になるほど降伏比が上昇するが、フェライトとベ
イナイト主体の混合組織がフェライト・パーライト組織
よりも低温での降伏比の上昇程度が低い。なお、“α+
B”はフェライトとベイナイト主体の混合組織、“α+
P”はフェライト・パーライト組織を示す。
BEST MODE FOR CARRYING OUT THE INVENTION The low-temperature building steel material excellent in fire resistance of the present invention limits the metal structure of an iron-based alloy to a mixed structure mainly composed of ferrite and bainite. The reason for this is that the mixed structure mainly composed of ferrite and bainite tends to have a smaller increase in the YR value at low temperatures than the ferrite-pearlite structure. That is, the present inventors examined the relationship between the microstructure and the YR value (yield ratio) at low temperature. The result is shown in FIG. As shown in FIG. 1, the yield ratio increases as the tensile test temperature becomes lower, but the yield ratio of the mixed structure mainly composed of ferrite and bainite at a low temperature is lower than that of the ferrite-pearlite structure. Note that "α +
“B” is a mixed structure mainly composed of ferrite and bainite, “α +
P ″ represents a ferrite / pearlite structure.

【0013】また、本発明の耐火性に優れた低温用建築
鋼材は、鉄基合金の酸素含有量を30ppm以下とす
る。この理由は、この範囲に酸素量を限定することによ
り安定した低温靱性が得られるためであり、酸素含有量
が30ppmを超えると低温靱性のばらつきが大きい。
すなわち、本発明者らは、A鋼(表1に示す)を基本に
酸素のみ19〜44ppmの範囲で変化させた鋼を用い
て、フェライトとベイナイト主体の混合組織の低温靱性
を調べた。その結果、図2に示すように低温靱性にかな
りのばらつきを有している。その下限値は、酸素含有量
により支配され、酸素含有量を30ppm以下にするこ
とでvE−60(下限値)>100Jを満たす安定した
靱性が得られることがわかった。これは、酸素含有量を
30ppm以下にすることで、マイクロクラックの発生
起点となる鋼中酸化物を減少、微細化させたためであ
る。
In the low temperature building steel material of the present invention having excellent fire resistance, the oxygen content of the iron-based alloy is set to 30 ppm or less. This is because stable low temperature toughness can be obtained by limiting the oxygen amount in this range, and when the oxygen content exceeds 30 ppm, the low temperature toughness varies widely.
That is, the present inventors investigated the low temperature toughness of a mixed structure mainly composed of ferrite and bainite by using a steel in which only oxygen was changed in the range of 19 to 44 ppm based on steel A (shown in Table 1). As a result, as shown in FIG. 2, the low temperature toughness has a considerable variation. It was found that the lower limit value is governed by the oxygen content, and by setting the oxygen content to 30 ppm or less, stable toughness satisfying vE-60 (lower limit value)> 100 J can be obtained. This is because by setting the oxygen content to 30 ppm or less, the oxide in the steel, which is the starting point of the generation of microcracks, was reduced and refined.

【0014】さらに、本発明の耐火性に優れた低温用建
築鋼材は、Mo及びVを含有する場合、フェライトとベ
イナイト主体の混合組織である鉄基合金の(Mo+3.
5V)量を0.12〜0.8%に限定する。また、M
o,V及びNbを含有する場合、(Mo+3.5V+2
0Nb)量を0.12〜0.8%に限定する。この理由
は、この範囲に(Mo+3.5V)量又は(Mo+3.
5V+20Nb)量を限定することにより優れた高温強
度と低温低降伏比が得られるためである。すなわち、本
発明者らは、MoとVを添加した鋼については(Mo+
3.5V),Mo,V及びNbを添加した鋼については
(Mo+3.5V+20Nb)量を変化させた鋼を用い
て、フェライト・パーライト組織とフェライトとベイナ
イト主体の混合組織での−60℃での降伏比と600℃
での0.2%耐力を調べた。フェライトとベイナイト主
体の混合組織は、フェライト・パーライト組織に比べ
て、(Mo+3.5V),(Mo+3.5V+20N
b)量の増加による高温強度向上の効果が大きく、低温
での降伏比も低い。フェライトとベイナイト主体の混合
組織において、(Mo+3.5V),(Mo+3.5V
+20Nb)量が0.12%未満の場合、高温強度が目
標値を満足しない。また、0.8%を超えて(Mo+
3.5V),(Mo+3.5V+20Nb)量を増加す
ると、−60℃でのYR値が80%を超えてしまう。し
たがって、組織をフェライトとベイナイトの混合組織
に、(Mo+3.5V+20Nb)量を0.12%以上
0.8%以下に限定した。
Further, the low temperature building steel material excellent in fire resistance of the present invention, when it contains Mo and V, is an iron-based alloy (Mo + 3.
5V) amount is limited to 0.12-0.8%. Also, M
When it contains o, V and Nb, (Mo + 3.5V + 2
0Nb) amount is limited to 0.12-0.8%. The reason is that (Mo + 3.5V) amount or (Mo + 3.
This is because excellent high temperature strength and low temperature low yield ratio can be obtained by limiting the amount of 5V + 20 Nb). That is, the inventors of the present invention have (Mo +
3.5V), Mo, V and Nb are added to the steel, the amount of (Mo + 3.5V + 20Nb) is changed, and a ferrite / pearlite structure and a mixed structure mainly composed of ferrite and bainite are used at −60 ° C. Yield ratio and 600 ℃
The 0.2% proof stress was examined. Compared to the ferrite-pearlite structure, the mixed structure mainly composed of ferrite and bainite is (Mo + 3.5V), (Mo + 3.5V + 20N).
b) The effect of improving the high temperature strength is large due to the increase in the amount, and the yield ratio at low temperatures is also low. In a mixed structure mainly composed of ferrite and bainite, (Mo + 3.5V), (Mo + 3.5V)
When the amount of +20 Nb) is less than 0.12%, the high temperature strength does not satisfy the target value. In addition, exceeding 0.8% (Mo +
3.5V) and (Mo + 3.5V + 20Nb), the YR value at −60 ° C. exceeds 80%. Therefore, the structure is limited to a mixed structure of ferrite and bainite, and the (Mo + 3.5V + 20Nb) content is limited to 0.12% or more and 0.8% or less.

【0015】以上のことから、安定した低温靱性を有
し、かつ低温で低降伏比を示す新耐震設計と、優れた高
温強度を示す耐火設計の両方を可能にする耐火性に優れ
た低温低降伏比建築用鋼材の必要条件は、(Mo+3.
5V),(Mo+3.5V+20Nb)量が0.12%
以上0.8%以下、酸素含有量が30ppm以下である
フェライトとベイナイト主体の混合組織の特徴を有する
ものであることがわかった。
From the above, low temperature low temperature excellent in fire resistance which enables both new seismic design having stable low temperature toughness and low yield ratio at low temperature and fire resistant design showing excellent high temperature strength. Yield ratio The requirements for building steel materials are (Mo + 3.
5V), (Mo + 3.5V + 20Nb) amount is 0.12%
It was found that the alloy has characteristics of a mixed structure mainly composed of ferrite and bainite having an oxygen content of 0.8% or less and an oxygen content of 30 ppm or less.

【0016】つぎに、本発明の合金元素の添加理由およ
び添加量の限定理由は、溶接構造用鋼が所定の特性を得
るために、以下の通りである。Moは、鋼の中・高温強
度向上に有効な元素である。このような効果を発揮する
ためには、0.1%以上の添加が必要である。0.6%
を超えるMoの添加は、降伏比を著しく上昇させる。し
たがって、Moを0.1%以上0.6%以下に限定し
た。
Next, the reason for adding the alloying element of the present invention and the reason for limiting the addition amount are as follows in order for the welded structural steel to obtain predetermined characteristics. Mo is an element effective for improving the medium / high temperature strength of steel. In order to exert such effects, it is necessary to add 0.1% or more. 0.6%
Addition of Mo in excess of 10 significantly increases the yield ratio. Therefore, Mo is limited to 0.1% or more and 0.6% or less.

【0017】Nb,Vは、微量添加により常温・高温強
度の上昇に有効な元素である。Nb<0.005%、V
<0.005%では、明瞭な強度上昇効果が認められな
い。0.04%を超えるNbの添加、0.1%を超える
Vの添加は、降伏比を著しく上昇させる。したがって、
Nbを0.005%以上0.04%以下、Vを0.00
5%以上0.1%以下に限定した。
Nb and V are effective elements for increasing the strength at normal temperature and high temperature by adding a trace amount. Nb <0.005%, V
At <0.005%, no clear increase in strength is observed. The addition of Nb exceeding 0.04% and the addition of V exceeding 0.1% significantly increase the yield ratio. Therefore,
Nb is 0.005% or more and 0.04% or less, and V is 0.00
It is limited to 5% or more and 0.1% or less.

【0018】本発明鋼材の具体的な組成では、他の添加
元素を以下のように限定するのがよい。Cは、最も安価
な元素で強度向上に有効な元素であるが、0.18%を
超えて添加すると溶接性が著しく低下する。0.06%
未満では、厚物で強度が不足し、多量の合金元素が必要
となり、コスト高を招く。したがって、Cを0.06%
以上0.18%以下に限定した。
In the concrete composition of the steel material of the present invention, other additive elements may be limited as follows. C is the cheapest element and is an element effective for improving the strength, but if it is added in an amount exceeding 0.18%, the weldability is significantly reduced. 0.06%
If the amount is less than the above range, strength is insufficient and a large amount of alloying elements are required, resulting in high cost. Therefore, C is 0.06%
It is limited to 0.18% or less.

【0019】Siは、鋼材の強度、溶鋼の予備脱酸に必
要な元素である。予備脱酸のためには、0.05%以上
の添加が必要である。0.4%を超える過剰の添加は、
鋼材の靱性、溶接熱影響部靱性を劣化させる。したがっ
て、Siを0.05%以上0.4%以下に限定した。
Si is an element necessary for strength of steel materials and preliminary deoxidation of molten steel. For pre-deoxidation, addition of 0.05% or more is necessary. An excess addition of more than 0.4%
Deteriorates the toughness of steel and the toughness of the weld heat affected zone. Therefore, Si is limited to 0.05% or more and 0.4% or less.

【0020】Mnは、母材の強度を確保するため、必要
な元素である。0.6%未満では、厚物で強度が不足
し、多量の合金元素の添加が必要となり、溶接性の劣化
を招く。また、Mnは中央偏析しやすい元素であり、
1.6%を超えて添加すると、板厚中央は著しく脆化す
る。したがって、Mnを0.6%以上1.6%以下に限
定した。
Mn is a necessary element for ensuring the strength of the base material. If it is less than 0.6%, the material is thick and the strength is insufficient, and it is necessary to add a large amount of alloying elements, resulting in deterioration of weldability. Further, Mn is an element that tends to segregate in the center,
If it is added in excess of 1.6%, the center of the plate thickness becomes significantly brittle. Therefore, Mn is limited to 0.6% or more and 1.6% or less.

【0021】Alは、脱酸に必要な元素である。Al量
として0.001%未満では、十分な脱酸効果が期待で
きない。また、0.06%を超えて過剰に添加すると、
連続鋳造スラブの表面に疵が発生しやすい。したがっ
て、Alを0.001%以上0.06%以下に限定し
た。
Al is an element necessary for deoxidation. If the Al content is less than 0.001%, a sufficient deoxidizing effect cannot be expected. When added in excess of 0.06%,
Defects are likely to occur on the surface of continuously cast slabs. Therefore, Al is limited to 0.001% or more and 0.06% or less.

【0022】Nは、個体鋼中に固溶Nや窒化物系介在物
として存在する。固溶Nや粗大窒化物系介在物は、鋼の
低温靱性を劣化させる。30ppmを超えてNを含有す
ると固溶Nが存在する。また、最終凝固部には、粗大な
窒化物(例えば、TiNやNbN)が生成し易くなり、
優れた低温靱性が得られない。したがって、Nを0.0
03%以下に限定した。
N exists as solid solution N and nitride inclusions in the solid steel. Solid solution N and coarse nitride-based inclusions deteriorate the low temperature toughness of steel. When N is contained in excess of 30 ppm, solid solution N exists. Further, coarse nitrides (for example, TiN and NbN) are easily generated in the final solidified portion,
Excellent low temperature toughness cannot be obtained. Therefore, N is 0.0
It was limited to 03% or less.

【0023】Cu,Ni,Crは、固溶強化や焼入性向
上を通じて、常温での高強度化に有効な元素であるが、
Cu<0.05%。Ni<0.05%、Cr<0.05
%では、明瞭な強度上昇効果が見られない。0.6%を
超えるCuの添加は、著しくCu割れの発生の危険性を
増大させる。Niは、高価な元素であり、コストの観点
から、上限を0.6%とした。1.0%を超えるCrの
添加は、溶接性を著しく劣化させる。したがって、Cu
を0.05%以上0.6%以下、Niを0.05%以上
0.6%以下、Crを0.05%以上1.0%以下に限
定した。
Cu, Ni, and Cr are elements effective for strengthening at room temperature by strengthening solid solution and improving hardenability.
Cu <0.05%. Ni <0.05%, Cr <0.05
%, No clear strength increasing effect is observed. Addition of Cu in excess of 0.6% significantly increases the risk of Cu cracking. Ni is an expensive element, and the upper limit is set to 0.6% from the viewpoint of cost. Addition of Cr in excess of 1.0% significantly deteriorates weldability. Therefore, Cu
Was limited to 0.05% to 0.6%, Ni to 0.05% to 0.6%, and Cr to 0.05% to 1.0%.

【0024】Tiは、TiNを形成し、加熱時の組織粗
大化を抑制して、靱性の向上に寄与する元素である。
0.005%未満のTi添加では、靱性向上効果が発揮
されない。0.015%超えて添加すると、冷却過程で
TiCが析出し、靱性の劣化を招く。したがって、Ti
を0.005%以上0.015%以下に限定した。
Ti is an element that forms TiN, suppresses the coarsening of the structure during heating, and contributes to the improvement of toughness.
If Ti is added in an amount of less than 0.005%, the effect of improving toughness is not exhibited. If added in excess of 0.015%, TiC precipitates during the cooling process, leading to deterioration in toughness. Therefore, Ti
Was limited to 0.005% or more and 0.015% or less.

【0025】P,Sは、本特許の目的とする低温低降伏
比・低温靱性・耐火性と直接関係ないが、溶接性や板厚
方向の延性の観点から、低い方が望ましい。また、介在
物形態制御の観点から、適量のCaの添加やREMの添
加が望ましい。そして、本発明鋼によれば、低温で低降
伏比を有し、かつ安定した低温靱性を有し、さらに耐火
性に優れているので、建築用鋼材として極めて有効であ
る。
P and S are not directly related to the low temperature low yield ratio, low temperature toughness, and fire resistance aimed at by this patent, but are preferably low from the viewpoint of weldability and ductility in the plate thickness direction. From the viewpoint of inclusion morphology control, it is desirable to add an appropriate amount of Ca or REM. The steel of the present invention has a low yield ratio at low temperature, has stable low temperature toughness, and is excellent in fire resistance, and therefore is extremely effective as a steel material for construction.

【0026】[0026]

【実施例】次に本発明の実施例を説明する。表1に、供
試鋼板の化学成分を示し、A〜Nは本発明の組成を、O
〜Xは本発明の組成から外れる組成をそれぞれ示す。供
試鋼は、すべて軽圧下プロセスを含む連続鋳造にてスラ
ブにされた。上記成分を有する鋼を、表2,表3に示す
製造条件にて鋼板とした。表2,表3には、得られた鋼
板のミクロ組織が併記されている。本発明の特徴である
フェライトとベイナイト主体の混合組織(α+B)は、
[低温加熱]+[高温仕上圧延]+[低温域ほど強冷却
となる制御冷却]を施すことで得られる。表4,表5
に、各鋼板の強度・靱性について示した。引張試験片
は、板厚1/4tからC方向に採取したJIS4号、ま
たはJIS14A号である。YS値はすべて上降伏点の
値であり、YR値はすべて上降伏点/TS値の値であ
る。Vノッチシャルピー衝撃試験片は、板厚1/4tか
らL方向に採取した。また、vE−60(ave)、v
E−60(min)は、N数9の平均値と最小値であ
る。
Next, embodiments of the present invention will be described. Table 1 shows the chemical composition of the test steel sheet, and A to N are the compositions of the present invention, and
-X show the composition which deviates from the composition of this invention, respectively. All the test steels were slabed by continuous casting including a light reduction process. Steels having the above components were made into steel plates under the manufacturing conditions shown in Tables 2 and 3. Tables 2 and 3 also show the microstructures of the obtained steel sheets. The mixed structure (α + B) mainly composed of ferrite and bainite, which is a feature of the present invention, is
It can be obtained by performing [low temperature heating] + [high temperature finish rolling] + [controlled cooling with stronger cooling in lower temperature regions]. Table 4, Table 5
Table 2 shows the strength and toughness of each steel sheet. The tensile test piece is JIS No. 4 or JIS No. 14A taken in the C direction from a plate thickness of 1/4 t. All YS values are values of the upper yield point, and all YR values are values of the upper yield point / TS value. The V-notch Charpy impact test piece was sampled in the L direction from a plate thickness of 1/4 t. In addition, vE-60 (ave), v
E-60 (min) is the average value and the minimum value of N number 9.

【0027】表4,表5において、フェライトとベイナ
イトの混合組織を有した発明鋼A1,B1,C1,D
1,E1,F1,G1,H1,I1,J1,K1,L
1,M1,N1は、−60℃でのYR値が80%以下、
vTsが−60℃以下、600℃での高温強度が目標値
を満足しており、優れた耐火性、かつ優れた低温靱性、
さらに低温低降伏比を示している。フェライト・パーラ
イト組織(α+P)である比較鋼A2,B2,C2,E
2,F2,G2,H2は、−60℃でのYR値が80%
を超えている。フェライトとベイナイト主体の混合組織
を有し、(Mo+3.5V)%<0.12%,(Mo+
3.5V+20Nb)%<0.12%である比較鋼O
1,P1,Q1,R1は、600℃での高温強度が目標
値を満足していない。フェライトとベイナイトの混合組
織を有し、(Mo+3.5V+20Nb)%>0.8%
である比較鋼S1,T1,U1は、−60℃でのYR値
が80%を超えている。フェライトとベイナイト主体の
混合組織を有し、O>30ppmである比較鋼V1,W
1,X1は、vE−60(min)が低く、安定した低
温靱性が得られていない。
In Tables 4 and 5, invention steels A1, B1, C1 and D having a mixed structure of ferrite and bainite.
1, E1, F1, G1, H1, I1, J1, K1, L
1, M1 and N1 have a YR value at −60 ° C. of 80% or less,
vTs of −60 ° C. or lower, high temperature strength at 600 ° C. satisfies the target value, excellent fire resistance, and excellent low temperature toughness,
It also shows a low temperature low yield ratio. Comparative steels A2, B2, C2, E with ferrite / pearlite structure (α + P)
2, F2, G2 and H2 have YR value of 80% at -60 ° C.
Is over. It has a mixed structure mainly composed of ferrite and bainite, and has (Mo + 3.5V)% <0.12%, (Mo +
Comparative steel O with 3.5V + 20Nb)% <0.12%
1, P1, Q1 and R1 do not satisfy the target values for the high temperature strength at 600 ° C. Having a mixed structure of ferrite and bainite, (Mo + 3.5V + 20Nb)%> 0.8%
Comparative steels S1, T1, and U1 having a YR value of more than 80% at -60 ° C. Comparative steels V1 and W having a mixed structure mainly composed of ferrite and bainite and having O> 30 ppm
No. 1, X1 has a low vE-60 (min), and stable low temperature toughness is not obtained.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】[0030]

【表3】 [Table 3]

【0031】[0031]

【表4】 [Table 4]

【0032】[0032]

【表5】 [Table 5]

【0033】[0033]

【発明の効果】以上の結果から明らかなように、本発明
に係る鋼材は、耐火性に優れ、かつ低温靱性に優れ、さ
らに低温で低降伏比を示すため、低温で使用される建築
構造物の新耐震設計ならびに耐火設計を可能にする。し
たがって、建築物の安全性が増す。また、鋼材の大量生
産が可能で、しかも価格も安く、耐火被覆の削減が可能
で、建設工期も短縮でき、全体として建設費が低廉で済
む。
EFFECTS OF THE INVENTION As is clear from the above results, the steel material according to the present invention has excellent fire resistance, low temperature toughness, and a low yield ratio at low temperatures. Enables new seismic design and fireproof design. Therefore, the safety of the building is increased. In addition, mass production of steel is possible, the price is low, the refractory coating can be reduced, the construction period can be shortened, and the construction cost is low as a whole.

【図面の簡単な説明】[Brief description of the drawings]

【図1】引張試験温度と降伏比(=上降伏比/引張強
度)の関係を示した図。
FIG. 1 is a diagram showing a relationship between a tensile test temperature and a yield ratio (= upper yield ratio / tensile strength).

【図2】フェライトとベイナイト混合組織での酸素含有
量と−60℃でのシャルピー衝撃吸収エネルギー(vE
−60)との関係を示した図。
Fig. 2 Oxygen content in ferrite and bainite mixed structure and Charpy impact absorption energy (vE at -60 ° C)
-60) is a diagram showing a relationship with FIG.

【図3】(Mo+3.5V+20Nb)量と低温での降
伏比(−60℃でのYR)および高温強度(600℃で
の0.2%耐力)との関係を示した図。
FIG. 3 is a diagram showing the relationship between the (Mo + 3.5V + 20Nb) amount, the yield ratio at low temperature (YR at −60 ° C.), and the high temperature strength (0.2% proof stress at 600 ° C.).

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、Mo:0.1〜0.6%、
V:0.005〜0.1%、O:30ppm以下で、か
つ0.12%≦(Mo+3.5V)%≦0.8%を満足
する鉄基合金で、フェライトとベイナイト主体の混合組
織を有し、耐火性に優れた低温で低降伏比を満足する低
温用建築鋼材。
1. Mo: 0.1-0.6% by weight,
V: 0.005 to 0.1%, O: 30 ppm or less, and an iron-based alloy satisfying 0.12% ≦ (Mo + 3.5V)% ≦ 0.8%. A low temperature building steel that has excellent fire resistance and satisfies a low yield ratio at low temperatures.
【請求項2】 重量%で、Mo:0.1〜0.6%、
V:0.005〜0.1%、Nb:0.005〜0.0
4%、O:30ppm以下で、かつ0.12%≦(Mo
+3.5V+20Nb)%≦0.8%を満足する鉄基合
金で、フェライトとベイナイト主体の混合組織を有し、
耐火性に優れた低温で低降伏比を満足する低温用建築鋼
材。
2. Mo: 0.1 to 0.6% by weight,
V: 0.005-0.1%, Nb: 0.005-0.0
4%, O: 30 ppm or less, and 0.12% ≦ (Mo
+ 3.5V + 20Nb)% ≦ 0.8% is an iron-based alloy having a mixed structure of mainly ferrite and bainite,
Low temperature building steel with excellent fire resistance and low yield ratio at low temperature.
JP32757295A 1995-12-15 1995-12-15 Building steel for low temperature use excellent in fire resistance Pending JPH09170045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32757295A JPH09170045A (en) 1995-12-15 1995-12-15 Building steel for low temperature use excellent in fire resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32757295A JPH09170045A (en) 1995-12-15 1995-12-15 Building steel for low temperature use excellent in fire resistance

Publications (1)

Publication Number Publication Date
JPH09170045A true JPH09170045A (en) 1997-06-30

Family

ID=18200570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32757295A Pending JPH09170045A (en) 1995-12-15 1995-12-15 Building steel for low temperature use excellent in fire resistance

Country Status (1)

Country Link
JP (1) JPH09170045A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008202119A (en) * 2007-02-22 2008-09-04 Sumitomo Metal Ind Ltd High-tensile steel having excellent ductile crack initiation resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008202119A (en) * 2007-02-22 2008-09-04 Sumitomo Metal Ind Ltd High-tensile steel having excellent ductile crack initiation resistance

Similar Documents

Publication Publication Date Title
WO2007029515A1 (en) High-toughness wear-resistant steel exhibiting little hardness change in service and process for production thereof
WO2006009091A1 (en) 490 MPa GRADE HIGH TENSILE STEEL FOR WELDED STRUCTURE EXHIBITING EXCELLENT HIGH TEMPERATURE STRENGTH AND METHOD FOR PRODUCTION THEREOF
JP5277672B2 (en) High strength steel plate with excellent delayed fracture resistance and method for producing the same
JP4833611B2 (en) 490 MPa class thick high-strength refractory steel for welded structures excellent in weldability and gas-cutting property, and method for producing the same
JPH0737646B2 (en) Manufacturing method of refractory high strength steel with excellent low temperature toughness of weld zone
JP4112733B2 (en) Method for producing 50 kg (490 MPa) to 60 kg (588 MPa) thick high-tensile steel sheet having excellent strength and low temperature toughness
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JPH06316723A (en) Production of weather resistant refractory steel material for building construction, excellent in gas cutting property and weldability
CN111349848B (en) Corrosion-inhibiting high-strength aluminum-coated substrate steel and manufacturing method thereof
CN111349769B (en) Corrosion-inhibiting steel for aluminum-clad substrate and manufacturing method thereof
JPH08246094A (en) Building steel for low temperature use
JPH09170045A (en) Building steel for low temperature use excellent in fire resistance
JPH02163341A (en) Steel material for structural purposes having excellent fire resistance and its manufacture
JP2004107714A (en) High toughness and high yield point steel with excellent weldability and its producing method
JP3244155B2 (en) Manufacturing method of refractory steel for hot-dip galvanized structure
CN115110000B (en) 330MPa grade cold-rolled enamel steel and production method thereof
JPH08260104A (en) Chromium steel sheet excellent in formability and atmospheric corrosion resistance
JP2004339549A (en) 490 MPa CLASS HIGH-TENSILE STRENGTH FIRE RESISTANT STEEL FOR STRUCTURAL USE HAVING EXCELLENT WELDABILITY AND GAS CUTTABILITY, AND ITS PRODUCTION METHOD
JPH09170044A (en) Production of building steel for low temperature use excellent in fire resistance
JP2828356B2 (en) Method for producing boron-treated thin steel for structural use with excellent fire resistance
JP3232118B2 (en) Hot-rolled steel strip for construction with excellent fire resistance and toughness and method for producing the same
JP2546953B2 (en) Method for manufacturing high-strength steel for construction with excellent fire resistance
JPH0450363B2 (en)
CN115261723A (en) Hot-rolled dual-phase high-corrosion-resistance steel plate with 650 MPa-level tensile strength and manufacturing method thereof
JPH02263916A (en) Production of steel plate with low yield ratio for construction use excellent in fire resistance