JPH09168285A - Electrostatic microactuator - Google Patents

Electrostatic microactuator

Info

Publication number
JPH09168285A
JPH09168285A JP32481696A JP32481696A JPH09168285A JP H09168285 A JPH09168285 A JP H09168285A JP 32481696 A JP32481696 A JP 32481696A JP 32481696 A JP32481696 A JP 32481696A JP H09168285 A JPH09168285 A JP H09168285A
Authority
JP
Japan
Prior art keywords
moving element
fluid
electrostatic microactuator
moving
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32481696A
Other languages
Japanese (ja)
Other versions
JP2896123B2 (en
Inventor
Hirobumi Matsumoto
博文 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mektron KK
Original Assignee
Nippon Mektron KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mektron KK filed Critical Nippon Mektron KK
Priority to JP32481696A priority Critical patent/JP2896123B2/en
Publication of JPH09168285A publication Critical patent/JPH09168285A/en
Application granted granted Critical
Publication of JP2896123B2 publication Critical patent/JP2896123B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Micromachines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrostatic microactuator which is capable of holding a stable operation of a moving element even under the low speed condition and can be applied to an artificial muscle, etc., by filling the area between the moving element and fixed electrode with a fluid having high dielectric strength and viscosity and forming the moving element in the form of stable fluid. SOLUTION: A plurality of rotors 6 in the filled fluid 5 having high viscosity are arranged in parallel with the predetermined interval in such a manner that the moving directions are reverged with each other. One end of the rotors 6 in the same direction is supported individually by supporting means 11 in both sides and these supporting means 11 on both sides are coupled with spring members 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、移動子と固定電極
との間に高粘性流体を封入することにより移動子の運動
を著しく安定化した静電マイクロアクチュエ−タ−に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrostatic microactuator in which movement of a moving element is remarkably stabilized by enclosing a highly viscous fluid between the moving element and a fixed electrode.

【0002】[0002]

【従来技術とその問題点】静電気を駆動力として応用す
る電子電気機器は、現在まで殆ど開発がなされていな
い。その最も大きな理由は、電磁気を応用する電子電気
機器に比較してエネルギ−密度がオ−ダ−違いで小さく
なる為である。
2. Description of the Related Art There has been almost no development of electronic and electrical equipment which applies static electricity as a driving force. The most important reason is that the energy density is smaller in order than in electronic and electrical equipment that applies electromagnetism.

【0003】この問題に関しては、機器自体のマイクロ
サイズ化により、その欠点を補えることが近年判明した
為、最近はマイクロアクチュエ−タ−の駆動源として静
電気を利用することが検討されつつある。しかしなが
ら、静電気を利用したシステムは必ず運動不安定性を持
つという、ア−ンショウの定理によって、システム内の
安定性を求める何らかの手段が必要になってくる。
With respect to this problem, it has been revealed in recent years that the drawback can be compensated for by making the device itself microsized, and therefore, recently, the use of static electricity as a driving source of a microactuator is being studied. However, according to Arnshaw's theorem that a system using static electricity always has motion instability, some means for obtaining stability in the system is required.

【0004】そこで、静電マイクロアクチュエ−タ−内
の移動子の移動方向に対して、その垂直方向に働くク−
ロン力に対抗してシステムの安定化を図る為に従来より
種々の方法が提案されている。
[0004] Therefore, a clutch acting in a direction perpendicular to the moving direction of the moving element in the electrostatic microactuator.
Conventionally, various methods have been proposed for stabilizing the system against the Ron force.

【0005】例えば、機械的ベアリングを設ける方法が
あるが、これはシステムのサイズがマイクロ化するに従
って実現性も信頼性も乏しくなる。また、磁力浮上を用
いる方法もあるが、この方法は磁力自体がマイクロ領域
では本質的に有力な力にはならない。その点、超電導物
質によるマイスナ−効果を利用する方法では、マイスナ
−効果自体はマイクロ領域では本質的に有力な力となる
が、液体ヘリウムや液体窒素等の準備でコスト高とな
る。また、超音波浮上を利用する方法もあるが、これは
波長が数mmである為、システムのマイクロサイズ化に
制限が生じてしまう等の問題がある。
[0005] For example, there is a method of providing a mechanical bearing, but this becomes less feasible and less reliable as the size of the system becomes smaller. In addition, there is a method using magnetic levitation, but this method does not become a predominantly strong magnetic force in a micro region. In this respect, in the method utilizing the Meissner effect by the superconducting substance, the Meissner effect itself is essentially a powerful force in the micro region, but the cost increases due to the preparation of liquid helium, liquid nitrogen or the like. There is also a method of utilizing ultrasonic levitation, but since the wavelength is several mm, there is a problem that the micro size of the system is limited.

【0006】[0006]

【課題を解決するための手段】本発明は、そこで移動子
と固定電極との間に誘電率の高い高粘度流体を封入する
と共に、移動子を流体安定形状に形成することにより、
10mm/sec以下の低速度でも移動子の安定運動を
保持することができ且つ人造筋肉にも応用可能な静電マ
イクロアクチュエ−タ−を提供するものである。
According to the present invention, a high-viscosity fluid having a high dielectric constant is enclosed between a moving element and a fixed electrode, and the moving element is formed into a fluid-stable shape.
Provided is an electrostatic microactuator capable of retaining a stable motion of a moving element even at a low speed of 10 mm / sec or less and applicable to an artificial muscle.

【0007】その為に本発明の静電マイクロアクチュエ
−タ−では、基本的には移動子と固定電極との間に高粘
性流体を封入し、この移動子を流体安定形状に形成する
ことにより移動子が低速度でも安定な運動を保持するよ
うに構成場合に、封入された高粘性流体の中に配置され
た複数の移動子を互いの移動方向が反対となるように所
要の間隙で平行に配列し、これらの同一向きの移動子の
各一端はそれぞれ両側の支持体に各別に支持され、この
両支持体間をスプリング部品で連結するように構成した
ものである。
Therefore, in the electrostatic microactuator of the present invention, basically, a highly viscous fluid is enclosed between the moving element and the fixed electrode, and the moving element is formed into a fluid stable shape. When the mover is configured to maintain stable motion even at low speed, the movers placed in the enclosed high-viscosity fluid are parallel to each other with the required gap so that their moving directions are opposite to each other. One end of each of the movers in the same direction is separately supported by the supports on both sides, and the two supports are connected by a spring component.

【0008】[0008]

【実施例】以下、図面を参照しながら本発明を更に詳述
する。本発明の静電マイクロアクチュエ−タ−に於いて
は、移動子と固定電極との間に誘電率の高い高粘度流体
を封入し、且つ、移動子を流体安定形状に形成すること
により、移動子の速度が大きくなくても、移動子の安定
状態を保持できることに特色がある。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. In the electrostatic microactuator of the present invention, a high-viscosity fluid having a high dielectric constant is enclosed between the moving element and the fixed electrode, and the moving element is formed into a fluid-stable shape to move the element. The feature is that the stable state of the mover can be maintained even if the speed of the mover is not high.

【0009】例えば、ハ−ドディスクドライブのヘッド
等では、粘性の低い気体中でもディスクの回転速度を上
げることにより、相対的にヘッド浮上による安定状態を
得ている。本発明では、システムのレイノルズ数を安定
域に保持することによって、ハ−ドディスクドライブの
ヘッドの安定性と同等のものを静電マイクロアクチュエ
−タ−内の移動子の運動安定性に求めるものである。
For example, in a head of a hard disk drive or the like, a stable state is relatively obtained by flying the head by increasing the rotational speed of the disk even in a gas of low viscosity. According to the present invention, the same stability as that of the head of a hard disk drive is obtained for the motion stability of a moving element in an electrostatic microactuator by maintaining the Reynolds number of the system in a stable range. It is.

【0010】実例としては、移動子の速度が1〜10m
m/sec、高粘性流体の動粘性が10-3m2 /sec
の場合、間隙が100μmオ−ダ−以下では、システム
内のレイノルズ数が臨界レイノルズ数(〜1000)よ
り十分小さくなる為、間隙内は十分に層流となり、移動
子の運動安定性を望めることが判明した。
As an example, the speed of the moving element is 1 to 10 m.
m / sec, kinematic viscosity of highly viscous fluid is 10-3 m2 / sec
In the case of (1), if the gap is on the order of 100 μm or less, the Reynolds number in the system becomes sufficiently smaller than the critical Reynolds number (up to 1000), so that the gap becomes sufficiently laminar and the motion stability of the moving element can be expected. There was found.

【0011】図1は本発明の静電マイクロアクチュエ−
タ−の概念を説明する図であって、固定体7は複数の固
定電極1と電気的絶縁層2からなり、各固定電極1は電
気的絶縁層2の一方面に固定配置される。そして、二つ
の固定体7はそれぞれの固定電極1が対向するように所
要の間隔で平行に配置され、これらの対向配置された固
定電極1の間には移動子6が配置されている。移動子6
は電気的絶縁層3内に埋設された複数の移動子電極4を
有するように構成される。そして、移動子6が配置され
る対向固定電極1の間隙内には、シリコン系オイル又は
フッ素系オイル等からなる絶縁性の高粘性流体5が封入
される。
FIG. 1 shows an electrostatic microactuator of the present invention.
FIG. 3 is a view for explaining the concept of the data type, in which a fixed body 7 is composed of a plurality of fixed electrodes 1 and an electrically insulating layer 2, and each fixed electrode 1 is fixedly arranged on one surface of the electrically insulating layer 2. The two fixed bodies 7 are arranged in parallel at a required interval so that the fixed electrodes 1 face each other, and the moving element 6 is arranged between the fixed electrodes 1 arranged facing each other. Mover 6
Is configured to have a plurality of moving element electrodes 4 embedded in the electrically insulating layer 3. An insulating high-viscosity fluid 5 made of silicon-based oil, fluorine-based oil, or the like is sealed in the gap between the opposed fixed electrodes 1 where the movers 6 are arranged.

【0012】移動子6は、固定電極1と移動子6との間
隙で正圧分布を持つように、ステップ形状やテ−パ−形
状等に形成することにより動圧浮上効果を望める。固定
電極1と移動子6との間隙に発生する圧力は、移動子6
が板状のステップ形状の場合には図2に示すようなもの
であり、二次元モデルでは斜線で示す三角状の面積が圧
力分布8として移動子6の片面にかかる全圧力となる。
この全圧力は、間隙サイズの関数であり、間隙が小さく
なればなるほど全圧力が大きくなるという性質をシステ
ムとして保持している。
The moving element 6 is formed in a step shape or a taper shape so as to have a positive pressure distribution in the gap between the fixed electrode 1 and the moving element 6, so that the dynamic pressure levitation effect can be expected. The pressure generated in the gap between the fixed electrode 1 and the moving element 6 is
Is a plate-like step shape, as shown in FIG. 2. In the two-dimensional model, a triangular area indicated by oblique lines is a pressure distribution 8 and is a total pressure applied to one surface of the moving element 6.
This total pressure is a function of the gap size, and the system retains the property that the smaller the gap, the greater the total pressure.

【0013】この定性的な現象は、移動子6が上下何れ
かの固定電極1に近づけば移動子6を平衡位置に押し戻
そうとする力が働く、と理解され、システムの安定化に
有益である。しかし、その復元力は、移動子6の電極4
と固定電極1との間に生じるク−ロン力を上回るもので
なければならないことは必要条件である。しかしなが
ら、ダンピング力と動圧浮上力とを加えたこの復元力
は、定性的に間隙サイズが減少すればするほど飛躍的に
増大する為、固定電極1の近傍では復元力がク−ロン力
に対してオ−ダ−違いに大きくなる。従って、マイクロ
システムの場合、この必要条件は自動的に満たされる場
合が殆どであると考えられる。
It is understood that this qualitative phenomenon is that a force acts to push the moving element 6 back to the equilibrium position when the moving element 6 approaches the upper or lower fixed electrode 1, and is useful for stabilizing the system. Is. However, the restoring force depends on the electrode 4 of the moving element 6.
It is a requirement that it be greater than the Coulomb force generated between the electrode and the fixed electrode 1. However, this restoring force, which is the sum of the damping force and the dynamic pressure levitation force, increases dramatically as the gap size decreases qualitatively. On the other hand, the order becomes larger. Thus, in the case of microsystems, this requirement is almost always met automatically.

【0014】図3は移動子6の運動の定性的な現象を安
定性理論により証明しようと意図したフェ−ズ・プレ−
ン図である。この図に於ける解析条件としては、移動子
6のサイズが30mm×40mm、平均間隙サイズが7
0μm、また、流体5の粘性が0.8Pas、そして、
移動子6の速度が1mm/secを使用した。図3の横
軸Pは無次元での移動子6の位置を表し、縦軸Vは無次
元での移動子6の速度を示し、また、中央の破線Sは移
動子6の平衡位置を示す。
FIG. 3 is a phase play intended to prove the qualitative phenomenon of the movement of the mover 6 by the stability theory.
FIG. As the analysis conditions in this figure, the size of the moving element 6 is 30 mm × 40 mm, and the average gap size is 7 mm.
0 μm, the viscosity of the fluid 5 is 0.8 Pas, and
The speed of the moving element 6 was 1 mm / sec. The horizontal axis P in FIG. 3 represents the dimensionless position of the moving element 6, the vertical axis V represents the dimensionless velocity of the moving element 6, and the broken line S at the center represents the equilibrium position of the moving element 6. .

【0015】この図によると、移動子6が−Y方向に移
動すると+Y方向の速度を持ち、また移動子6が+Y方
向に移動すると−Y方向の速度を持つという定性的状態
を示しており、従って、運動中の移動子6は常に平衡位
置に位置する為、移動子6の運動は安定化されるという
特性を表している。
This figure shows a qualitative state in which the moving element 6 moves in the -Y direction and has a + Y direction speed, and the moving element 6 moves in the + Y direction and has a -Y direction speed. Therefore, the moving element 6 in motion is always positioned at the equilibrium position, and thus the movement of the moving element 6 is stabilized.

【0016】図4は移動子6の一例による外観図を示
し、この例では移動子6は右方の移動方向9に動くよう
に板状のステップ形状に形成されているが、流体安定形
状であればテ−パ−形状や波型形状も適用できる。ま
た、往復運動の如く移動方向を特定しないように形状を
左右対称に形成することもできる。
FIG. 4 shows an external view of an example of the moving element 6. In this example, the moving element 6 is formed in a plate-like step shape so as to move in the right moving direction 9, but it has a fluid stable shape. If desired, a taper shape or a corrugated shape can be applied. Further, the shape can be formed symmetrically so that the moving direction is not specified unlike the reciprocating motion.

【0017】図5は本発明を人造筋肉に応用した場合の
概念的モデルである。このモデルでは、サブシステムと
しての各移動子6が互いに反対向きになるように多数並
列に配置され、その同一向きの移動子6はそれぞれ左右
の支持体11に接し、それらの支持体11は上下に配置
したスプリング部品10に連結されて、発生力を繋げた
サブシステムの数量分増大するマクロシステムを構成し
ている。高粘性流体5はこれらの構成部品間に封入され
る。
FIG. 5 is a conceptual model when the present invention is applied to an artificial muscle. In this model, a large number of movers 6 as subsystems are arranged in parallel so that they are opposite to each other, and the movers 6 in the same direction are in contact with the left and right support bodies 11, respectively. The macro system is connected to the spring component 10 arranged in the above to increase the number of subsystems connecting the generated force. The highly viscous fluid 5 is enclosed between these components.

【0018】この静電マイクロアクチュエ−タ−によれ
ば、その動作中は筋肉構造が筋拡張状態にあり、そのエ
ネルギ−はスプリング部品10にリストアされる。そし
て、動作が停止すると、スプリング部品10にリストア
されたエネルギ−が解放されて初期状態まで各移動子6
が戻って筋収縮状態となる。
According to this electrostatic microactuator, the muscle structure is in a muscle expansion state during its operation, and its energy is restored to the spring component 10. Then, when the operation is stopped, the energy restored in the spring component 10 is released and each moving element 6 is returned to the initial state.
Returns to muscle contraction.

【0019】この繰り返し可能な動作中に、互いの移動
子6はそのステップ形状により反発しあう作用力が働い
てそれぞれの位置を保持しようとする。これにより、移
動子6がク−ロン力により引き合う為に生じる不安定運
動を避けることができる。
During this repeatable operation, the moving elements 6 try to maintain their respective positions due to the repulsive action forces exerted by their step shapes. As a result, it is possible to avoid an unstable motion caused by the mover 6 attracting each other due to the Coulomb force.

【0020】[0020]

【発明の効果】本発明の静電マイクロアクチュエ−タ−
は、移動子の運動の複雑な電気制御や機械的ベアリング
等の付帯物が不要であり、高粘性流体を流体ベアリング
のように使用することにより移動子の運動の安定化を確
実に達成できるので、この静電マイクロアクチュエ−タ
−がインテグレ−ティドされたサブシステムとしての機
能を果たすことを容易にする。
The electrostatic microactuator of the present invention
Does not require complicated electrical control of the movement of the mover or any additional equipment such as mechanical bearings, and can stabilize the movement of the mover reliably by using a highly viscous fluid like a fluid bearing. , Making it easier for the electrostatic microactuator to function as an integrated subsystem.

【0021】従って、このような静電マイクロアクチュ
エ−タ−は直列及び並列に組み合わせることにより、医
療機器、カメラ及び人造筋肉等に応用できる。
Therefore, such an electrostatic microactuator can be applied to a medical device, a camera, an artificial muscle, etc. by combining in series and in parallel.

【0022】また、本発明の静電マイクロアクチュエ−
タ−によれば、移動子の安定化の為の外部からの制御が
必要でなく、オ−プンコントロ−ルを実現できるので、
サブシステムとして独立可能であり、更にサブシステム
をマイクロサイズ化することが容易であるので、このマ
イクロサイズ化により移動子の運動の安定性を確実に達
成できる。
Further, the electrostatic microactuator of the present invention.
According to the table, external control for stabilizing the moving element is not required, and an open control can be realized.
Since it is possible to be independent as a subsystem and it is easy to make the subsystem micro-sized, it is possible to reliably achieve the stability of the movement of the moving element by this micro-sized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の静電マイクロアクチュエ−タ−の概
念的な説明図。
FIG. 1 is a conceptual explanatory view of an electrostatic microactuator of the present invention.

【図2】 本発明の二次元モデルでの圧力分布図。FIG. 2 is a pressure distribution diagram in the two-dimensional model of the present invention.

【図3】 移動子の運動の定性的な現象を示すフェ−ズ
・プレ−ン図。
FIG. 3 is a phase plane diagram showing a qualitative phenomenon of movement of a moving element.

【図4】 移動子の一例による外観図。FIG. 4 is an external view of an example of a moving element.

【図5】 本発明を人造筋肉に応用した場合の概念的モ
デル。
FIG. 5 is a conceptual model when the present invention is applied to an artificial muscle.

【符号の説明】[Explanation of symbols]

1 固定電極 2 電気的絶縁層 3 電気的絶縁層 4 移動子電極 5 高粘性流体 6 移動子 7 固定体 10 スプリング部品 11 支持体 1 Fixed Electrode 2 Electrical Insulation Layer 3 Electrical Insulation Layer 4 Moving Element Electrode 5 High Viscosity Fluid 6 Moving Element 7 Fixed Body 10 Spring Component 11 Support

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 封入された高粘性流体の中に配置された
複数の移動子を互いの移動方向が反対となるように所要
の間隙で平行に配列し、これらの同一向きの移動子の各
一端はそれぞれ両側の支持体に各別に支持され、この両
支持体間をスプリング部品で連結するように構成したこ
とを特徴とする静電マイクロアクチュエ−タ−。
1. A plurality of moving elements arranged in a high-viscosity fluid enclosed in parallel are arranged in parallel at a required gap so that the moving directions thereof are opposite to each other, and each of the moving elements in the same direction is arranged. An electrostatic microactuator characterized in that one end is separately supported by supports on both sides, and both supports are connected by a spring component.
JP32481696A 1996-11-20 1996-11-20 Electrostatic microactuator Expired - Fee Related JP2896123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32481696A JP2896123B2 (en) 1996-11-20 1996-11-20 Electrostatic microactuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32481696A JP2896123B2 (en) 1996-11-20 1996-11-20 Electrostatic microactuator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP5286133A Division JP2700991B2 (en) 1993-10-20 1993-10-20 Electrostatic microactuator

Publications (2)

Publication Number Publication Date
JPH09168285A true JPH09168285A (en) 1997-06-24
JP2896123B2 JP2896123B2 (en) 1999-05-31

Family

ID=18169999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32481696A Expired - Fee Related JP2896123B2 (en) 1996-11-20 1996-11-20 Electrostatic microactuator

Country Status (1)

Country Link
JP (1) JP2896123B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100454454B1 (en) * 2001-12-04 2004-10-28 남재도 Polymer actuator
US11592037B1 (en) 2021-12-08 2023-02-28 Toyota Motor Engineering & Manufacturing North America, Inc. Hybrid actuation devices including alignment aids

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100454454B1 (en) * 2001-12-04 2004-10-28 남재도 Polymer actuator
US11592037B1 (en) 2021-12-08 2023-02-28 Toyota Motor Engineering & Manufacturing North America, Inc. Hybrid actuation devices including alignment aids
US11927206B2 (en) 2021-12-08 2024-03-12 Toyota Motor Engineering & Manufacturing North America, Inc. Hybrid actuation devices including alignment aids

Also Published As

Publication number Publication date
JP2896123B2 (en) 1999-05-31

Similar Documents

Publication Publication Date Title
JP2700991B2 (en) Electrostatic microactuator
Suzuki et al. Insect-model based microrobot with elastic hinges
EP0824381B1 (en) Elastomeric micro electromechanical systems
Fujita Microactuators and micromachines
Kladitis et al. Prototype microrobots for micro-positioning and micro-unmanned vehicles
US6220561B1 (en) Compound floating pivot micromechanisms
US6198180B1 (en) Micromechanisms with floating pivot
Jacobsen et al. The wobble motor: an electrostatic, planetary-armature, microactuator
US7518283B2 (en) Nanometer-scale electrostatic and electromagnetic motors and generators
JP2006526725A (en) An energy conversion system using a parallel array of automatic switches and generators.
CN110336485B (en) Piezoelectric impact driven two-dimensional parallel cross-scale precision positioning platform
Huang et al. An inertial piezoelectric rotary actuator based on active friction regulation using magnetic force
JP2896123B2 (en) Electrostatic microactuator
US20020153804A1 (en) Electrostatic microactuator with viscous liquid damping
Fearing Micro structures and micro actuators for implementing sub-millimeter robots
Linderman et al. Development of the micro rotary fan
Jacobsen et al. The wobble motor: design, fabrication and testing of an eccentric-motion electrostatic microactuator
Ba-Tis et al. A 3-DOF MEMS electrostatic piston-tube actuator
KR102418095B1 (en) Active Plate wiht Actuator
US20030222341A1 (en) Systems and methods for cooling microelectronic devices using oscillatory devices
Kumar et al. Electrostatically levitated microactuators
Varel et al. Liquid droplet micro-bearings on directional circular surface ratchets
Lin et al. Design of multi-DOF spherical piezoelectric motor using electrode configuration based actuating units
Reiter et al. Thermo-bimorph microcilia arrays for small spacecraft docking
RU199562U1 (en) AIRCRAFT VERTICAL TAKE-OFF

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees