JPH09167819A - Heat pipe cooler - Google Patents

Heat pipe cooler

Info

Publication number
JPH09167819A
JPH09167819A JP34782595A JP34782595A JPH09167819A JP H09167819 A JPH09167819 A JP H09167819A JP 34782595 A JP34782595 A JP 34782595A JP 34782595 A JP34782595 A JP 34782595A JP H09167819 A JPH09167819 A JP H09167819A
Authority
JP
Japan
Prior art keywords
heat
heat pipe
pipe
pipes
convection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34782595A
Other languages
Japanese (ja)
Inventor
Kazuhiro Sekine
一弘 関根
Hidenori Otaka
秀紀 大高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP34782595A priority Critical patent/JPH09167819A/en
Publication of JPH09167819A publication Critical patent/JPH09167819A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To make uniform a temperature difference, which is generated between the windward side and the leeward side of a heat-receiving plate, by a method wherein more than two kinds of working fluids of different amounts of heat transmission are used as working fluids, which are respectively encapsulated in a plurality of heat pipes which are provided side by side, and the heat pipes encapsulated with these working fluids are arranged in the order of the pipe encapsulated with the working fluid of the small amount of heat transmission from the windward side of a convection. SOLUTION: A working fluid 4a is encapsulated in heat pipes 2a and 2b, a working fluid 4b is encapsulated in a heat pipe 2c and convection is caused from one side of the parallel directions of the heat pipes passing through heat dissipation fins 3. The pipes 2a to 2c are small in a heat resistance value in order from the windward side of the convection, in short, are large in the amount of heat transmission. Thereby, as the pipe 2c on the leeward side, where is decreased in the amount of the wind which strikes directly on the side, of the convection is large in the amount of heat transmission, the pipe 2c can be made a heat exchange in roughly the same way as that of the pipe 2a on the windward side and a temperature difference, which is generated between the windward side and the leeward side of a heat- receiving plate, can be decreased. Accordingly, the formation of a heat pipe cooler is easy and the life of a semiconductor element can be prolonged.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は、ヒートパイプ冷却
器に関し、特には対流による放熱部の冷却の場合でも受
熱プレートの温度分布を均一にすることができるヒート
パイプ冷却器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pipe cooler, and more particularly to a heat pipe cooler capable of making the temperature distribution of a heat receiving plate uniform even when cooling a heat radiating portion by convection.

【0002】[0002]

【従来の技術】従来、ヒートパイプ冷却器として、例え
ば並設された複数本のヒートパイプの一端側に受熱プレ
ートとなるベース部を設け、他方に放熱用のフィンを多
数付設したものなどがあり、これを例えば半導体冷却用
として用いる場合は前記受熱プレートに半導体素子を取
付けて設置される。しかしながら近年、半導体素子の小
型化が図られており、それに伴いヒートパイプ冷却器も
小型化を図らなければならないが、前記ヒートパイプ冷
却器では縮小するとともに並設された各ヒートパイプ間
が狭くなることになる。
2. Description of the Related Art Conventionally, as a heat pipe cooler, for example, there is one in which a plurality of heat pipes arranged in parallel have a base portion serving as a heat receiving plate on one end side and a large number of fins for heat radiation attached on the other side. When this is used for cooling a semiconductor, for example, a semiconductor element is attached to the heat receiving plate and installed. However, in recent years, semiconductor devices have been downsized, and along with this, the heat pipe cooler must be downsized, but in the heat pipe cooler, the size is reduced and the space between the heat pipes arranged side by side is narrowed. It will be.

【0003】また、通常ヒートパイプ冷却器の放熱部に
は、自然対流や強制対流による冷却空気が送風され、ヒ
ートパイプの熱交換効率を大きくすることにより前記ヒ
ートパイプ冷却器の冷却効率が促進されるよう構成され
ることが多い。しかしながら、前記対流による冷却空気
の送風される方向は前記ヒートパイプ冷却器が取り付け
られる装置全体の配置、スペース等が考慮され、ヒート
パイプの並列方向から送風されるか、並列方向に対して
垂直に送風されるかは様々である。
Cooling air by natural convection or forced convection is normally blown to the heat radiating portion of the heat pipe cooler, and the heat exchange efficiency of the heat pipe is increased to promote the cooling efficiency of the heat pipe cooler. Often configured to. However, the direction in which the cooling air is blown by the convection is considered in consideration of the arrangement, space, etc. of the entire device to which the heat pipe cooler is attached, and is blown from the parallel direction of the heat pipes or perpendicular to the parallel direction. There are various ways to blow air.

【0004】また一般に、半導体は温度分布が生じる
と、低温部に多くの電流が流れるようになるため局部的
に負荷がかかり、前記半導体の寿命が短くなるため、均
一な冷却が望まれている。
Further, in general, when a temperature distribution occurs in a semiconductor, a large amount of current flows in a low temperature portion, so that a load is locally applied and the life of the semiconductor is shortened. Therefore, uniform cooling is desired. .

【0005】そこで、例えば実開平6−50355号公
報では、複数本のヒートパイプの内径を変えることによ
って、冷却空気の上流側と下流側とでの温度差を減らす
ことを提案している。
Therefore, for example, Japanese Utility Model Laid-Open No. 6-50355 proposes to reduce the temperature difference between the upstream side and the downstream side of cooling air by changing the inner diameters of a plurality of heat pipes.

【0006】これによれば、冷却空気の風上側から風下
側へヒートパイプの内径を大きくすることによって、風
下側のヒートパイプの気化する水蒸気の量が増えるため
熱輸送量を増やすことができ、熱輸送量の低下を防ぎ、
温度差を減らすことができる旨開示している。
According to this, by increasing the inner diameter of the heat pipe from the windward side of the cooling air to the leeward side, the amount of vaporized water vapor in the heat pipe on the leeward side increases, so that the heat transport amount can be increased, Prevents decrease in heat transport,
It discloses that the temperature difference can be reduced.

【0007】[0007]

【発明が解決しようとする課題】このように従来のヒー
トパイプ冷却器ではその大きさが縮小されると並設され
た各ヒートパイプ間が狭くなるため、冷却効率が低下す
る可能性があり、また冷却空気の送風が前記ヒートパイ
プ冷却器の並設された各ヒートパイプの並列方向の一方
から行われた場合、前記送風方向の風上側にあるヒート
パイプには風が直接当たり冷却が促進されるものの、そ
の風下側にあるヒートパイプでは前記風が直接当たりに
くくなり、予め風上側のヒートパイプにより暖められた
状態となるため風上側にあるヒートパイプに比べて風下
側のヒートパイプは温度の高い空気と熱交換を行うこと
になる。つまり、風下側ではヒートパイプの熱交換量が
低下することになり、風上側と風下側では受熱プレート
に温度差が生じるという問題がある。
As described above, when the size of the conventional heat pipe cooler is reduced, the space between the heat pipes arranged side by side becomes narrower, so that the cooling efficiency may decrease. When the cooling air is blown from one of the heat pipes arranged in parallel in the heat pipe cooler in the parallel direction, the heat pipe on the windward side in the blowing direction is directly hit by the wind to promote cooling. However, in the heat pipe on the leeward side, the wind is hard to hit directly, and since it is in a state of being warmed by the heat pipe on the windward side in advance, the temperature of the heat pipe on the leeward side is higher than that of the heat pipe on the windward side. It will exchange heat with high air. That is, there is a problem in that the heat exchange amount of the heat pipe decreases on the leeward side, and a temperature difference occurs between the heat receiving plate on the leeward side and on the leeward side.

【0008】さらに、実開平6−50355号公報に示
される方法によって温度差を減らす場合、内外径を共に
変化させる場合にはヒートパイプに設ける放熱フィンや
受熱プレートに形成する孔の大きさを変化させなければ
ならず、加工に手間がかかり、生産能力が低下する。ま
た、内径のみを変化させ、外径は同一とした場合にもパ
イプの加工に手間がかかり、生産能力が低下する。ま
た、これらの生産能力の低下はヒートパイプ冷却器の小
型化が進む程顕著になってくる。
Furthermore, when the temperature difference is reduced by the method disclosed in Japanese Utility Model Laid-Open No. 6-50355, and when the inner and outer diameters are both changed, the size of the heat radiation fins provided in the heat pipe and the size of the holes formed in the heat receiving plate are changed. Must be done, processing takes time, and the production capacity decreases. Further, even when only the inner diameter is changed and the outer diameter is the same, it takes time and labor to process the pipe, and the production capacity is reduced. In addition, the decrease in the production capacity becomes more remarkable as the heat pipe cooler becomes smaller.

【0009】したがって、本発明の目的はヒートパイプ
冷却器の受熱プレートの温度差を均一にするとともに、
生産能力が低下せず、小型化も容易なヒートパイプ冷却
器を提供することにある。
Therefore, an object of the present invention is to make the temperature difference of the heat receiving plate of the heat pipe cooler uniform and
It is to provide a heat pipe cooler that does not reduce the production capacity and can be easily downsized.

【0010】[0010]

【課題を解決するための手段】本発明のヒートパイプ冷
却器は、並設された複数本のヒートパイプと、これらヒ
ートパイプの一端側が埋設される受熱プレートと、他端
側に挿入される複数枚の放熱フィンとを具備するヒート
パイプ冷却器であって、前記ヒートパイプの並列方向の
一方から対流が生じている場合において、前記並設され
た複数本のヒートパイプにそれぞれ封入する作動液とし
て熱輸送量が異なる2種以上のものを用い、これら作動
液を封入したヒートパイプを前記対流の風上側から熱輸
送量が小さい順に配列したことを特徴とするものであ
る。
A heat pipe cooler of the present invention comprises a plurality of heat pipes arranged in parallel, a heat receiving plate in which one end side of these heat pipes is embedded, and a plurality of heat pipes inserted in the other end side. A heat pipe cooler comprising a number of heat radiating fins, wherein when convection occurs from one of the heat pipes in the parallel direction, the working liquid is sealed in each of the plurality of heat pipes arranged in parallel. It is characterized in that two or more kinds having different heat transport amounts are used, and the heat pipes in which these working fluids are enclosed are arranged in the ascending order of heat transport amount from the windward side of the convection.

【0011】[0011]

【発明の実施の形態】以下発明の実施態様につき詳細に
説明する。図1は本発明のヒートパイプ冷却器の一実施
態様を示した図である。本実施態様はヒートパイプ2
a、2b、2cの一端側を受熱プレート1に埋設し、他
端側に放熱フィン3、3、・・・を挿入した態様を示し
ており、図中の矢印は対流の方向を示している。そして
前記ヒートパイプ2a、2bには作動液4aとしてフロ
リナートFX−3250(住友3M社、商品名)が、ヒ
ートパイプ2cには作動液4bとして水が封入されてい
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail. FIG. 1 is a view showing an embodiment of the heat pipe cooler of the present invention. In this embodiment, the heat pipe 2
It shows a mode in which one end side of a, 2b, 2c is embedded in the heat receiving plate 1 and the radiation fins 3, 3, ... Are inserted in the other end side, and the arrows in the figure indicate the direction of convection. . Fluorinert FX-3250 (Sumitomo 3M, trade name) is filled in the heat pipes 2a and 2b as the working fluid 4a, and water is filled in the heat pipe 2c as the working fluid 4b.

【0012】前記受熱プレート1は形状、材料ともに特
に制限はなく、形状については冷却する対象の形状など
によって適宜決定することができ、材料も使用環境など
によって決定し得るが、冷却対象物からの受熱を有効に
行うためには熱伝導率が高く、肉厚を薄くすることが好
ましい。例えば、銅プレート、アルミプレートなどが好
ましい。
The shape and material of the heat receiving plate 1 are not particularly limited, and the shape can be appropriately determined according to the shape of the object to be cooled, and the material can also be determined according to the usage environment and the like. In order to effectively receive heat, it is preferable that the thermal conductivity is high and the wall thickness is thin. For example, a copper plate and an aluminum plate are preferable.

【0013】前記ヒートパイプ2a、2b、2c用のコ
ンテナは、熱の授受を効果的にするために熱伝導率が高
く、肉厚の薄いものにするとともに、封入する作動液に
よる腐食や、内圧などに対する耐圧性を考慮して適宜決
定することができる。好ましくは銅パイプなどを用い
る。
The containers for the heat pipes 2a, 2b and 2c have a high thermal conductivity and a thin wall in order to effectively transfer heat, and the corrosion due to the working fluid to be enclosed and the internal pressure It can be appropriately determined in consideration of the pressure resistance against the above. A copper pipe or the like is preferably used.

【0014】前記放熱フィン3も特に制限はなく、例え
ばアルミや銅の薄板などを用いることができ、放熱の効
率を考慮して材料、形状、フィンの間隔などを適宜決定
すれば良い。
The radiating fin 3 is not particularly limited, and a thin plate of aluminum or copper, for example, may be used, and the material, shape, fin interval, etc. may be appropriately determined in consideration of heat radiation efficiency.

【0015】前記作動液4a、4bは、前述のフロリナ
ートFX−3250や水に限られるわけではなく、作動
液を封入したヒートパイプを風上側から熱輸送量が小さ
い順に配列できればよく、ヒートパイプ冷却器の使用温
度や他のヒートパイプ内の作動液、作動液とコンテナと
の相性(腐食の問題など)などにより適宜決定すること
ができ、例えば、各種フロリナート、メタノール、エタ
ノール、その他フロン系材料例えばR−22、R−13
4a(いずれもデュポン社、商品名)などから適宜組合
せて用いることができる。
The working fluids 4a and 4b are not limited to the above-mentioned Fluorinert FX-3250 and water, but it is sufficient that the heat pipes enclosing the working fluid can be arranged in the ascending order of heat transfer amount from the windward side. It can be appropriately determined according to the operating temperature of the vessel, the working fluid in other heat pipes, the compatibility of the working fluid with the container (problem of corrosion, etc.), for example, various fluorinates, methanol, ethanol, and other fluorocarbon materials such as R-22, R-13
4a (all are DuPont, trade names) and the like can be appropriately combined and used.

【0016】本実施態様では図中左から右へ向けて対
流、即ち、冷却風の流通が生じる場合について考慮して
おり、ヒートパイプの熱輸送量が左より右の方が大きく
なるように作動液の種類を変えて封入している。このよ
うに構成することによって、風下側(図中右側)のヒー
トパイプは直接当たる風が少なくなり風上側のヒートパ
イプによって暖められた空気が当たることになるため熱
交換効率が低下するが、熱輸送量は風下側のヒートパイ
プの方が大きいので、効率の低下を輸送量の増加で補う
ことができる。したがって、風下側のヒートパイプと風
上側のヒートパイプとがほとんど同じように熱交換する
ことが可能になり、受熱プレートの温度差を減らすこと
ができる。
In the present embodiment, the case where convection from the left to the right in the drawing, that is, the case where the cooling air flows, is taken into consideration, and operation is performed so that the heat transport amount of the heat pipe is larger on the right side than on the left side. The type of liquid is changed and enclosed. With this configuration, the heat pipe on the leeward side (right side in the figure) receives less direct air, and the air warmed by the heat pipe on the upwind side hits, so the heat exchange efficiency decreases, but Since the amount of transportation is larger in the heat pipe on the leeward side, the decrease in efficiency can be compensated by the increase in the amount of transportation. Therefore, the leeward heat pipe and the leeward heat pipe can exchange heat almost in the same manner, and the temperature difference between the heat receiving plates can be reduced.

【0017】また、本実施態様ではヒートパイプが3本
の場合について示したが、これに制限されるわけではな
くヒートパイプ冷却器に必要な冷却能力に応じて適宜決
定することができる。
Further, in the present embodiment, the case where the number of heat pipes is three is shown, but the present invention is not limited to this and can be appropriately determined according to the cooling capacity required for the heat pipe cooler.

【0018】また、ヒートパイプについても本実施態様
では3本中の最も風下側にのみ異なる種類の作動液を封
入したが、これに制限されるわけではなく、ヒートパイ
プの熱輸送量が風上側から小さい順に配置できれば良
い。さらにヒートパイプを風上側から順に1本ずつ熱輸
送量が大きくなるように配置することは受熱プレート全
体をさらに均一なものとすることができるので好まし
い。
Also, regarding the heat pipe, in the present embodiment, different kinds of hydraulic fluids are enclosed only on the most leeward side of the three pipes, but the present invention is not limited to this, and the heat transport amount of the heat pipe is on the windward side. It is sufficient if they can be arranged in ascending order. Furthermore, it is preferable to arrange the heat pipes one by one in order from the windward side so that the heat transport amount increases, because the whole heat receiving plate can be made more uniform.

【0019】[0019]

【実施例】以下具体的な実施例につき説明する。本実施
例では図1に示すヒートパイプ冷却器を作製した。アル
ミ板材からなる受熱プレート1、銅パイプからなる同一
形状のヒートパイプ2a、2b、2c、アルミ板からな
る放熱フィン3を示している。そしてヒートパイプ2
a、2b内には作動液4aとしてフロリナートFX−3
250、ヒートパイプ2c内には作動液4bとして水が
封入されている。なお、図中の矢印は図示しないファン
により送風される空気の流れの方向を表しており、ヒー
トパイプの並列方向の一方(図中左側)から放熱フィン
3、3、・・・間を通って対流が起こされている。
EXAMPLES Specific examples will be described below. In this example, the heat pipe cooler shown in FIG. 1 was manufactured. The heat receiving plate 1 made of an aluminum plate, the heat pipes 2a, 2b, 2c having the same shape made of a copper pipe, and the heat radiation fins 3 made of an aluminum plate are shown. And heat pipe 2
Fluorinert FX-3 as hydraulic fluid 4a in a and 2b
Water is sealed in the heat pipe 250 as a hydraulic fluid 4b. The arrows in the figure represent the direction of the flow of air blown by a fan (not shown), and the heat-dissipating fins 3, 3, ... Convection is occurring.

【0020】図2は前記3本のヒートパイプ2a、2
b、2cの熱抵抗値を示した図である。このようにヒー
トパイプ2a、2b、2cは風上側から順に熱抵抗値が
小さい、つまり熱輸送量が大きくなっている。
FIG. 2 shows the three heat pipes 2a and 2
It is the figure which showed the thermal resistance value of b, 2c. In this way, the heat resistance values of the heat pipes 2a, 2b, and 2c are sequentially small from the windward side, that is, the heat transport amount is large.

【0021】このように構成することによって、図中の
矢印のように送風した場合でも、直接当たる風の少なく
なる風下側のヒートパイプ2cは熱輸送量が大きいの
で、風上側のヒートパイプ2aとほぼ同様に熱交換する
ことができ、受熱プレートの風上側と風下側とで生じて
いた温度差を減らすことができた。
With this structure, even if air is blown as shown by the arrow in the figure, the heat pipe 2c on the leeward side, where the air blown directly decreases, has a large amount of heat transport, so that the heat pipe 2a on the windward side is The heat exchange was possible almost in the same manner, and the temperature difference between the windward side and the leeward side of the heat receiving plate could be reduced.

【0022】さらにヒートパイプ2a、2b、2cは全
て同一形状のものを用いているので、受熱プレート1や
放熱フィン3の穴あけ加工や、ヒートパイプ2a、2
b、2cの加工が従来と同様に行うことができ、生産能
力の低下が生ずることもなかった。
Further, since the heat pipes 2a, 2b, 2c are all of the same shape, the heat receiving plate 1 and the radiation fins 3 are drilled, and the heat pipes 2a, 2c are formed.
Processing of b and 2c can be performed in the same manner as in the past, and the production capacity was not reduced.

【0023】[0023]

【発明の効果】以上説明した通りの本発明のヒートパイ
プ冷却器によれば、ヒートパイプ冷却器の生産能力を低
下させることなく、受熱プレートの温度差を減らすこと
ができる。したがって、作製が容易であり、かつ、半導
体素子の寿命を長くすることができるなどの優れた効果
を奏するものである。
As described above, according to the heat pipe cooler of the present invention, the temperature difference of the heat receiving plate can be reduced without reducing the production capacity of the heat pipe cooler. Therefore, it is easy to manufacture and has an excellent effect that the life of the semiconductor element can be extended.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のヒートパイプ冷却器を示す断面図であ
る。
FIG. 1 is a cross-sectional view showing a heat pipe cooler of the present invention.

【図2】本発明の各ヒートパイプの熱抵抗値を示す図で
ある。
FIG. 2 is a diagram showing a thermal resistance value of each heat pipe of the present invention.

【符号の説明】[Explanation of symbols]

1 受熱プレート 2a、2b、2c ヒートパイプ 3 放熱フィン 4a フロリナート 4b 水 1 Heat receiving plate 2a, 2b, 2c Heat pipe 3 Radiating fin 4a Fluorinert 4b Water

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 並設された複数本のヒートパイプと、こ
れらヒートパイプの一端側が埋設される受熱プレート
と、他端側に挿入される複数枚の放熱フィンとを具備す
るヒートパイプ冷却器であって、前記ヒートパイプの並
列方向の一方から対流が生じている場合において、前記
並設された複数本のヒートパイプにそれぞれ封入する作
動液として熱輸送量が異なる2種以上のものを用い、こ
れら作動液を封入したヒートパイプを前記対流の風上側
から熱輸送量が小さい順に配列したことを特徴とするヒ
ートパイプ冷却器。
1. A heat pipe cooler comprising a plurality of heat pipes arranged in parallel, a heat receiving plate in which one end side of these heat pipes is buried, and a plurality of heat radiation fins inserted in the other end side. Then, in the case where convection occurs from one of the heat pipes in the parallel direction, two or more types of working fluid having different heat transport amounts are used as the working liquids sealed in the plurality of heat pipes arranged in parallel, A heat pipe cooler characterized by arranging heat pipes in which these working fluids are enclosed in order of increasing heat transport amount from the windward side of the convection.
JP34782595A 1995-12-15 1995-12-15 Heat pipe cooler Pending JPH09167819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34782595A JPH09167819A (en) 1995-12-15 1995-12-15 Heat pipe cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34782595A JPH09167819A (en) 1995-12-15 1995-12-15 Heat pipe cooler

Publications (1)

Publication Number Publication Date
JPH09167819A true JPH09167819A (en) 1997-06-24

Family

ID=18392859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34782595A Pending JPH09167819A (en) 1995-12-15 1995-12-15 Heat pipe cooler

Country Status (1)

Country Link
JP (1) JPH09167819A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100468278B1 (en) * 1999-09-16 2005-01-27 현대중공업 주식회사 Heat pipe heat sink with conduction block
CN106033749A (en) * 2015-03-13 2016-10-19 上海交通大学 Parallel type parallel-microchannel multi-chip radiator
US10507629B2 (en) 2014-11-05 2019-12-17 Nippon Steel Corporation Hot-dip galvanized steel sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100468278B1 (en) * 1999-09-16 2005-01-27 현대중공업 주식회사 Heat pipe heat sink with conduction block
US10507629B2 (en) 2014-11-05 2019-12-17 Nippon Steel Corporation Hot-dip galvanized steel sheet
CN106033749A (en) * 2015-03-13 2016-10-19 上海交通大学 Parallel type parallel-microchannel multi-chip radiator

Similar Documents

Publication Publication Date Title
EP1383170B1 (en) Thermosiphon for electronics cooling with nonuniform airflow
US6714413B1 (en) Compact thermosiphon with enhanced condenser for electronics cooling
US6840311B2 (en) Compact thermosiphon for dissipating heat generated by electronic components
US7106589B2 (en) Heat sink, assembly, and method of making
US20090014154A1 (en) Passive Thermal Management System
CN101510533B (en) Novel microelectronic device radiator
US6351951B1 (en) Thermoelectric cooling device using heat pipe for conducting and radiating
US6377459B1 (en) Chip cooling management
CN103167780A (en) Combined type radiator for power module and combined type radiator assembly
CN107917554A (en) Flat-plate heat pipe expanded type condensing unit
CN207881290U (en) Flat-plate heat pipe expanded type condensing unit
US10378836B2 (en) Water-cooling radiator assembly
CN111351147A (en) Radiator and air condensing units
JPH09167819A (en) Heat pipe cooler
US20050135061A1 (en) Heat sink, assembly, and method of making
CN112584671A (en) Vapor chamber for cooling electronic components
CN111351146A (en) Radiator and air condensing units
CN214891554U (en) Radiator and air condensing units
CN101060105A (en) Electronic device radiator
CN211557821U (en) Power electronic radiator
CN114334871A (en) Device and system for high power chip package heat dissipation
JP2001251079A (en) Method for producing heat sink using heat pipe and method for producing heat pipe
CN111578391A (en) Radiator and air condensing units
CN101075592A (en) Hot-piping electronic device radiator
KR100565505B1 (en) Heat exchanger of air conditioner