JPH09169671A - Production of 4-methylbiphenyl - Google Patents

Production of 4-methylbiphenyl

Info

Publication number
JPH09169671A
JPH09169671A JP33528495A JP33528495A JPH09169671A JP H09169671 A JPH09169671 A JP H09169671A JP 33528495 A JP33528495 A JP 33528495A JP 33528495 A JP33528495 A JP 33528495A JP H09169671 A JPH09169671 A JP H09169671A
Authority
JP
Japan
Prior art keywords
catalyst
reaction
surface area
silica
bpal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33528495A
Other languages
Japanese (ja)
Inventor
Yoichi Kuko
陽一 久古
Kenichi Nakagawa
健一 中川
Minoru Takagawa
實 高川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP33528495A priority Critical patent/JPH09169671A/en
Publication of JPH09169671A publication Critical patent/JPH09169671A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/22Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by reduction
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • C07C2521/08Silica
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/44Palladium

Abstract

PROBLEM TO BE SOLVED: To obtain the subject compound at high conversion and high selectivity by hydrogenating formylbiphenyl by using a catalyst composed of specific palladium and silica as a carrier. SOLUTION: This compound, i.e. 4-methylbiphenyl (MBP) is obtained by hydrogenating (B) 4-formylbiphenyl (BPAL) using (A) a catalyst consisting of Pd and silica as a carrier. The catalyst (A) preferably contains the silica having a surface area of >=250m<2> /g and Pd having a surface area of >=100m<2> /g, and the hydrogenation is preferably carried out at a reaction temperature of 50-300 deg.C, preferably 80-150 deg.C and at a hydrogen partial pressure of 2-50kg/cm<2> , preferably 5-15kg/cm<2> .

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は4-ホルミルビフェニ
ル (別名ビフェニルアルデヒド、以下、BPALと称
す)の水素化による4-メチルビフェニル (以下、MBP
と称す)の製造法に関する。MBPは、耐熱性、高強度
を有する高性能ポリエステル樹脂又はアラミド樹脂の原
料となる4,4'-ビフェニルジカルボン酸(以下、BP
DCと称す)の前駆体の4−ホルミル−4'-メチルビフ
ェニル(以下、MBPALと称す)の原料として有用で
ある。
TECHNICAL FIELD The present invention relates to 4-methylbiphenyl (hereinafter referred to as MBP) obtained by hydrogenation of 4-formylbiphenyl (also referred to as biphenylaldehyde, hereinafter referred to as BPAL).
Referred to as)). MBP is 4,4'-biphenyldicarboxylic acid (hereinafter referred to as BP), which is a raw material of high-performance polyester resin or aramid resin having heat resistance and high strength.
It is useful as a raw material for 4-formyl-4′-methylbiphenyl (hereinafter referred to as MBPAL) that is a precursor of DC).

【0002】[0002]

【従来の技術】BPDCは、特公平4−20420号に
記載されているように、MBPALの酸化により得られ
る。またMBPALは、特開平7−41450号に記載
されているように、ビフェニルをカルボニル化してBP
ALを合成し、次いで水素化しMBPとし、このMBP
をカルボニル化することにより製造される。BPALの
水素化によるMBPの合成には、特公平4−20420
号ではパラジウムを活性炭に担持してなる触媒が用い、
また特開平7−41450号では、白金、パラジウムな
どの貴金属を活性炭、アルミナ、シリカなどの担体に担
持してなる触媒を用いることが記載されている。
BPDC is obtained by the oxidation of MBPAL as described in JP-B-4-20420. In addition, MBPAL is prepared by carbonylating biphenyl as described in JP-A-7-41450 and BP.
AL was synthesized and then hydrogenated to MBP.
Is produced by carbonylation of For the synthesis of MBP by hydrogenation of BPAL, Japanese Patent Publication No. 20420/1992
In No. 6, a catalyst in which palladium is supported on activated carbon is used.
Further, JP-A-7-41450 describes the use of a catalyst in which a noble metal such as platinum or palladium is supported on a carrier such as activated carbon, alumina or silica.

【0003】[0003]

【発明が解決しようとする課題】BPALを水素化して
MBPを合成する場合、BPALはまずビフェニルメタ
ノールとなり、このビフェニルメタノールが更に水素化
されてMBPになると考えられる。このMBPが更に水
素化されると芳香環の一つがシクロヘキサン環となるの
で、BPALの水素化においては水素化が不十分であれ
ばビフェニルメタノールの生成量が多くなり、水素化が
過度に進むと核水素化物となる。中間体であるビフェニ
ルメタノール、過水素化物である核水素化物の生成を抑
え、MBPを高収率、高選択率で得るためには選択性の
高い水素化触媒が必要である。
When BPAL is hydrogenated to synthesize MBP, it is considered that BPAL first becomes biphenylmethanol, and this biphenylmethanol is further hydrogenated to become MBP. When this MBP is further hydrogenated, one of the aromatic rings becomes a cyclohexane ring, so in the hydrogenation of BPAL, if hydrogenation is insufficient, the amount of biphenylmethanol produced will increase, and if hydrogenation proceeds excessively. It becomes a nuclear hydride. A hydrogenation catalyst with high selectivity is required in order to suppress the production of intermediate biphenylmethanol and perhydride nuclear hydride and obtain MBP with high yield and high selectivity.

【0004】特公平4−20420号に記載されている
パラジウムを活性炭に担持してなる触媒では、目的とす
るMBPを高選択的に得ることができず、多くの副生物
を生成する。また特開平7−41450号に記載されて
いる白金、パラジウムなどの貴金属を活性炭、アルミ
ナ、シリカなどの担体に担持した触媒は水素化反応に一
般的に用いられる触媒であるが、MBPの収率および選
択率が充分でなく、更に改良が望まれている。本発明の
目的は、BPALを水素化してMBPが高収率、高選択
率で得られる高性能触媒を提供することにある。
With the catalyst described in JP-B-4-20420 in which palladium is supported on activated carbon, the desired MBP cannot be obtained with high selectivity and many by-products are produced. The catalyst described in JP-A-7-41450 in which a noble metal such as platinum or palladium is supported on a carrier such as activated carbon, alumina or silica is a catalyst generally used for hydrogenation reaction, but MBP yield And the selectivity is not sufficient, and further improvement is desired. An object of the present invention is to provide a high-performance catalyst capable of hydrogenating BPAL to obtain MBP with high yield and high selectivity.

【0005】[0005]

【課題を解決するための手段】発明者らは特公平4−2
0420号及び特開平7−41450号の方法によるB
PDCの製造における上記の如き課題を検討した結果、
BPALを水素化するに際し、特定のパラジウムをシリ
カに担持してなる触媒が最も温和な反応温度、反応圧力
下で高いBPAL転化率、MBP選択率を示すことを見
出し、本発明に達した。即ち本発明は、Pdをシリカに
担持してなる触媒を用い、4-ホルミルビフェニルを水素
化することを特徴とするメチルビフェニルの製造法であ
り、特に該触媒として、表面積250m2 /g以上のシ
リカを担体とし、Pd金属の表面積が100m2 /g以
上である触媒が用いられる。
[Means for Solving the Problems]
B by the method of 0420 and JP-A-7-41450
As a result of examining the above-mentioned problems in the production of PDC,
In hydrogenating BPAL, it was found that a catalyst in which specific palladium is supported on silica exhibits the highest BPAL conversion and MBP selectivity under the mildest reaction temperature and reaction pressure, and the present invention has been accomplished. That is, the present invention is a method for producing methylbiphenyl, which is characterized in that 4-formylbiphenyl is hydrogenated using a catalyst in which Pd is supported on silica. Particularly, the catalyst has a surface area of 250 m 2 / g or more. A catalyst having silica as a carrier and having a surface area of Pd metal of 100 m 2 / g or more is used.

【0006】[0006]

【発明の実施の形態】本発明において触媒の担体に用い
られるシリカには、人造、天然等のいかなる物も用いる
ことができ、その形状などは特に限定されず、反応方式
に適した形態のものが選ばれる。通常、バッチ方式やセ
ミバッチ方式などの液相スラリー床で用いる場合には粉
末状が好適であり、固定床流通方式で用いる場合には球
状などに成型されたものが好適である。該シリカ担体の
表面積(BET)は大きい方が好ましく、特にシリカ担
体の表面積が250m2 /g以上のものを用いることに
より、高いMBP選択率が得られる。
BEST MODE FOR CARRYING OUT THE INVENTION The silica used in the catalyst carrier of the present invention may be artificial or natural, and its shape is not particularly limited, and it is suitable for the reaction system. Is selected. Generally, when used in a liquid phase slurry bed such as a batch system or a semi-batch system, a powdery form is suitable, and when used in a fixed bed flow system, a spherical form is suitable. The surface area (BET) of the silica carrier is preferably large, and particularly when a silica carrier having a surface area of 250 m 2 / g or more is used, a high MBP selectivity can be obtained.

【0007】シリカに担持されるPdの原料も特に限定
されないが、一般的には塩化Pdや酢酸Pdなどの入手
容易なパラジウム化合物や、テトラクロロパラジウム
(II)酸塩、テトラアンミンパラジウム塩などの錯体を
用いることができる。Pdのシリカ担体に対する担持量
に制限はないが、0.1〜10wt%の範囲に調製する
事が好ましい。
The raw material of Pd supported on silica is not particularly limited, but generally, an easily available palladium compound such as Pd chloride or Pd acetate, or a complex such as tetrachloropalladium (II) acid salt or tetraamminepalladium salt. Can be used. The amount of Pd supported on the silica carrier is not limited, but it is preferably adjusted to the range of 0.1 to 10 wt%.

【0008】触媒の調製には、含浸法、イオン交換法等
の一般的に知られている方法を用いることができる。例
えば含浸法で触媒を調製する場合には、フラスコにPd
源の溶液とシリカ担体を仕込み、溶媒を留出して乾燥さ
せる。乾燥温度は通常20〜300℃である。触媒は乾
燥後、水素化反応に使用するに際し、還元処理により活
性化する必要がある。還元処理の方法としては、公知の
液相還元処理、気相還元処理を用いることができ、なか
でも水素気流下で加熱する気相還元処理が好適である。
還元時の温度範囲は100〜600℃、好ましくは20
0〜500℃である。還元後の触媒のPd表面積はより
大きい方が好ましく、特にPd表面積が100m2 /g
以上では、高いMBP選択率を得ることができる。
For the preparation of the catalyst, generally known methods such as an impregnation method and an ion exchange method can be used. For example, when the catalyst is prepared by the impregnation method, Pd is added to the flask.
The source solution and the silica carrier are charged, the solvent is distilled off and dried. The drying temperature is usually 20 to 300 ° C. After being dried, the catalyst needs to be activated by a reduction treatment before it is used in the hydrogenation reaction. As a method for the reduction treatment, known liquid-phase reduction treatment or vapor-phase reduction treatment can be used, and among them, vapor-phase reduction treatment of heating in a hydrogen stream is preferable.
The temperature range during the reduction is 100 to 600 ° C., preferably 20.
0-500 ° C. It is preferable that the Pd surface area of the catalyst after reduction is larger, and especially the Pd surface area is 100 m 2 / g.
With the above, a high MBP selectivity can be obtained.

【0009】該触媒を用いるBPALの水素化では、反
応温度が50〜300℃、好ましくは80〜150℃、
水素分圧が2〜50kg/cm2 、好ましくは5〜15
kg/cm2 の条件下で行われる。反応方式は液相懸濁
反応又は固定床反応のいずれであっても良い。また水素
化反応は、無溶媒でも行われるが、必要に応じて反応に
悪影響を与えない種類の溶媒を使用しても良い。固定床
反応の場合の触媒使用量は、通常、WHSV(触媒重量
当りの原料BPALの重量供給速度)として0.05〜
1.0g/g−hrであり、反応温度や反応圧力などの
諸条件に応じ、実用的な反応速度が得られる範囲内にお
いて任意に選択される。回分反応の場合に使用される触
媒の量は、通常、BPAL100重量部に対し0.1〜
100重量部であり、反応温度又は反応圧力などの諸条
件に応じ、実用的な反応速度が得られる範囲内において
任意に選択される。
In the hydrogenation of BPAL using the catalyst, the reaction temperature is 50 to 300 ° C, preferably 80 to 150 ° C.
Hydrogen partial pressure is 2 to 50 kg / cm 2 , preferably 5 to 15
It is carried out under the condition of kg / cm 2 . The reaction system may be either a liquid phase suspension reaction or a fixed bed reaction. Further, the hydrogenation reaction is carried out without a solvent, but if necessary, a type of solvent which does not adversely influence the reaction may be used. In the case of the fixed bed reaction, the amount of catalyst used is usually 0.05 to 50% as WHSV (weight feed rate of raw material BPAL per catalyst weight).
It is 1.0 g / g-hr, and is arbitrarily selected within the range where a practical reaction rate can be obtained according to various conditions such as reaction temperature and reaction pressure. The amount of the catalyst used in the batch reaction is usually 0.1 to 100 parts by weight of BPAL.
It is 100 parts by weight, and is arbitrarily selected within a range where a practical reaction rate can be obtained according to various conditions such as reaction temperature or reaction pressure.

【0010】[0010]

【実施例】以下に実施例及び比較例により本発明をより
具体的に説明する。但し本発明は以下の実施例に限定さ
れない。なお実施例におけるシリカ担体の表面積は一般
的に知られるBET法によるN2 吸着で測定した値であ
り、またPd金属表面積はCO吸着法による測定値であ
る。実施例及び比較例で用いた触媒の物性を表1に示
す。またBPAL転化率、MBP選択率、核水素化物
(以下CHMBと称す)選択率、ビフェニルメタノール
(BPMOHと称す)選択率は次式による各モル比で定
義される。実施例及び比較例の反応条件とこれらの反応
成績を表2に示す。 BPAL転化率=反応BPAL/供給BPAL MBP選択率=生成MBP/反応BPAL CHMB選択率=生成CHMB/反応BPAL BPMOH選択率=生成BPMOH/反応BPAL
EXAMPLES The present invention will be described more specifically with reference to Examples and Comparative Examples below. However, the present invention is not limited to the following examples. The surface area of the silica carrier in the examples is a value measured by N 2 adsorption by the generally known BET method, and the Pd metal surface area is a value measured by the CO adsorption method. Table 1 shows the physical properties of the catalysts used in Examples and Comparative Examples. The BPAL conversion rate, MBP selectivity, nuclear hydride (hereinafter referred to as CHMB) selectivity, and biphenylmethanol (hereinafter referred to as BPMOH) selectivity are defined by each molar ratio according to the following equation. Table 2 shows the reaction conditions of Examples and Comparative Examples and the results of these reactions. BPAL conversion = reaction BPAL / feed BPAL MBP selectivity = production MBP / reaction BPAL CHMB selectivity = production CHMB / reaction BPAL BPMOH selectivity = production BPMOH / reaction BPAL

【0011】実施例1 500mlナス型フラスコに、水300ml、塩化パラ
ジウム0.83g、塩酸5mlを仕込み液を均一にさせ
た後、シリカ球(表面積:300m2 /g)100gを
加え、60℃、50mmHgにて溶媒を留出し、乾燥し
た。得られたPd/シリカを水素雰囲気下500℃で3
時間還元処理を行った。固定床流通式反応器を用いて、
上記で調製した触媒(触媒A、金属表面積:140m2
/g−Pd)5gを充填し、10kg/cm2 の加圧
下、反応温度を130℃とし、H2 を30cc/min
の速度で供給し、ベンゼンに10wt%溶解したBPA
Lを5g/hrの速度で供給した。反応生成液をガスク
ロマトグラフィーにて分析し、反応成績を算出した。
Example 1 A 500 ml eggplant-shaped flask was charged with 300 ml of water, 0.83 g of palladium chloride and 5 ml of hydrochloric acid, and the mixture was homogenized. Then, 100 g of silica spheres (surface area: 300 m 2 / g) were added, and the mixture was heated at 60 ° C. The solvent was distilled off at 50 mmHg and dried. The obtained Pd / silica was mixed with hydrogen at 500 ° C. for 3 times.
Time reduction treatment was performed. Using a fixed bed flow reactor,
The catalyst prepared above ( Catalyst A , metal surface area: 140 m 2
/ G-Pd) 5 g, under a pressure of 10 kg / cm 2 , the reaction temperature was 130 ° C., and H 2 was 30 cc / min.
BPA supplied at the rate of 10% by weight dissolved in benzene
L was fed at a rate of 5 g / hr. The reaction product solution was analyzed by gas chromatography to calculate the reaction results.

【0012】比較例1 触媒として活性炭担体(表面積:300m2 /g)にP
dを0.5wt%担持した触媒(触媒B、金属表面積:
160m2 /g−Pd)を5g充填した固定床流通式反
応器を用いて、反応温度を130℃として実施例1と同
様の方法で反応を行った。表2に示すように、活性炭担
体の触媒Bを用いた場合、130℃では中間体BPMO
Hが多い。
Comparative Example 1 As a catalyst, P was added to an activated carbon carrier (surface area: 300 m 2 / g).
A catalyst supporting 0.5 wt% of d ( catalyst B , metal surface area:
The reaction was carried out in the same manner as in Example 1 using a fixed bed flow reactor filled with 5 g of 160 m 2 / g-Pd) at a reaction temperature of 130 ° C. As shown in Table 2, in the case of using the catalyst B of the activated carbon support, the intermediate BPMO at 130 ° C.
There are many H.

【0013】比較例2 比較例1の触媒(触媒B)を用い、反応温度を180℃
として実施例1と同様の方法で反応を行った。表2に示
すように、活性炭担体の触媒Bを用い、反応温度を18
0℃に上げた場合はBPMOHが残っているにもかかわ
らず、核水素化物もかなり生成し、更に高沸点成分の生
成が多い。
Comparative Example 2 Using the catalyst of Comparative Example 1 ( Catalyst B ), the reaction temperature was 180 ° C.
The reaction was performed in the same manner as in Example 1. As shown in Table 2, using Catalyst B of activated carbon support, the reaction temperature 18
When the temperature is raised to 0 ° C., although the BPMOH remains, a considerable amount of nuclear hydrides are also produced, and more high boiling point components are produced.

【0014】比較例3 触媒として活性炭担体(表面積:300m2 /g)にP
tを0.5wt%担持した触媒(触媒C、金属表面積:
160m2 /g−Pd)を5g充填した固定床流通式反
応器を用いて、反応温度を130℃として実施例1と同
様の方法で反応を行った。表2に示すように、金属成分
がPtで活性炭担体の触媒Cを用いた場合、BPALの
転化率が低く、また中間体のBPMOHが多い。
Comparative Example 3 As a catalyst, P was added to an activated carbon carrier (surface area: 300 m 2 / g).
A catalyst supporting 0.5 wt% of t ( Catalyst C , metal surface area:
The reaction was carried out in the same manner as in Example 1 using a fixed bed flow reactor filled with 5 g of 160 m 2 / g-Pd) at a reaction temperature of 130 ° C. As shown in Table 2, in the case of using the catalyst C of Pt as the metal component and the activated carbon carrier, the conversion rate of BPAL is low and the intermediate BPMOH is large.

【0015】比較例4 触媒としてアルミナ担体(表面積:180m2 /g)に
Pdを0.5wt%担持した触媒(触媒D、金属表面
積:160m2 /g−Pd)を5g充填した固定床流通
式反応器を用いて、実施例1と同様の方法で反応を行っ
た。表2に示すように、アルミナ担体の触媒Dでは中間
体BPMOHが多いにもかかわらず、核水素化物も多量
に生成している。
Comparative Example 4 A fixed bed flow type in which 5 g of a catalyst ( Catalyst D , metal surface area: 160 m 2 / g-Pd) in which 0.5 wt% of Pd is supported on an alumina carrier (surface area: 180 m 2 / g) as a catalyst is packed. The reaction was performed in the same manner as in Example 1 using the reactor. As shown in Table 2, in the alumina-supported catalyst D , a large amount of the nuclear hydride was produced even though the intermediate BPMOH was large.

【0016】比較例5 触媒としてシリカ担体(表面積:300m2 /g)にP
tを0.5wt%担持した触媒(触媒E、金属表面積:
170m2 /g−Pt)を5g充填した固定床流通式反
応器を用いて、反応温度を130℃として実施例1と同
様の方法で反応を行った。
Comparative Example 5 A silica carrier (surface area: 300 m 2 / g) was used as a catalyst for P.
A catalyst supporting 0.5 wt% of t ( catalyst E 2 , metal surface area:
The reaction was carried out in the same manner as in Example 1 using a fixed bed flow reactor filled with 5 g of 170 m 2 / g-Pt) at a reaction temperature of 130 ° C.

【0017】比較例6 比較例4の触媒(触媒E)を用い、反応温度を200℃
として実施例1と同様の方法で反応を行った。表2に示
すように、金属成分がPtでシリカ担体の触媒Eでは:
触媒の活性が非常に低いことが分かる。
Comparative Example 6 The catalyst of Comparative Example 4 ( catalyst E ) was used and the reaction temperature was 200 ° C.
The reaction was performed in the same manner as in Example 1. As shown in Table 2, in the case of the catalyst E having the metal component of Pt and the silica support:
It can be seen that the activity of the catalyst is very low.

【0018】実施例2 触媒としてシリカ担体(表面積:300m2 /g)にP
dを0.5wt%担持した触媒(触媒F、金属表面積:
60m2 /g−Pd)を5g充填した固定床流通式反応
器を用いて、実施例1と同様の方法で反応を行った。
Example 2 A silica carrier (surface area: 300 m 2 / g) was used as a catalyst for P.
A catalyst supporting 0.5 wt% of d ( catalyst F 3 , metal surface area:
The reaction was carried out in the same manner as in Example 1 using a fixed bed flow type reactor filled with 5 g of 60 m 2 / g-Pd).

【0019】実施例3 触媒としてシリカ担体(表面積:200m2 /g)にP
dを0.5wt%担持した触媒(触媒G、金属表面積:
150m2 /g−Pd)を5g充填した固定床流通式反
応器を用いて、実施例1と同様の方法で反応を行った。
Example 3 A silica carrier (surface area: 200 m 2 / g) was used as a catalyst for P.
A catalyst supporting 0.5 wt% of d ( Catalyst G , metal surface area:
The reaction was carried out in the same manner as in Example 1 using a fixed bed flow reactor filled with 5 g of 150 m 2 / g-Pd).

【0020】実施例4 触媒としてシリカ担体(表面積:300m2 /g)にP
dを0.5wt%担持した触媒(触媒H、金属表面積:
170m2 /g−Pd)4g、ベンゼン50g、BPA
L10gをSUS製オートクレーブに仕込んだ。内容物
の温度を130℃に維持し水素にて反応圧力を10kg
/cm2 に維持しつつ、この水素圧下で5hr反応を行
った。
Example 4 As a catalyst, P was added to a silica carrier (surface area: 300 m 2 / g).
A catalyst supporting 0.5 wt% of d ( catalyst H 2 , metal surface area:
170 m 2 / g-Pd) 4 g, benzene 50 g, BPA
L10g was prepared in the SUS autoclave. The temperature of the contents is maintained at 130 ° C and the reaction pressure is 10 kg with hydrogen.
The reaction was carried out for 5 hours under this hydrogen pressure while maintaining / cm 2 .

【0021】[0021]

【表1】 触媒物性 [Table 1] Physical properties of catalyst

【0022】[0022]

【表2】 反応結果 触媒 温度 圧力 BPAL 選択率 ℃ kg/cm2 転化率 MBP CHMB BPMOH 実施例1 A 130 10 99.0 97.5 0.7 1.3 比較例1 B 130 10 96.5 21.0 2.2 75.2 比較例2 B 180 10 98.4 48.7 7.0 12.2 比較例3 C 130 10 39.4 37.2 0.0 53.0 比較例4 D 130 10 97.5 53.2 15.6 19.6 比較例5 E 130 10 17.6 2.7 0.0 86.0 比較例6 E 200 10 71.4 16.5 0.0 43.3 実施例2 F 130 10 99.4 86.8 3.2 7.5 実施例3 G 130 10 99.7 81.1 16.0 1.2 実施例4 H 130 10 96.5 95.4 2.5 0.0 CHMB:核水素化物、 BPMOH:ビフェニルメタノール[Table 2] Reaction Results Catalyst Temperature Pressure BPAL Selectivity ° C kg / cm 2 Conversion MBP CHMB BPMOH Example 1 A 130 10 99.0 97.5 0.7 1.3 Comparative Example 1 B 130 10 96.5 21.0 2.2 75.2 Comparative Example 2 B 180 10 98.4 48.7 7.0 12.2 Comparative Example 3 C 130 10 39.4 37.2 0.0 53.0 Comparative Example 4 D 130 10 97.5 53.2 15.6 19.6 Comparative Example 5 E 130 10 17.6 2.7 0.0 86.0 Comparative Example 6 E 200 10 71.4 16.5 0.0 43.3 Example 2 F 130 10 99.4 86.8 3.2 7.5 Example 3 G 130 10 99.7 81.1 16.0 1.2 Example 4 H 130 10 96.5 95.4 2.5 0.0 CHMB: Nuclear hydride, BPMOH: Biphenylmethanol

【0023】[0023]

【発明の効果】以上の実施例から明らかなように、本発
明によれば4−ホルミルビフェニル(BPAL)から、
水素化反応により、高転化率且つ高選択率で4−メチル
ビフェニル(MBP)を得ることができる。従って本発
明によりBPALからMBPが極めて高収率で得られる
ようになり、本発明の工業的意義は大きい。
As is apparent from the above examples, according to the present invention, 4-formylbiphenyl (BPAL)
By the hydrogenation reaction, 4-methylbiphenyl (MBP) can be obtained with high conversion and high selectivity. Therefore, according to the present invention, MBP can be obtained from BPAL in an extremely high yield, and the industrial significance of the present invention is great.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Pdをシリカに担持してなる触媒を用
い、4-ホルミルビフェニルを水素化することを特徴とす
る4-メチルビフェニルの製造法。
1. A process for producing 4-methylbiphenyl, which comprises hydrogenating 4-formylbiphenyl using a catalyst comprising Pd supported on silica.
【請求項2】 表面積250m2 /g以上のシリカを担
体とし、Pd金属の表面積が100m2 /g以上である
触媒を用いる請求項1に記載の4-メチルビフェニルの製
造法。
2. The method for producing 4-methylbiphenyl according to claim 1, wherein a catalyst having a surface area of 250 m 2 / g or more as a carrier and a Pd metal surface area of 100 m 2 / g or more is used.
JP33528495A 1995-12-22 1995-12-22 Production of 4-methylbiphenyl Pending JPH09169671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33528495A JPH09169671A (en) 1995-12-22 1995-12-22 Production of 4-methylbiphenyl

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33528495A JPH09169671A (en) 1995-12-22 1995-12-22 Production of 4-methylbiphenyl

Publications (1)

Publication Number Publication Date
JPH09169671A true JPH09169671A (en) 1997-06-30

Family

ID=18286805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33528495A Pending JPH09169671A (en) 1995-12-22 1995-12-22 Production of 4-methylbiphenyl

Country Status (1)

Country Link
JP (1) JPH09169671A (en)

Similar Documents

Publication Publication Date Title
EP0324190B1 (en) Process for the production of 4,4&#39;-diamino-dicyclohexylmethane with a low trans-trans isomer content by the catalytic hydrogenation of 4,4&#39;-diaminodiphenylmethane
JP4523301B2 (en) Method for producing cyclododecene
JPS5919931B2 (en) Hydrogenation method of diacetoxybutene
KR101639487B1 (en) Manufacturing apparatus of trans-1,4-cyclohexanedimethanol for simplifying process
KR101659171B1 (en) Method of direct conversion to trans-1,4-cyclohexanedimethanol
EP1164117A2 (en) Process for producing adamantane
JP3031508B2 (en) Reduction method of polychlorinated alkanes
JP2002356461A (en) Method for continuously producing diaminodicyclohexylmethane
JP2812800B2 (en) Method for producing chloroform
KR0131203B1 (en) Process for the production of ñò-butyrolactone
JPH09169671A (en) Production of 4-methylbiphenyl
JP2819171B2 (en) Method for producing aromatic alcohol
KR102290645B1 (en) Method for preparing 2-cyclohexyl cyclohexanol
US5196594A (en) Process for the production of 4,4&#39;-diamino-dicyclohexylmethane with a low trans-trans isomer content by the catalytic hydrogenation of 4,4&#39;-diamino-diphenylmethane
JP4312334B2 (en) Indan manufacturing method
JPS5941974B2 (en) Hydrogenation method for α,β-unsaturated aldehydes
JPH1045645A (en) Production of 1,4-cyclohexanedimethanol
JPS621375B2 (en)
JPH03202152A (en) Hydrogenating catalyst
JP2002539109A (en) Method for producing serinol
KR20010031521A (en) Method for hydrogenating an anthraquinone compound
JP2001240567A (en) Preparation method of heptafluorocyclopentane
JPH0597778A (en) Production of 2-aminoindane and its salts
JP2512067B2 (en) Manufacturing method of cumyl alcohol
JP3547162B2 (en) Method for producing lower halogenated hydrocarbon

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20060629

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060705

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061101