JPH09167697A - Plasma generating method - Google Patents

Plasma generating method

Info

Publication number
JPH09167697A
JPH09167697A JP7328517A JP32851795A JPH09167697A JP H09167697 A JPH09167697 A JP H09167697A JP 7328517 A JP7328517 A JP 7328517A JP 32851795 A JP32851795 A JP 32851795A JP H09167697 A JPH09167697 A JP H09167697A
Authority
JP
Japan
Prior art keywords
gas
halogen
plasma
discharge
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7328517A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Okuni
充弘 大國
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7328517A priority Critical patent/JPH09167697A/en
Publication of JPH09167697A publication Critical patent/JPH09167697A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To generate plasma in a stable condition by adding gas to generate an anion having atomic weight lighter than halogen type gas to halogen or halogen type gas being halogenated hydrogen. SOLUTION: Halogen or halogenated hydrogen is used as halogen type gas, and Cl2 is cited as a concrete example of halogen, and HBr is cited as a concrete example of halogenated hydrogen. Fe, N2 , H2 and O2 are used as gas to generate an anion having atomic weight lighter than halogen type gas. According to a plasma generating method constituted in this way, when gas to generate an anion having atomic weight lighter than the halogen type gas such as Fe, N2 , H2 and O2 is added to halogen such as Cl2 and HBr or halogenerated hydrogen, added gas plays a catalytic role, and as a result, discharge starting voltage is reduced, and plasma can be generated in a stable condition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、高周波放電を用
いたプラズマ発生において、その高周波プラズマを安定
した状態で発生させる方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of generating high frequency plasma in a stable state in plasma generation using high frequency discharge.

【0002】[0002]

【従来の技術】高周波放電を用いたプラズマ発生方法
は、半導体デバイスにおける微細加工のためのドライエ
ッチング、薄膜形成のためのプラズマCVD等さまざま
な分野で用いられており、加工寸法の微細化や膜質の高
精度な制御のために、高真空中でのプラズマ生成が求め
られている。
2. Description of the Related Art A plasma generation method using a high frequency discharge is used in various fields such as dry etching for fine processing in semiconductor devices and plasma CVD for forming a thin film. For high precision control of plasma, plasma generation in high vacuum is required.

【0003】その中で、例えばドライエッチングにおい
ても、色々なガスを使用したプラズマが用いられてお
り、高周波を用いたプラズマでは、圧力が低すぎたり、
マッチング回路の容量が十分に取れない場合には、プラ
ズマの放電状態が不安定になり、安定なドライエッチン
グができず、良好な微細加工は実現されない。特に、ハ
ロゲンガスおよびハロゲン化水素ガス単体の場合は、一
般的にプラズマの放電状態が安定しにくい。
Among them, plasma using various gases is used also in dry etching, for example, and the pressure is too low in plasma using high frequency.
If the capacity of the matching circuit cannot be sufficiently obtained, the discharge state of plasma becomes unstable, stable dry etching cannot be performed, and good fine processing cannot be realized. In particular, in the case of a halogen gas and a hydrogen halide gas alone, it is generally difficult to stabilize the discharge state of plasma.

【0004】以下、従来のプラズマ発生方法について説
明する。図1に、実験に使用したプラズマ発生装置を示
す。図において、10は反応室、11,12,13は高
周波電力を印加する3つの側方電極である。側方電極1
1,12,13には、それぞれ位相が120度ずつずれ
た状態で13.56MHzまたは54.24MHzの高
周波電力を印加する高周波電源14,15,16が接続
されており、電子を閉じ込め回転電界により高真空プラ
ズマを発生させている。なお、17は下部電極、18は
下部電極17に13.56MHzの高周波電力を印加す
る高周波電源、19はアース電極である。
A conventional plasma generation method will be described below. FIG. 1 shows the plasma generator used in the experiment. In the figure, 10 is a reaction chamber and 11, 12, 13 are three side electrodes for applying high frequency power. Side electrode 1
1, 12, 13 are connected to high-frequency power sources 14, 15, 16 for applying high-frequency power of 13.56 MHz or 54.24 MHz with their phases being shifted by 120 degrees, and confine electrons by a rotating electric field. High vacuum plasma is generated. Reference numeral 17 is a lower electrode, 18 is a high frequency power source for applying high frequency power of 13.56 MHz to the lower electrode 17, and 19 is a ground electrode.

【0005】つぎに、この実験装置を用いてプラズマを
発生させる方法について説明する。まず、プラズマ発生
ガスに、HBr単独ガスを用いた場合について、表1お
よび表2を参照しながら説明する。
Next, a method of generating plasma using this experimental apparatus will be described. First, a case where HBr single gas is used as the plasma generating gas will be described with reference to Tables 1 and 2.

【0006】[0006]

【表1】 [Table 1]

【0007】[0007]

【表2】 [Table 2]

【0008】従来例1:プラズマ発生ガスがHBr単独
ガス(滞在時間1.0秒)で、プラズマ生成用高周波に
13.56MHzを用いた。 従来例2:プラズマ密度を上げるために、プラズマ発生
ガスがHBr単独ガス(滞在時間1.0秒)で、プラズ
マ生成用高周波に54.24MHzを用いた。
Conventional Example 1: Plasma-generating gas is HBr single gas (residence time is 1.0 second), and 13.56 MHz is used for high frequency for plasma generation. Conventional Example 2: In order to increase the plasma density, HBr single gas was used as the plasma generating gas (residence time 1.0 second), and 54.24 MHz was used for the high frequency for plasma generation.

【0009】従来例3:ドライエッチング中の反応生成
物の排気を促進するために、HBr単独ガスの滞在時間
を0.4秒と短くし、プラズマ生成用高周波に13.5
6MHzを用いた。 従来例4:従来例3において、放電ガス圧を5(mTorr
)とした。
Conventional Example 3: In order to accelerate exhaustion of reaction products during dry etching, the residence time of HBr single gas is shortened to 0.4 seconds, and a high frequency for plasma generation is set to 13.5.
6 MHz was used. Conventional Example 4: In Conventional Example 3, the discharge gas pressure is 5 (mTorr
).

【0010】次に、プラズマ発生ガスに、Cl2 単独ガ
スを用いた場合について、表3を参照しながら説明す
る。
Next, a case where Cl 2 single gas is used as the plasma generating gas will be described with reference to Table 3.

【0011】[0011]

【表3】 [Table 3]

【0012】従来例5:プラズマ発生ガスがCl2 単独
ガス(滞在時間1.0秒)で、プラズマ生成用高周波に
54.24MHzを用いた。 従来例6:プラズマ発生ガスがCl2 単独ガス(滞在時
間0.1秒)で、プラズマ生成用高周波に54.24M
Hzを用いた。
Conventional Example 5: Plasma generating gas was Cl 2 single gas (residence time 1.0 second), and 54.24 MHz was used for high frequency for plasma generation. Conventional Example 6: The plasma generating gas is Cl 2 single gas (residence time 0.1 seconds), and 54.24 M is applied to the high frequency for plasma generation.
Hz was used.

【0013】[0013]

【発明が解決しようとする課題】従来例1で放電を立て
た時は、目視観察より放電開始初期から安定状態を維持
しており放電開始5分後においても、プラズマのちらつ
きが起こらなかった。このような条件を、ドライエッチ
ングの微細加工に適用すると、その加工精度および再現
性は良く、実用上充分耐え得るものである。
When a discharge was generated in Conventional Example 1, a stable state was maintained from the initial stage of discharge start by visual observation, and plasma flicker did not occur even 5 minutes after start of discharge. When such conditions are applied to the fine processing of dry etching, the processing accuracy and reproducibility are good, and they can withstand practically enough.

【0014】しかし、従来例2で放電を立てた時は、目
視観察より放電開始後20秒程度でプラズマがちらつく
ようになり、以後不安定な状態が続く。このような条件
で、例えばドライエッチングの微細加工に適用すると、
その加工精度および再現性が悪く、実用上耐えられるも
のではない。このように、高周波電力の周波数を上げる
と、プラズマが発生し難いという問題があった。
However, when the discharge is set up in the conventional example 2, the plasma starts to flicker about 20 seconds after the start of the discharge by visual observation, and the unstable state continues thereafter. Under these conditions, when applied to fine processing such as dry etching,
Its processing accuracy and reproducibility are poor, and it is not practically endurable. As described above, when the frequency of the high frequency power is increased, there is a problem that plasma is difficult to generate.

【0015】また、従来例3,4で放電を立てた時は、
目視観察より放電開始後20秒程度でプラズマがちらつ
くようになり、以後不安定な状態が続く。このような条
件で、例えばドライエッチングの微細加工に適用する
と、その加工精度および再現性が悪く、実用上耐えられ
るものではない。このように、ガスの滞在時間を短くす
ると、プラズマが発生し難いという問題があった。
When a discharge is generated in the conventional examples 3 and 4,
From visual observation, plasma began to flicker about 20 seconds after the start of discharge, and the unstable state continued. When applied to fine processing such as dry etching under such conditions, the processing accuracy and reproducibility are poor and it is not practically endurable. As described above, when the gas residence time is shortened, there is a problem that plasma is difficult to generate.

【0016】また、従来例5で放電を立てた時は、目視
観察より放電開始後20秒程度でプラズマがちらつくよ
うになり、以後不安定な状態が続く。このような条件
で、例えばドライエッチングの微細加工に適用すると、
その加工精度および再現性が悪く、実用上耐え得るもの
ではない。このように、高周波電力の周波数を上げる
と、プラズマが発生し難いという問題があった。
In addition, when the discharge is set up in Conventional Example 5, the plasma flickers about 20 seconds after the start of the discharge by visual observation, and the unstable state continues thereafter. Under these conditions, when applied to fine processing such as dry etching,
Its processing accuracy and reproducibility are poor, and it is not practically endurable. As described above, when the frequency of the high frequency power is increased, there is a problem that plasma is difficult to generate.

【0017】さらに、従来例6で放電を立てた時は、目
視観察より放電開始後20秒程度でプラズマがちらつく
ようになり、以後不安定な状態が続く。このような条件
で、例えばドライエッチングの微細加工に適用すると、
その加工精度および再現性が悪く、実用上耐え得るもの
ではない。このように、高周波電力の周波数を上げ、か
つガスの滞在時間を短くすると、プラズマが発生し難い
という問題があった。
Further, when the discharge is set up in Conventional Example 6, the plasma flickers in about 20 seconds after the start of the discharge by visual observation, and the unstable state continues thereafter. Under these conditions, when applied to fine processing such as dry etching,
Its processing accuracy and reproducibility are poor, and it is not practically endurable. As described above, when the frequency of the high frequency power is increased and the residence time of the gas is shortened, there is a problem that plasma is difficult to generate.

【0018】このように、プラズマ発生ガスがハロゲン
ガスやハロゲン化水素ガス単体の場合、プラズマ生成用
高周波やガス滞在時間の条件によって、放電が必ずしも
安定しないという問題があった。この発明は上記問題点
に鑑み、高周波プラズマを安定した状態で発生させるこ
とができるプラズマ発生方法を提供することを目的とす
る。
As described above, when the plasma generating gas is a halogen gas or a hydrogen halide gas alone, there is a problem that the discharge is not always stable depending on the conditions of the plasma generation high frequency and the gas residence time. In view of the above problems, it is an object of the present invention to provide a plasma generation method capable of generating high frequency plasma in a stable state.

【0019】[0019]

【課題を解決するための手段】この発明のプラズマ発生
方法は、ハロゲン系ガスに、ハロゲン系ガスよりも軽い
原子量の負イオンを生じるガスを添加し、高周波放電に
よりプラズマを発生するものである。なお、ハロゲン系
ガスとしては、ハロゲンもしくはハロゲン化水素を用
い、具体的にはCl2 ,HBr等を用い、またハロゲン
系ガスよりも軽い原子量の負イオンを生じるガスとして
は、F2 ,N2 ,H2 ,O2 等を用いる。
According to the plasma generation method of the present invention, a gas that produces negative ions having an atomic weight lighter than that of the halogen-based gas is added to the halogen-based gas to generate plasma by high-frequency discharge. Note that halogen or hydrogen halide is used as the halogen-based gas, specifically Cl 2 , HBr, or the like is used, and F 2 or N 2 is used as the gas that produces a negative ion having an atomic weight lighter than that of the halogen-based gas. , H 2 , O 2, etc. are used.

【0020】この発明のプラズマ発生方法によると、C
2 ,HBr等のハロゲンもしくはハロゲン化水素に、
2 ,N2 ,H2 ,O2 等のハロゲン系ガスよりも軽い
原子量の負イオンを生じるガスを添加することにより、
添加ガスが触媒的な役割を果たし、その結果放電開始電
圧が低下し、安定した状態でプラズマを発生することが
できる。
According to the plasma generation method of the present invention, C
l 2 , HBr or other halogen or hydrogen halide,
By adding a gas such as F 2 , N 2 , H 2 or O 2 which produces a negative ion having an atomic weight lighter than the halogen-based gas,
The added gas plays a catalytic role, and as a result, the discharge starting voltage is lowered, and plasma can be generated in a stable state.

【0021】[0021]

【発明の実施の形態】まず、実験装置には図1のプラズ
マ発生装置を使用する。また、プラズマ発生ガスには、
ハロゲン系ガスに、このハロゲン系ガスよりも軽い原子
量の負イオンを生じるガスを添加してなる混合ガスを用
いる。ハロゲン系ガスには、ハロゲンもしくはハロゲン
化水素を用い、ハロゲンの具体例としてはCl2 、ハロ
ゲン化水素の具体例としてはHBrが挙げられる。
First, the plasma generator shown in FIG. 1 is used as an experimental device. In addition, plasma generated gas,
A mixed gas is used in which a gas that produces negative ions having an atomic weight lighter than the halogen-based gas is added to the halogen-based gas. Halogen or hydrogen halide is used as the halogen-based gas, and specific examples of halogen include Cl 2 and specific examples of hydrogen halide include HBr.

【0022】また、ハロゲン系ガスよりも軽い原子量の
負イオンを生じるガスには、F2 ,N2 ,H2 ,O2
用いる。このように構成されたプラズマ発生方法による
と、Cl2 ,HBr等のハロゲンもしくはハロゲン化水
素に、F2 ,N2 ,H2 ,O2 等のハロゲン系ガスより
も軽い原子量の負イオンを生じるガスを添加することに
より、添加ガスが触媒的な役割を果たし、その結果放電
開始電圧が低下する。よって、高周波電源の周波数が5
0MHz以上の場合や、ガスの滞在時間が0.4秒以下
の条件においても、安定した状態でプラズマを発生する
ことができる。
Further, F 2 , N 2 , H 2 and O 2 are used as the gas which produces negative ions having an atomic weight lighter than the halogen-based gas. According to the plasma generation method thus configured, negative ions having a lighter atomic weight than halogen-based gas such as F 2 , N 2 , H 2 and O 2 are generated in halogen such as Cl 2 and HBr or hydrogen halide. By adding the gas, the added gas plays a catalytic role, and as a result, the discharge starting voltage is lowered. Therefore, the frequency of the high frequency power supply is 5
Plasma can be generated in a stable state even when the frequency is 0 MHz or more and the gas residence time is 0.4 seconds or less.

【0023】なお、前記実施の形態では、ハロゲン系ガ
スとしてHBr,Cl2 を例示したが、これら以外のハ
ロゲン系ガスでも同様の効果が得られることは言うまで
もない。また、ハロゲン系ガスよりも軽い原子量の負イ
オンを持つガスとして、F2 ,N2 ,H2 ,O2 を例示
したが、これら以外のハロゲン系ガスよりも軽い原子量
の負イオンを生じるガスでも同様の効果が得られること
は言うまでもない。
Although HBr and Cl 2 are exemplified as the halogen-based gas in the above-mentioned embodiment, it is needless to say that the same effect can be obtained with a halogen-based gas other than these. Although F 2 , N 2 , H 2 and O 2 have been exemplified as the gas having the negative ions with the atomic weight lighter than that of the halogen-based gas, other gases that generate the negative ions with the atomic weight lower than those of the halogen-based gas can be used. It goes without saying that the same effect can be obtained.

【0024】[0024]

【実施例】実施例について、表4を参照しながら説明す
る。
EXAMPLES Examples will be described with reference to Table 4.

【0025】[0025]

【表4】 [Table 4]

【0026】実施例1:プラズマ発生ガスがCl2 ガス
にH2 を添加してなる混合ガス(滞在時間1.0秒)
で、プラズマ生成用高周波に54.24MHzを用い
る。その他の条件は、従来例5(表3)と同様とする。
このような条件で放電を立てた時は、目視観察より放電
開始初期から安定状態を維持しており、放電開始5分後
においてもプラズマのちらつきが起こらなかった。この
ような条件を、ドライエッチングの微細加工に適用する
と、その加工精度および再現性は良く、実用上充分耐え
得るものである。
Example 1 A mixed gas in which H 2 is added to Cl 2 gas as a plasma generating gas (residence time: 1.0 second)
Then, 54.24 MHz is used for the high frequency for plasma generation. Other conditions are the same as those in Conventional Example 5 (Table 3).
When the discharge was started under these conditions, the stable state was maintained from the initial stage of the discharge by visual observation, and the flicker of the plasma did not occur even 5 minutes after the start of the discharge. When such conditions are applied to the fine processing of dry etching, the processing accuracy and reproducibility are good, and they can withstand practically enough.

【0027】このように、ハロゲン系ガス(Cl2 )に
負イオンを生じるガス(H2 )を添加することで、添加
ガス(H2 )が触媒的な役割を果たし、その結果放電開
始電圧が低下し、プラズマ生成用高周波を54.24M
Hzに上げても、安定した状態でプラズマが発生する。 実施例2:プラズマ発生ガスがHBrガスにO2 を添加
してなる混合ガス(滞在時間0.4秒)で、プラズマ生
成用高周波に13.56MHzを用いる。その他の条件
は、従来例4(表2)と同様とする。このような条件で
放電を立てた時は、目視観察より放電開始初期から安定
状態を維持しており、放電開始5分後においてもプラズ
マのちらつきが起こらなかった。このような条件を、ド
ライエッチングの微細加工に適用すると、その加工精度
および再現性は良く、実用上充分耐え得るものである。
As described above, by adding the gas (H 2 ) that produces negative ions to the halogen-based gas (Cl 2 ), the added gas (H 2 ) plays a catalytic role, and as a result, the discharge start voltage is increased. Decreased, and high frequency for plasma generation was 54.24M
Plasma is generated in a stable state even when the frequency is increased to Hz. Example 2: The plasma generating gas is a mixed gas (residence time 0.4 seconds) formed by adding O 2 to HBr gas, and 13.56 MHz is used for the high frequency for plasma generation. Other conditions are the same as those in Conventional Example 4 (Table 2). When the discharge was started under these conditions, the stable state was maintained from the initial stage of the discharge by visual observation, and the flicker of the plasma did not occur even 5 minutes after the start of the discharge. When such conditions are applied to the fine processing of dry etching, the processing accuracy and reproducibility are good, and they can withstand practically enough.

【0028】このように、ハロゲン系ガス(HBr)に
負イオンを生じるガス(O2 )を添加することで、添加
ガス(O2 )が触媒的な役割を果たし、その結果放電開
始電圧が低下し、プラズマ発生ガスの滞在時間が0.4
秒と短くても、安定した状態でプラズマが発生する。 実施例3:プラズマ発生ガスがCl2 ガスにO2 を添加
してなる混合ガス(滞在時間0.1秒)で、プラズマ生
成用高周波に54.24MHzを用いる。その他の条件
は、従来例6(表3)と同様とする。このような条件で
放電を立てた時は、目視観察より放電開始初期から安定
状態を維持しており、放電開始5分後においてもプラズ
マのちらつきが起こらなかった。このような条件を、ド
ライエッチングの微細加工に適用すると、その加工精度
および再現性は良く、実用上充分耐え得るものである。
As described above, by adding the gas (O 2 ) which produces negative ions to the halogen-based gas (HBr), the added gas (O 2 ) plays a catalytic role, and as a result, the discharge starting voltage is lowered. However, the residence time of the plasma-generated gas is 0.4
Even if it is as short as a second, plasma is generated in a stable state. Example 3: The plasma generating gas is a mixed gas of Cl 2 gas and O 2 added (residence time 0.1 second), and 54.24 MHz is used for the high frequency for plasma generation. The other conditions are the same as in Conventional Example 6 (Table 3). When the discharge was started under these conditions, the stable state was maintained from the initial stage of the discharge by visual observation, and the flicker of the plasma did not occur even 5 minutes after the start of the discharge. When such conditions are applied to the fine processing of dry etching, the processing accuracy and reproducibility are good, and they can withstand practically enough.

【0029】このように、ハロゲン系ガス(Cl2 )に
負イオンを生じるガス(O2 )を添加することで、添加
ガス(O2 )が触媒的な役割を果たし、その結果放電開
始電圧が低下し、プラズマ生成用高周波を54.24M
Hzに上げ、かつプラズマ発生ガスの滞在時間が0.1
秒と短くても、安定した状態でプラズマが発生する。
As described above, by adding the gas (O 2 ) that produces negative ions to the halogen-based gas (Cl 2 ), the added gas (O 2 ) plays a catalytic role, and as a result, the discharge start voltage is increased. Decreased, and high frequency for plasma generation was 54.24M
And the plasma generation gas residence time is 0.1
Even if it is as short as a second, plasma is generated in a stable state.

【0030】[0030]

【発明の効果】この発明のプラズマ発生方法によると、
Cl2 ,HBr等のハロゲンもしくはハロゲン化水素
に、F2 ,N2 ,H2 ,O2 等のハロゲン系ガスよりも
軽い原子量の負イオンを生じるガスを添加することによ
り、添加ガスが触媒的な役割を果たし、その結果放電開
始電圧が低下する。よって、高周波電源の周波数が50
MHz以上の場合や、ガスの滞在時間が0.4秒以下の
条件においても、安定した状態でプラズマを発生するこ
とができるという効果が得られる。
According to the plasma generation method of the present invention,
By adding a halogen or hydrogen halide such as Cl 2 or HBr to a gas that produces a negative ion having an atomic weight lighter than that of a halogen-based gas such as F 2 , N 2 , H 2 or O 2 , the added gas becomes catalytic. Plays a role, and as a result, the discharge starting voltage decreases. Therefore, the frequency of the high frequency power supply is 50
The effect that plasma can be generated in a stable state is obtained even in the case of MHz or more and the condition that the gas residence time is 0.4 seconds or less.

【図面の簡単な説明】[Brief description of the drawings]

【図1】プラズマ発生装置の模式図である。FIG. 1 is a schematic diagram of a plasma generator.

【符号の説明】[Explanation of symbols]

10 反応室 11,12,13 側方電極 14,15,16,18 高周波電源 17 下部電極 19 アース電極 10 Reaction Chamber 11, 12, 13 Side Electrodes 14, 15, 16, 18 High Frequency Power Supply 17 Lower Electrode 19 Ground Electrode

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ハロゲン系ガスに、前記ハロゲン系ガス
よりも軽い原子量の負イオンを生じるガスを添加し、高
周波放電によりプラズマを発生するプラズマ発生方法。
1. A plasma generation method in which a gas generating negative ions having an atomic weight lighter than that of the halogen-based gas is added to the halogen-based gas, and plasma is generated by high-frequency discharge.
【請求項2】 ハロゲン系ガスが、ハロゲンもしくはハ
ロゲン化水素であることを特徴とする請求項1記載のプ
ラズマ発生方法。
2. The plasma generation method according to claim 1, wherein the halogen-based gas is halogen or hydrogen halide.
【請求項3】 ハロゲン系ガスが、Cl2 もしくはHB
rであることを特徴とする請求項1記載のプラズマ発生
方法。
3. The halogen-based gas is Cl 2 or HB
2. The plasma generation method according to claim 1, wherein r is r.
【請求項4】 ハロゲン系ガスよりも軽い原子量の負イ
オンを生じるガスが、F2 またはN2 またはH2 または
2 である請求項1または請求項2または請求項3記載
のプラズマ発生方法。
4. The plasma generation method according to claim 1, 2 or 3, wherein the gas generating negative ions having an atomic weight lighter than the halogen-based gas is F 2 or N 2 or H 2 or O 2 .
JP7328517A 1995-12-18 1995-12-18 Plasma generating method Pending JPH09167697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7328517A JPH09167697A (en) 1995-12-18 1995-12-18 Plasma generating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7328517A JPH09167697A (en) 1995-12-18 1995-12-18 Plasma generating method

Publications (1)

Publication Number Publication Date
JPH09167697A true JPH09167697A (en) 1997-06-24

Family

ID=18211169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7328517A Pending JPH09167697A (en) 1995-12-18 1995-12-18 Plasma generating method

Country Status (1)

Country Link
JP (1) JPH09167697A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000041211A1 (en) * 1998-12-30 2000-07-13 Lam Research Corporation Method and apparatus for etch rate stabilization

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000041211A1 (en) * 1998-12-30 2000-07-13 Lam Research Corporation Method and apparatus for etch rate stabilization

Similar Documents

Publication Publication Date Title
JP3016821B2 (en) Plasma processing method
US8382999B2 (en) Pulsed plasma high aspect ratio dielectric process
US5454903A (en) Plasma cleaning of a CVD or etch reactor using helium for plasma stabilization
JP2603217B2 (en) Surface treatment method and surface treatment device
US20130213935A1 (en) Synchronized radio frequency pulsing for plasma etching
JP2673380B2 (en) Plasma etching method
JP2000156370A (en) Method of plasma processing
JPH02281734A (en) Treating method of surface by plasma
JPH11195641A (en) Plasma treatment
WO2003056617A1 (en) Etching method and plasma etching device
JP3350973B2 (en) Plasma processing method and plasma processing apparatus
JP2002343600A (en) Inductive coupling plasma igniting method
JPH07263408A (en) Plasma etching method
JPH09167697A (en) Plasma generating method
JPH0888218A (en) Method and device for plasma etching
JP3535276B2 (en) Etching method
JPS62273731A (en) Plasma processor
JP2948053B2 (en) Plasma processing method
JPH0812857B2 (en) Semiconductor manufacturing apparatus and semiconductor device manufacturing method
JP3523460B2 (en) Method for manufacturing semiconductor device
JP2753368B2 (en) Etching method
JPS6373524A (en) Plasma processing
JP3492933B2 (en) Etching method for crystalline lens
JPH11176817A (en) Polysilicon etching method and its etching equipment
JPH01137632A (en) Plasma etching equipment