JPH09167588A - Scanning type electron microscope - Google Patents

Scanning type electron microscope

Info

Publication number
JPH09167588A
JPH09167588A JP7326098A JP32609895A JPH09167588A JP H09167588 A JPH09167588 A JP H09167588A JP 7326098 A JP7326098 A JP 7326098A JP 32609895 A JP32609895 A JP 32609895A JP H09167588 A JPH09167588 A JP H09167588A
Authority
JP
Japan
Prior art keywords
sample
vacuum
orifice
box
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7326098A
Other languages
Japanese (ja)
Inventor
Ryuichi Tanaka
隆一 田中
Yuzo Kurome
雄三 黒目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Science Systems Ltd
Original Assignee
Hitachi Ltd
Hitachi Science Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Science Systems Ltd filed Critical Hitachi Ltd
Priority to JP7326098A priority Critical patent/JPH09167588A/en
Publication of JPH09167588A publication Critical patent/JPH09167588A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To observe a sample in a low vacuum state without affecting the degree of vacuum in an electron gum chamber by arranging a sample box in a sample chamber, and differentially exhausting the sample chamber and the sample box. SOLUTION: A sample box 2 is detachably fixed to a sample chamber 1. The sample box 2 has an orifice 3 in the upper wall and a sample stage 4 on the inside. In low vacuum observation, a main valve 21 is closed, the inside of an electron gun 5 is exhausted with a main pump 20, and the electron gun 5 and a primary electron beam path 6 are kept in high vacuum. The sample chamber 1 is exhausted with a rotary pump 23, the degree of vacuum is varied with a needle valve 19, the sample box 2 is exhausted with a rotary pump 15, and the degree of vacuum is varied with a needle valve 16. Thereby, the portion between the high vacuum part and the sample chamber 1 is differentially exhausted with an orifice 8, and the portion between the sample chamber 1 and the sample box 2 is differentially exhausted with the orifice 3. A sample 9 can be observed as its vicinity is kept in low degree of vacuum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、走査形電子顕微鏡
に関し、特に多量の水分を含んだ試料を組織の変形を最
小限に押えて高倍率で観察できる走査形電子顕微鏡に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning electron microscope, and more particularly, it relates to a scanning electron microscope capable of observing a sample containing a large amount of water at a high magnification with minimal deformation of tissue.

【0002】[0002]

【従来の技術】図6は、従来の低真空観察可能な走査形
電子顕微鏡の一般的な排気系構成を示し、電子銃部5と
試料室1の間で電子レンズ下面に設けたオリフィス8に
より差動排気している。低真空観察時は、試料室1に接
続されたメインバルブ21を閉じ、メインポンプ20で
電子銃5の排気を行う。一方、試料室1はロータリーポ
ンプ23で排気し、ニードルバルブ19で試料室1内に
導入する空気量を調節することにより試料室1の真空度
を調整している。図中の斜線部分が高真空部分を示して
おり、対物レンズ下部に設けたオリフィス8を介して差
動排気されている。
2. Description of the Related Art FIG. 6 shows a general exhaust system structure of a conventional scanning electron microscope capable of observing a low vacuum, which is provided between an electron gun section 5 and a sample chamber 1 by an orifice 8 provided on the lower surface of an electron lens. Differential exhaust. During low-vacuum observation, the main valve 21 connected to the sample chamber 1 is closed, and the main pump 20 evacuates the electron gun 5. On the other hand, the sample chamber 1 is evacuated by the rotary pump 23, and the needle valve 19 adjusts the amount of air introduced into the sample chamber 1 to adjust the degree of vacuum in the sample chamber 1. The shaded portion in the drawing indicates the high vacuum portion, and the gas is differentially exhausted through the orifice 8 provided under the objective lens.

【0003】また、特開平6−215716号公報に
は、対物レンズ上部に電子銃室とオリフィスで仕切られ
た中間室を設け、中間室を油回転ポンプで排気すること
により試料室の圧力を1000Pa程度に拡大すること
が記載されている。
Further, in Japanese Unexamined Patent Publication No. 6-215716, an intermediate chamber partitioned by an electron gun chamber and an orifice is provided above the objective lens, and the intermediate chamber is evacuated by an oil rotary pump so that the pressure in the sample chamber is 1000 Pa. It is described that it is enlarged to a degree.

【0004】[0004]

【発明が解決しようとする課題】図6に示した走査形電
子顕微鏡は、電子銃5を高真空状態に保持する必要があ
ることから、試料室1を低真空にするのに限界があっ
た。すなわち、試料室1の真空度を下げると、オリフィ
ス8からの空気の漏れ量が多くなって高真空部の真空度
の低下を招き、その結果、電子銃部の放電や、一次電子
線通路内6での散乱の増加等の現象より、像質の悪化、
分解能の低下を生じる。メインポンプ20を現在の数倍
〜数十倍の排気速度を有する高性能のものに替えること
により、高真空部の真空を保つことは可能ではあるが、
製作コストの上昇や装置が大形化するなど新たな問題が
生じる。
In the scanning electron microscope shown in FIG. 6, it is necessary to maintain the electron gun 5 in a high vacuum state, so that there is a limit in making the sample chamber 1 low vacuum. . That is, when the degree of vacuum in the sample chamber 1 is lowered, the amount of air leaked from the orifice 8 is increased and the degree of vacuum in the high vacuum portion is lowered. As a result, the discharge of the electron gun portion and the inside of the primary electron beam passage Deterioration of image quality due to phenomena such as increase in scattering at 6
It causes a decrease in resolution. Although it is possible to maintain the vacuum of the high vacuum part by replacing the main pump 20 with a high-performance pump having a pumping speed several times to several tens of times of the current one,
New problems arise such as an increase in manufacturing cost and an increase in size of the device.

【0005】このように、従来の装置では試料室の真空
度の低下に限界があったため、水分を多量に含んだ試料
の観察は困難であり、長時間の観察により試料表面が乾
燥して形状が変わってしまうという問題があった。ま
た、試料室1を低真空にするとオリフィス8から試料9
までの間に空気分子が多く存在する。電子の平均自由行
程は、真空度10-3Paのとき約100m、1.3Pa
のとき約100mm、270Paのときは約0.5mm
であり、真空度を悪くするほど、一次電子線や反射電子
信号の散乱が多くなり、反射電子検出器10で検出する
反射電子信号の検出効率が落ちて分解能が低下するとい
う問題があった。
As described above, in the conventional apparatus, since there was a limit to the reduction of the degree of vacuum in the sample chamber, it is difficult to observe a sample containing a large amount of water. There was a problem that was changed. In addition, when the sample chamber 1 is evacuated to a low vacuum, the sample from the orifice 8 to the sample 9
There are many air molecules between. The mean free path of electrons is about 100 m at a vacuum degree of 10 -3 Pa and 1.3 Pa.
Is about 100 mm, and about 270 Pa is about 0.5 mm
However, there is a problem that as the degree of vacuum gets worse, the primary electron beam and the reflected electron signal are scattered more, the detection efficiency of the reflected electron signal detected by the reflected electron detector 10 is lowered, and the resolution is lowered.

【0006】特開平6−215716号公報の方法は、
電子銃に隣接する中間系の真空度を低下させるため電子
銃室の真空度が影響を受け、電界放出型電子銃やLaB
6フィラメントのように10-5〜10-8Paの超高真空
を必要とする電子銃を備える走査形電子顕微鏡には適用
できない。本発明は、電子銃室の真空度に影響を与える
ことなくより低い真空状態での試料の観察を可能とする
走査形電子顕微鏡を提供することを目的とする。また本
発明は、水分を多量に含んだ試料を真空による乾燥を軽
減して観察可能とし、さらに低真空観察時の反射電子信
号量を増加して高分解能観察可能とする走査形電子顕微
鏡を提供することを目的とする。
The method disclosed in Japanese Patent Laid-Open No. 6-215716 is
Since the vacuum level of the intermediate system adjacent to the electron gun is lowered, the vacuum level of the electron gun chamber is affected, and the field emission type electron gun or LaB
It cannot be applied to a scanning electron microscope equipped with an electron gun that requires an ultra-high vacuum of 10 −5 to 10 −8 Pa like 6 filaments. An object of the present invention is to provide a scanning electron microscope capable of observing a sample in a lower vacuum state without affecting the vacuum degree of the electron gun chamber. Further, the present invention provides a scanning electron microscope capable of observing a sample containing a large amount of water by reducing drying due to vacuum, and further increasing the amount of backscattered electron signals during low-vacuum observation to enable high-resolution observation. The purpose is to do.

【0007】[0007]

【課題を解決するための手段】本発明においては、試料
室より更に低真空状態に保つことができる試料箱を試料
室内に設け、試料箱に備えたオリフィスにより試料室と
試料箱とを差動排気することで前記目的を達成する。す
なわち、本発明の走査電子顕微鏡では、一側面にオリフ
ィスを有する密閉容器と、密閉容器内に配置され試料を
オリフィスに対して位置決めする試料ステージと、試料
ステージを駆動する駆動手段と、排気手段への接続部と
を備え、走査形電子顕微鏡の試料室に挿入して使用され
る走査電子顕微鏡用試料箱を用いる。
In the present invention, a sample box which can be kept in a vacuum state lower than that of the sample chamber is provided in the sample chamber, and the orifice provided in the sample box allows the sample chamber and the sample box to be differentiated from each other. The above object is achieved by exhausting. That is, in the scanning electron microscope of the present invention, a closed container having an orifice on one side surface, a sample stage arranged in the closed container for positioning a sample with respect to the orifice, a driving unit for driving the sample stage, and an exhaust unit are provided. The sample box for a scanning electron microscope which is used by inserting into the sample chamber of the scanning electron microscope is used.

【0008】試料箱のオリフィス径は観察条件等に応じ
て変更することができる。試料ステージは試料冷却手段
を有することができ、密閉容器の内壁には反射電子検出
器を設けることができる。前記試料箱は、電子銃、電子
レンズ、試料室及び電子レンズ下部に設けられたオリフ
ィスを含み、電子銃を高真空に試料室を低真空にして差
動排気できる走査形電子顕微鏡の試料室に試料箱のオリ
フィスが光軸上に位置するようにして取り付けて使用さ
れる。そして、試料箱のオリフィスを介して試料室と試
料箱を差動排気することで、電子銃を高真空に維持した
まま試料近傍を試料室より低真空にして観察することが
できる。
The orifice diameter of the sample box can be changed according to the observation conditions and the like. The sample stage may have a sample cooling means, and a backscattered electron detector may be provided on the inner wall of the closed container. The sample box includes an electron gun, an electron lens, a sample chamber, and an orifice provided below the electron lens, and is used as a sample chamber of a scanning electron microscope capable of differentially exhausting the electron gun to a high vacuum and the sample chamber to a low vacuum. The sample box is attached so that the orifice of the sample box is located on the optical axis. By differentially evacuating the sample chamber and the sample box through the orifice of the sample box, the vicinity of the sample can be observed in a vacuum lower than that of the sample chamber while the electron gun is maintained in a high vacuum.

【0009】試料箱に第1の真空計と第1の外気導入手
段を、試料室に第2の真空計と第2の外気導入手段を夫
々設け、第1及び第2の真空計の出力に基づいて第1及
び第2の外気導入手段を制御する制御手段を設けると、
試料室及び試料箱を設定された真空度に自動制御するこ
とが可能である。本発明によると、試料室内の真空度よ
り更に低い真空度の試料箱内に試料を設置するため、従
来より水分を多量に含んだ試料の観察が可能となる。ま
た、真空による試料の乾燥も軽減されるため、長時間の
観察においても試料の表面形状が変形することがない。
更に、低真空状態になるのは試料の極近傍のみであるた
め、空気分子による反射電子の散乱が減少して反射信号
量が増加し、分解能も向上する。
The sample box is provided with the first vacuum gauge and the first outside air introducing means, and the sample chamber is provided with the second vacuum gauge and the second outside air introducing means, respectively, and the outputs of the first and second vacuum gauges are provided. If a control means for controlling the first and second outside air introduction means is provided based on
It is possible to automatically control the sample chamber and the sample box to a set degree of vacuum. According to the present invention, since the sample is placed in the sample box having a vacuum degree lower than the vacuum degree in the sample chamber, it is possible to observe the sample containing a large amount of water as compared with the conventional case. Further, the drying of the sample due to the vacuum is also reduced, so that the surface shape of the sample is not deformed even during long-term observation.
Furthermore, since the low vacuum state is only in the very vicinity of the sample, the scattering of reflected electrons by air molecules is reduced, the reflected signal amount is increased, and the resolution is also improved.

【0010】[0010]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を説明する。図1は、本発明の一例による走査
形電子顕微鏡の排気系構成を示し、図2は試料付近の拡
大断面図を示す。電子レンズ、一次電子線の走査偏向器
は、詳細を図示していないが、周知の構成のものを採用
するものとする。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an exhaust system configuration of a scanning electron microscope according to an example of the present invention, and FIG. 2 shows an enlarged cross-sectional view near a sample. The electron lens and the scanning deflector for the primary electron beam, which are not shown in detail, have well-known configurations.

【0011】試料室1には試料箱2が着脱自在に取り付
けられる。試料箱2は、上壁にオリフィス3を有し、内
部に試料ステージ4を備える。電子銃5から放出された
一次電子線40は、一次電子線通路6、電子レンズ7の
下部に設けられたオリフィス8を通り、試料箱2に設け
られたオリフィス3を通って、試料ステージ4上の試料
9を走査する。試料9から発生された反射電子41は、
試料箱2のオリフィス3を逆向きに通過して試料室1内
に配置された反射電子検出器10で検出される。反射電
子検出器10の出力はCRT等の画像表示装置11に入
力され、画像表示装置11に試料像が表示される。
A sample box 2 is detachably attached to the sample chamber 1. The sample box 2 has an orifice 3 on the upper wall and a sample stage 4 inside. The primary electron beam 40 emitted from the electron gun 5 passes through the primary electron beam passage 6 and the orifice 8 provided in the lower part of the electron lens 7, the orifice 3 provided in the sample box 2, and the sample stage 4. The sample 9 is scanned. The backscattered electrons 41 generated from the sample 9 are
It is detected by the backscattered electron detector 10 arranged in the sample chamber 1 after passing through the orifice 3 of the sample box 2 in the opposite direction. The output of the backscattered electron detector 10 is input to an image display device 11 such as a CRT, and a sample image is displayed on the image display device 11.

【0012】試料箱2には、内部を排気するロータリー
ポンプ15、外気導入量を調整して内部の真空度を制御
するためのニードルバルブ16、内部の真空度を測定す
るピラニゲージ等の真空計17が接続されている。走査
電子顕微鏡の試料室1にも、真空計18及びニードルバ
ルブ19が設けられている。高真空部の真空度は真空計
22によりモニターされる。
In the sample box 2, a rotary pump 15 for exhausting the inside, a needle valve 16 for adjusting the amount of outside air introduced to control the degree of vacuum inside, and a vacuum gauge 17 such as a Pirani gauge for measuring the degree of vacuum inside. Are connected. A vacuum gauge 18 and a needle valve 19 are also provided in the sample chamber 1 of the scanning electron microscope. The degree of vacuum in the high vacuum section is monitored by a vacuum gauge 22.

【0013】低真空観察時は、メインバルブ21を閉
じ、メインポンプ20により電子銃5内の排気を行い、
電子銃5、一次電子線通路6内を高真空(約10-3
a)に保つ。図1中、ハッチング部分が高真空の領域を
示す。試料室1の内部はロータリーポンプ23により排
気を行い、ニードルバルブ19により真空度を可変する
ことができる。試料箱2内はロータリーポンプ15によ
り排気し、ニードルバルブ17により真空度を可変でき
る。高真空部と試料室1の間はオリフィス8により差動
排気され、試料室1と試料箱2の間は試料箱2に設けた
オリフィス3により差動排気される。ニードルバルブ1
6,19の開度制御はモータ制御で行われる。制御装置
25は、真空計17,18の出力を受けて、試料室1及
び試料箱2内が予め設定された真空度になるようにニー
ドルバルブ16、19の開度を制御する。
During low vacuum observation, the main valve 21 is closed and the main pump 20 evacuates the electron gun 5.
High vacuum (about 10 -3 P) inside the electron gun 5 and the primary electron beam passage 6
Keep in a). In FIG. 1, a hatched portion indicates a high vacuum area. The inside of the sample chamber 1 is evacuated by the rotary pump 23, and the degree of vacuum can be changed by the needle valve 19. The inside of the sample box 2 is evacuated by the rotary pump 15, and the degree of vacuum can be changed by the needle valve 17. The orifice 8 is differentially evacuated between the high vacuum portion and the sample chamber 1, and the orifice 3 provided in the sample box 2 is differentially evacuated between the sample chamber 1 and the sample box 2. Needle valve 1
The opening control of 6 and 19 is performed by motor control. The controller 25 receives the outputs of the vacuum gauges 17 and 18 and controls the opening degrees of the needle valves 16 and 19 so that the insides of the sample chamber 1 and the sample box 2 have a preset degree of vacuum.

【0014】オリフィス3及び8の径は可変できるよう
に構成する。一次電子線通路6の下端に設けたオリフィ
ス8は一次電子線40の絞りとしての機能も有し、電子
銃5及び一次電子線通路6を高真空に保つためには、径
が小さい方がよい。試料箱2のオリフィス3の径は、例
えば図3に示すように、直径0.1mm程度から直径数
mm程度までの複数個のオリフィス3a〜3dが設けら
れたオリフィス板30を試料箱2の外部から移動可能に
設け、オリフィス板30を動かして一次電子線40の光
軸上に位置するオリフィスを選択することにより可変と
する。
The diameters of the orifices 3 and 8 are variable. The orifice 8 provided at the lower end of the primary electron beam passage 6 also has a function as a diaphragm for the primary electron beam 40, and in order to keep the electron gun 5 and the primary electron beam passage 6 in a high vacuum, it is preferable that the diameter be small. . The diameter of the orifice 3 of the sample box 2 is, for example, as shown in FIG. 3, the orifice plate 30 provided with a plurality of orifices 3a to 3d having a diameter of about 0.1 mm to several mm on the outside of the sample box 2. Movably, and the orifice plate 30 is moved to select an orifice located on the optical axis of the primary electron beam 40, thereby making it variable.

【0015】径の大きなオリフィスを用いると視野探し
など低倍率での観察時に一次電子線40や反射電子41
を遮ることがない。しかし、試料箱2と試料室1との真
空差を大きくすることができないため、試料箱2の真空
度をそれほど低下させることができない。一方、径の小
さなオリフィスを用いると、試料箱2と試料室1の真空
差を大きくすることができるため、試料箱2内の真空度
を例えば270Pa以上に設定した場合でも試料室1内
の真空度を1.3Pa程度に保つことが可能になる。従
って、電子銃5や一次電子線通路6を高真空に維持した
まま試料9の雰囲気のみを低真空にすることが可能にな
る。その反面、低倍率で観察すると、オリフィス3で一
次電子線40が遮られることから視野が狭くなる。
When a large-diameter orifice is used, the primary electron beam 40 and the backscattered electron 41 are used when observing at a low magnification such as a field of view.
Does not block. However, since the vacuum difference between the sample box 2 and the sample chamber 1 cannot be increased, the degree of vacuum of the sample box 2 cannot be lowered so much. On the other hand, by using an orifice having a small diameter, it is possible to increase the vacuum difference between the sample box 2 and the sample chamber 1. Therefore, even when the vacuum degree in the sample box 2 is set to, for example, 270 Pa or more, the vacuum in the sample chamber 1 is reduced. It becomes possible to maintain the degree at about 1.3 Pa. Therefore, only the atmosphere of the sample 9 can be made low vacuum while the electron gun 5 and the primary electron beam passage 6 are maintained at high vacuum. On the other hand, when observed at a low magnification, the field of view becomes narrow because the primary electron beam 40 is blocked by the orifice 3.

【0016】以上のことから、試料9の水分の蒸発を抑
制して高倍率観察するときにはオリフィス3の径を小さ
くし、低倍率で広い範囲を観察するときにはオリフィス
3の径を大きくするというように、試料の種類あるいは
観察条件に応じてオリフィス3の径を選択するとよい。
このオリフィス径の変更とニードルバルブ16,19の
開閉制御により、試料室1及び試料箱2の真空度を観察
する試料に最適な値に設定することができる。
From the above, the diameter of the orifice 3 is made smaller when observing the sample 9 at high magnification while suppressing the evaporation of water, and made larger when observing a wide range at a low magnification. The diameter of the orifice 3 may be selected according to the type of sample or observation conditions.
By changing the orifice diameter and controlling the opening / closing of the needle valves 16 and 19, the vacuum degree of the sample chamber 1 and the sample box 2 can be set to an optimum value for the sample to be observed.

【0017】試料箱2に備えた試料ステージ4にはペル
チェ素子等を用いた冷却手段43を設け、試料9を冷却
できるようにする。冷却手段43を作動させて水分の多
い試料中の水分を凍結させると、試料の乾燥速度が遅く
なり、試料を変形無しで長時間観察できる。試料ステー
ジ4は試料箱2内で上下に移動可能に構成されており、
試料ステージ4を上下することによりオリフィス3と試
料9の間の距離を可変できる。試料ステージ4の上下方
向への移動は、外部からのネジ駆動あるいはステージ4
内に設けた小型モータにより、図2に矢印で示すよう
に、試料ステージ4のうち試料9を載置した部分のみを
上下動させることで行うことができる。
The sample stage 4 provided in the sample box 2 is provided with a cooling means 43 using a Peltier element or the like so that the sample 9 can be cooled. When the cooling means 43 is operated to freeze the water in the sample containing a large amount of water, the drying speed of the sample becomes slow, and the sample can be observed for a long time without deformation. The sample stage 4 is configured to be movable up and down in the sample box 2,
By moving the sample stage 4 up and down, the distance between the orifice 3 and the sample 9 can be changed. The sample stage 4 can be moved in the vertical direction by external screw drive or the stage 4
This can be performed by vertically moving only the portion of the sample stage 4 on which the sample 9 is placed, as shown by the arrow in FIG. 2, by the small motor provided inside.

【0018】あるいは、図4、図5に示すように、試料
箱2の壁面にスリット44を設け、スリット44を気密
に覆いながら試料箱2の壁面に沿って移動可能な部材4
7に試料ステージ4の支持体45を固定する。試料箱2
のスリット44の部分の気密はOリング46によって確
保する。Zツマミ48を回して、送りネジ49により部
材47と支持体45を一体として動かすことにより、試
料箱2の外部から試料ステージ4を一体として上下動さ
せることができる。
Alternatively, as shown in FIGS. 4 and 5, a slit 44 is provided on the wall surface of the sample box 2, and the member 4 movable along the wall surface of the sample box 2 while hermetically covering the slit 44.
The support 45 of the sample stage 4 is fixed to 7. Sample box 2
The airtightness of the slit 44 is secured by the O-ring 46. By rotating the Z knob 48 and moving the member 47 and the support body 45 integrally by the feed screw 49, the sample stage 4 can be integrally moved up and down from the outside of the sample box 2.

【0019】オリフィス3と試料9の間の距離を小さく
すると、試料室1内に配置された反射電子検出器10で
検出される反射電子信号が増加するため、像質及び分解
能が向上し、より低倍率での観察が可能となる。その反
面、試料雰囲気の真空度が高くなるため、試料は乾燥し
やすくなる。逆に、オリフィス3と試料9の間の距離を
大きくすると、試料の乾燥は抑制されるが、オリフィス
3によって反射電子41がカットされるため像質及び分
解能が低下し、低倍率観察時にはオリフィス3の影が出
てしまう。従って、試料ステージ4を上下することでオ
リフィス3と試料9間の距離を調節して、最適な観察条
件を実現する。
When the distance between the orifice 3 and the sample 9 is reduced, the backscattered electron signal detected by the backscattered electron detector 10 arranged in the sample chamber 1 is increased, so that the image quality and the resolution are improved, and Observation at low magnification is possible. On the other hand, since the degree of vacuum in the sample atmosphere is high, the sample is easy to dry. On the contrary, if the distance between the orifice 3 and the sample 9 is increased, the drying of the sample is suppressed, but since the reflected electrons 41 are cut by the orifice 3, the image quality and the resolution are deteriorated, and the orifice 3 is observed at the low magnification observation. The shadow of. Therefore, by moving the sample stage 4 up and down, the distance between the orifice 3 and the sample 9 is adjusted to realize optimum observation conditions.

【0020】オリフィス3によって試料9からの反射電
子41が遮断されて反射電子検出器10に到達しない問
題は、試料箱2の内側、例えばオリフィス3の周囲に半
導体型反射電子検出器等50を設置することで解決する
ことができる。試料箱2に設けた反射電子検出器50に
よる検出信号と、試料室1内に配置した反射電子検出器
10による検出信号は独立して利用してもよいし、加算
して利用してもよい。半導体型反射電子検出器50をオ
リフィス3の周囲に方位方向に分割して配置し、特定の
方位角方向あるいは選択された複数の方位各方向の反射
電子検出信号によって像を形成すると、試料の凹凸を反
映した試料像を得ることができる。
The problem that the backscattered electrons 41 from the sample 9 are blocked by the orifice 3 and do not reach the backscattered electron detector 10 is that a semiconductor type backscattered electron detector 50 or the like is installed inside the sample box 2, for example, around the orifice 3. Can be solved by doing. The detection signal from the backscattered electron detector 50 provided in the sample box 2 and the detection signal from the backscattered electron detector 10 arranged in the sample chamber 1 may be used independently or may be used by adding. . When the semiconductor backscattered electron detector 50 is divided around the orifice 3 in the azimuth direction and an image is formed by the backscattered electron detection signals in a specific azimuth angle direction or a plurality of selected azimuth directions, the unevenness of the sample is obtained. It is possible to obtain a sample image that reflects

【0021】例えば試料室1内を1.3Pa、試料箱2
内を270Paと設定した場合、試料近傍は270Pa
の真空度中にあるため、水分の多い試料であっても乾燥
による試料のダメージを軽減することができ、長時間の
観察においても試料の変形は少なく、また試料を冷却す
ることにより、さらに長時間の観察が可能となる。ま
た、オリフィス8と試料9の間は、試料室1の真空度を
1.3Pa(平均自由行程100mm)とすることで空
気分子による一次電子線40の散乱が抑制され、オリフ
ィス3と反射電子検出器10の間も同様の真空度である
から、反射電子41の散乱も抑制されることになり、従
来の試料室全体を270Paとした時に比べ、反射電子
信号の量が増えて分解能が上がり、像質の向上を図るこ
とができる。
For example, the inside of the sample chamber 1 is 1.3 Pa, the sample box 2 is
When the inside is set to 270 Pa, the vicinity of the sample is 270 Pa.
Since it is in the vacuum degree of 1, the damage of the sample due to drying can be reduced even if the sample has a lot of water, the deformation of the sample is small even during long-term observation, and the sample can be cooled for a longer time. It becomes possible to observe time. Further, between the orifice 8 and the sample 9, the degree of vacuum in the sample chamber 1 is set to 1.3 Pa (mean free path 100 mm), so that the scattering of the primary electron beam 40 by air molecules is suppressed, and the orifice 3 and the backscattered electron are detected. Since the degree of vacuum is the same between the chambers 10, scattering of the reflected electrons 41 is also suppressed, and the amount of reflected electron signals increases and the resolution increases as compared with the conventional case where the entire sample chamber is set to 270 Pa. The image quality can be improved.

【0022】さらに試料室の真空度が1.3Paであれ
ばオリフィス8から一次電子線通路6への空気の漏れ量
も微かであり、高真空部への影響も少なくなるため、メ
インポンプ20も従来の排気速度のもので充分対応可能
である。
Further, if the degree of vacuum in the sample chamber is 1.3 Pa, the amount of air leaked from the orifice 8 to the primary electron beam passage 6 is also small, and the influence on the high vacuum portion is reduced, so that the main pump 20 is also reduced. A conventional pumping speed is sufficient.

【0023】[0023]

【発明の効果】本発明によると、試料近傍をより低い真
空度に保ったまま観察できるため水分を多量に含んだ試
料の観察ができ、試料表面の乾燥が抑制されるため長時
間の観察も可能となる。また、試料の極近傍のみを低真
空にすることから反射電子信号量が増加し、分解能の向
上も期待できる。
According to the present invention, a sample containing a large amount of water can be observed because the vicinity of the sample can be observed while maintaining a lower degree of vacuum, and the drying of the sample surface is suppressed, so that the sample can be observed for a long time. It will be possible. In addition, the amount of backscattered electron signals is increased and the resolution is expected to be improved because the vacuum is provided only in the very vicinity of the sample.

【0024】さらに、高真空部への影響が少ないため、
電子銃室が超高真空を必要とするLaB6電子銃や、電
界放出形電子銃を搭載した走査形電子顕微鏡においての
低真空観察も可能となる。
Furthermore, since the influence on the high vacuum portion is small,
It is possible to perform low-vacuum observation with a LaB 6 electron gun, which requires an ultrahigh vacuum in the electron gun chamber, or a scanning electron microscope equipped with a field emission electron gun.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による排気系を説明する図。FIG. 1 is a diagram illustrating an exhaust system according to the present invention.

【図2】試料付近の詳細図。FIG. 2 is a detailed view around the sample.

【図3】複数個のオリフィスを有するオリフィス板の説
明図。
FIG. 3 is an explanatory view of an orifice plate having a plurality of orifices.

【図4】試料ステージ移動機構の一例の説明図。FIG. 4 is an explanatory diagram of an example of a sample stage moving mechanism.

【図5】試料箱のスリット部分の斜視図。FIG. 5 is a perspective view of a slit portion of a sample box.

【図6】従来の排気系を示す説明図。FIG. 6 is an explanatory view showing a conventional exhaust system.

【符号の説明】[Explanation of symbols]

1…試料室、2…試料箱、3…オリフィス、4…試料ス
テージ、5…電子銃、6…一次電子線通路、7…電子レ
ンズ、8…オリフィス、9…試料、10…反射電子検出
器、11…画像表示装置、15…ロータリーポンプ、1
6…ニードルバルブ、17…真空計、18…真空計、1
9…ニードルバルブ、20…メインポンプ、21…メイ
ンバルブ、22…真空計、23…ロータリーポンプ、2
5…制御装置、30…オリフィス板、40…一次電子
線、41…反射電子、43…冷却手段、44…スリッ
ト、45…支持体、46…Oリング、48…Zツマミ、
49…送りネジ、50…半導体型反射電子検出器
DESCRIPTION OF SYMBOLS 1 ... Sample chamber, 2 ... Sample box, 3 ... Orifice, 4 ... Sample stage, 5 ... Electron gun, 6 ... Primary electron beam passage, 7 ... Electron lens, 8 ... Orifice, 9 ... Sample, 10 ... Reflection electron detector , 11 ... Image display device, 15 ... Rotary pump, 1
6 ... Needle valve, 17 ... Vacuum gauge, 18 ... Vacuum gauge, 1
9 ... Needle valve, 20 ... Main pump, 21 ... Main valve, 22 ... Vacuum gauge, 23 ... Rotary pump, 2
5 ... Control device, 30 ... Orifice plate, 40 ... Primary electron beam, 41 ... Reflected electron, 43 ... Cooling means, 44 ... Slit, 45 ... Support, 46 ... O ring, 48 ... Z knob,
49 ... Lead screw, 50 ... Semiconductor type backscattered electron detector

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 一側面にオリフィスを有する密閉容器
と、前記密閉容器内に配置され試料を前記オリフィスに
対して位置決めする試料ステージと、前記試料ステージ
を駆動する駆動手段と、排気手段への接続部とを備え、
走査形電子顕微鏡の試料室に挿入して使用されることを
特徴とする走査電子顕微鏡用試料箱。
1. A closed container having an orifice on one side surface, a sample stage arranged in the closed container for positioning a sample with respect to the orifice, a driving means for driving the sample stage, and a connection to an exhaust means. Section and
A sample box for a scanning electron microscope, which is used by being inserted into a sample chamber of a scanning electron microscope.
【請求項2】 前記オリフィスの径を変更する手段を備
えることを特徴とする請求項1記載の走査形電子顕微鏡
用試料箱。
2. The sample box for a scanning electron microscope according to claim 1, further comprising means for changing a diameter of the orifice.
【請求項3】 前記試料ステージは試料冷却手段を有す
ることを特徴とする請求項1又は2記載の走査電子顕微
鏡用試料箱。
3. The sample box for a scanning electron microscope according to claim 1, wherein the sample stage has a sample cooling means.
【請求項4】 前記密閉容器の内壁に反射電子検出器を
設けたことを特徴とする請求項1、2又は3記載の走査
電子顕微鏡用試料箱。
4. The sample box for a scanning electron microscope according to claim 1, 2 or 3, wherein a backscattered electron detector is provided on the inner wall of the closed container.
【請求項5】 電子銃、電子レンズ、試料室及び電子レ
ンズ下部に設けられたオリフィスを含み、電子銃を高真
空に試料室を低真空にして差動排気できる走査形電子顕
微鏡において、 前記試料室内に請求項1〜4のいずれか1項に記載の試
料箱をそのオリフィスが光軸上に位置するようにして設
置し、前記試料箱のオリフィスを介して前記試料室と前
記試料箱を差動排気して、前記試料箱内の試料近傍を前
記試料室より低真空にして観察することを特徴とする走
査形電子顕微鏡。
5. A scanning electron microscope including an electron gun, an electron lens, a sample chamber, and an orifice provided below the electron lens, capable of differentially exhausting the electron gun to a high vacuum and the sample chamber to a low vacuum, wherein the sample The sample box according to any one of claims 1 to 4 is installed in a room so that the orifice is located on the optical axis, and the sample box and the sample box are connected via the orifice of the sample box. A scanning electron microscope, characterized in that it is dynamically evacuated and the vicinity of the sample in the sample box is evacuated to a lower vacuum than the sample chamber for observation.
【請求項6】 前記試料箱は第1の真空計及び第1の外
気導入手段を備え、前記試料室は第2の真空計及び第2
の外気導入手段を備え、前記第1及び第2の真空計の出
力に基づいて前記第1及び第2の外気導入手段を制御し
て前記試料室及び試料箱を設定された真空度に自動制御
することを特徴とする請求項5記載の走査電子顕微鏡。
6. The sample box is provided with a first vacuum gauge and a first outside air introducing means, and the sample chamber is provided with a second vacuum gauge and a second vacuum gauge.
External air introduction means, and controls the first and second outside air introduction means based on the outputs of the first and second vacuum gauges to automatically control the sample chamber and the sample box to a set vacuum degree. The scanning electron microscope according to claim 5, wherein
JP7326098A 1995-12-14 1995-12-14 Scanning type electron microscope Pending JPH09167588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7326098A JPH09167588A (en) 1995-12-14 1995-12-14 Scanning type electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7326098A JPH09167588A (en) 1995-12-14 1995-12-14 Scanning type electron microscope

Publications (1)

Publication Number Publication Date
JPH09167588A true JPH09167588A (en) 1997-06-24

Family

ID=18184085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7326098A Pending JPH09167588A (en) 1995-12-14 1995-12-14 Scanning type electron microscope

Country Status (1)

Country Link
JP (1) JPH09167588A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003007329A1 (en) * 2001-07-13 2003-01-23 Nanofactory Instruments Ab Sample chamber device for an electron microscope
EP1347490A3 (en) * 2002-03-18 2004-01-21 LEO Elektronenmikroskopie GmbH Diaphragm accessory unit for scanning electron microscope
JP2006032011A (en) * 2004-07-13 2006-02-02 Hitachi Sci Syst Ltd Low vacuum scanning electron microscope
JP2008010177A (en) * 2006-06-27 2008-01-17 Hitachi High-Technologies Corp Environmentally controllable electron beam apparatus
JP2011003426A (en) * 2009-06-19 2011-01-06 Jeol Ltd Electron microscope
JP2011154922A (en) * 2010-01-28 2011-08-11 Hitachi High-Technologies Corp Vacuum device for preliminary exhaust and charged particle beam device
JP2013232427A (en) * 2013-07-03 2013-11-14 Hitachi High-Technologies Corp Charged particle beam device
KR20220095557A (en) * 2020-12-30 2022-07-07 (주)코셈 Scanning electron microscope used for particle analysis of large area samples including EDS, and analysis method using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003007329A1 (en) * 2001-07-13 2003-01-23 Nanofactory Instruments Ab Sample chamber device for an electron microscope
EP1347490A3 (en) * 2002-03-18 2004-01-21 LEO Elektronenmikroskopie GmbH Diaphragm accessory unit for scanning electron microscope
US6815678B2 (en) 2002-03-18 2004-11-09 Leo Elektronemikroskopie Gmbh Raster electron microscope
JP2006032011A (en) * 2004-07-13 2006-02-02 Hitachi Sci Syst Ltd Low vacuum scanning electron microscope
JP2008010177A (en) * 2006-06-27 2008-01-17 Hitachi High-Technologies Corp Environmentally controllable electron beam apparatus
JP2011003426A (en) * 2009-06-19 2011-01-06 Jeol Ltd Electron microscope
JP2011154922A (en) * 2010-01-28 2011-08-11 Hitachi High-Technologies Corp Vacuum device for preliminary exhaust and charged particle beam device
JP2013232427A (en) * 2013-07-03 2013-11-14 Hitachi High-Technologies Corp Charged particle beam device
KR20220095557A (en) * 2020-12-30 2022-07-07 (주)코셈 Scanning electron microscope used for particle analysis of large area samples including EDS, and analysis method using the same

Similar Documents

Publication Publication Date Title
US5229607A (en) Combination apparatus having a scanning electron microscope therein
JP5260575B2 (en) Electron microscope and sample holder
US9153414B2 (en) Particle optical apparatus with a predetermined final vacuum pressure
KR20110076934A (en) A vacuumed device and a scanning electron microscope
JPH09167588A (en) Scanning type electron microscope
US4020353A (en) Sample analysis apparatus using electron beam irradiation
US8610061B2 (en) Scanning electron microscope
US4349242A (en) Specimen observation apparatus including an optical microscope and a scanning electron microscope
JP2016096142A (en) Charged particle beam microscope performing pressure correction
JP2008262886A (en) Scanning electron microscope device
KR101725506B1 (en) Scanning electron microscopy capable of observing optical image of sample
JP6286059B2 (en) Ion beam apparatus and sample observation method
KR101554594B1 (en) Apparatus for forming charged particle beam probe and method for using thereof
JP2007188821A (en) Handy electron microscope
JPS5938701B2 (en) Scanning electron microscope with two-stage sample stage
WO2013129196A1 (en) Charged particle beam device and charged particle beam irradiation method
JPH05325859A (en) Electron beam irradiation device
KR102027559B1 (en) High-resolution scanning electron microscope
JP2017123320A (en) Charged particle microscope with atmospheric pressure correction
JP2011258451A (en) Scanning electron microscope
JP7210762B2 (en) Thin film damage detection function and charged particle beam device
KR101735696B1 (en) Scanning electron microscopy and method for observing a sample using thereof
WO2022219699A1 (en) Transmission electron microscope
JP2001256911A (en) Scanning electron microscope
WO2021070338A1 (en) Charged particle beam device

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20051014

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20051025

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060117

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060130

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20110217

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20120217

LAPS Cancellation because of no payment of annual fees