JPH09166764A - Absorption type semiconductor light modulator - Google Patents

Absorption type semiconductor light modulator

Info

Publication number
JPH09166764A
JPH09166764A JP32863595A JP32863595A JPH09166764A JP H09166764 A JPH09166764 A JP H09166764A JP 32863595 A JP32863595 A JP 32863595A JP 32863595 A JP32863595 A JP 32863595A JP H09166764 A JPH09166764 A JP H09166764A
Authority
JP
Japan
Prior art keywords
electrode
light
core
semiconductor
electric signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32863595A
Other languages
Japanese (ja)
Other versions
JP2996287B2 (en
Inventor
Kenji Kono
健治 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP7328635A priority Critical patent/JP2996287B2/en
Publication of JPH09166764A publication Critical patent/JPH09166764A/en
Application granted granted Critical
Publication of JP2996287B2 publication Critical patent/JP2996287B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an absorption type semiconductor light modulator having an excellent optical modulation band without deteriorating of extinction ratio by making an electrode a traveling-wave type electrode. SOLUTION: A P-side electrode is made to be a traveling-wave type electrode. A polyimidelayer 8 is provided on the incident side of an optical signal, an electrode on its upper part becomes the input part I of an electric signal and an electric signal (reversely biased voltage) is inputted from a driving signal source. On the other hand, an output part II is provided on an electrode on the output side of the optical signal and a terminal resistor is connected to the output part. Namely, when light is made incident and propagates through a MQW(multiple quantum well) optical modulator, the electric signal also propagates in the same direction as light over the total length. Since the absorption end wavelength of a MQW core 4 is shifted to the side of long wavelength by the electric signal during the travel of both signals together, the light is absorbed and becomes the OFF state. By matching the velecities of the electric signal with the optical signal, the length of a semiconductor core absorbing the light at the time of the OFF state of light is lengthened and super-high speed light modulation is obtained while keeping high extinction ratio.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体光変調器、
特に高速で動作する吸収形半導体光変調器に関する。
The present invention relates to a semiconductor optical modulator,
In particular, it relates to an absorption type semiconductor optical modulator that operates at high speed.

【0002】[0002]

【従来の技術】図3に従来の吸収形半導体光変調器の一
例を示す。図中、1はp側電極、2はp+ −InGaA
sキャップ層、3はp−InPクラッド層、4はコア
で、ここではノンドープであるi−InGaAlAs
(13nm)/InAlAs(5nm)多重量子井戸
(MQW)を例として示している。5はn−InPクラ
ッド層、6はn−InP基板、7はn側電極を表す。8
はポリイミド層であり、図においてp側電極1のうちポ
リイミド層8の上の部分はボンディングパッドと呼ばれ
ている。9はボンディングワイヤであり、図示しない駆
動信号源から電気信号(電圧)が印加される。
2. Description of the Related Art FIG. 3 shows an example of a conventional absorption type semiconductor optical modulator. In the figure, 1 is a p-side electrode, 2 is p + -InGaA
s cap layer, 3 is a p-InP clad layer, and 4 is a core. Here, i-InGaAlAs which is not doped is used.
A (13 nm) / InAlAs (5 nm) multiple quantum well (MQW) is shown as an example. Reference numeral 5 represents an n-InP clad layer, 6 represents an n-InP substrate, and 7 represents an n-side electrode. 8
Is a polyimide layer, and in the figure, the portion of the p-side electrode 1 above the polyimide layer 8 is called a bonding pad. A bonding wire 9 is applied with an electric signal (voltage) from a drive signal source (not shown).

【0003】この従来例の動作原理を説明するために、
図4にMQWコアの光吸収スペクトルを示す。例えば、
信号光の波長を1.55μmとすると、吸収ピークを
1.49μm程度となるように設計する。すると、図に
示すように、光変調器に電圧を印加していない場合に
は、動作波長つまり光信号の波長は、実線Aに示すよう
に、吸収端波長よりも長波長側に離れているため、入射
光はMQWコア4に吸収されることなく出射され、光は
ON状態となる。一方、逆バイアス印加時には、吸収ス
ペクトルは点線Bのように長波長側に移動するため、光
信号はMQWコア4に吸収され、その結果、光はOFF
状態となる。
In order to explain the operating principle of this conventional example,
FIG. 4 shows the optical absorption spectrum of the MQW core. For example,
When the wavelength of the signal light is 1.55 μm, the absorption peak is designed to be about 1.49 μm. Then, as shown in the figure, when the voltage is not applied to the optical modulator, the operating wavelength, that is, the wavelength of the optical signal is farther to the long wavelength side than the absorption edge wavelength as shown by the solid line A. Therefore, the incident light is emitted without being absorbed by the MQW core 4, and the light is turned on. On the other hand, when the reverse bias is applied, the absorption spectrum moves to the long wavelength side as shown by the dotted line B, so that the optical signal is absorbed by the MQW core 4 and, as a result, the light is turned off.
State.

【0004】さて、この従来例として示した吸収形半導
体光変調器のp側電極1は集中定数動作のための電極で
ある。これを説明するために、駆動信号源を含めた等価
回路を図5に簡略化して示す。SG は駆動信号源、RG
は駆動信号源の特性インピーダンス、RL は終端抵抗、
MQW はMQWコアのキャパシタンスであり、Cp は前
述したp側電極の一部であるボンディングパッドのキャ
パシタンスを表す。この場合の電気3dB帯域Δfは近
似的に
Now, the p-side electrode 1 of the absorption type semiconductor optical modulator shown as the conventional example is an electrode for lumped constant operation. In order to explain this, an equivalent circuit including a drive signal source is simplified and shown in FIG. S G is a drive signal source, R G
Is the characteristic impedance of the drive signal source, R L is the terminating resistance,
C MQW is the capacitance of the MQW core, and C p is the capacitance of the bonding pad that is a part of the p-side electrode described above. The electric 3 dB band Δf in this case is approximately

【0005】[0005]

【数1】 Δf=1/(π・RL ・CMQW ) (1) と表すことができる。一般に終端抵抗RL は駆動信号源
の特性インピーダンスRG と同じ50Ωである。ここ
で、パッドのキャパシタンスCp は充分小さく、全キャ
パシタンスはMQWコアのキャパシタンスCMQW でほぼ
決定されると仮定した。ちなみにi−MQWコアの厚み
d、幅wおよび長さLをそれぞれ0.2μm、2μm、
および300μmとすると、MQWコア4のキャパシタ
ンスは
[Number 1] Δf = 1 / (π · R L · C MQW) can be expressed as (1). Generally, the terminating resistance R L is 50Ω which is the same as the characteristic impedance R G of the drive signal source. It is assumed here that the pad capacitance C p is small enough that the total capacitance is approximately determined by the MQW core capacitance C MQW . By the way, the thickness d, the width w and the length L of the i-MQW core are 0.2 μm and 2 μm, respectively.
And 300 μm, the capacitance of the MQW core 4 is

【0006】[0006]

【数2】 CMQW =ε0 εr wL/d (2) から求められる。ここで、ε0 およびεr はそれぞれ真
空中の誘電率およびMQWコア4の比誘電率である。式
(1)と式(2)から、集中定数形MQW光変調器にお
ける電気3dB帯域Δfは20GHzかそれ以下となる
ことがわかる。この3dB帯域を広げるためには、C
MQW を小さくすれば良いが、i−MQWコア4の長さを
短くすると、光信号の消光比が劣化する。つまり、電圧
印加によるi−MQWコア4の吸収係数の増加をΔα、
導波光のi−MQWコア4への閉じ込め係数をΓとする
と、光信号の消光比Rは次式のように表される。
## EQU2 ## It is obtained from C MQW = ε 0 ε r wL / d (2). Here, ε 0 and ε r are the permittivity in vacuum and the relative permittivity of the MQW core 4, respectively. From equations (1) and (2), it can be seen that the electric 3 dB band Δf in the lumped constant MQW optical modulator is 20 GHz or less. To widen this 3 dB band, C
Although it is sufficient to make the MQW small, if the length of the i-MQW core 4 is made short, the extinction ratio of the optical signal deteriorates. That is, the increase in the absorption coefficient of the i-MQW core 4 due to the voltage application is Δα,
When the confinement coefficient of the guided light in the i-MQW core 4 is Γ, the extinction ratio R of the optical signal is represented by the following equation.

【0007】[0007]

【数3】 R=exp(−Δα・Γ・L) (3) この式からわかるように、長さLが短くなると消光比の
劣化を招くため、消光比の観点からi−MQWコア4の
長さをあまり短くはできないことになる。
## EQU00003 ## R = exp (-. DELTA..alpha..GAMMA..multidot.L) (3) As can be seen from this equation, when the length L is shortened, the extinction ratio deteriorates. Therefore, from the viewpoint of the extinction ratio, the i-MQW core 4 The length cannot be too short.

【0008】なお、図3の構造図と図5の等価回路から
わかるように、従来例の電極は集中定数形の電極であ
り、電気信号と光は同方向に並走しない。
As can be seen from the structural diagram of FIG. 3 and the equivalent circuit of FIG. 5, the electrode of the conventional example is a lumped constant electrode, and the electric signal and the light do not run in the same direction.

【0009】[0009]

【発明が解決しようとする課題】このように、従来の集
中定数形電極を有する吸収形半導体光変調器において
は、CR定数で制限される電気3dB帯域Δfと消光比
Rには厳しいトレードオフの関係がある。そのため、高
い消光比を保ちつつ、50GHz以上の超高速光変調を
実現することは困難であるという問題があった。
As described above, in the conventional absorption type semiconductor optical modulator having the lumped constant type electrode, there is a severe trade-off between the electric 3 dB band Δf limited by the CR constant and the extinction ratio R. I have a relationship. Therefore, there is a problem that it is difficult to realize ultrahigh-speed optical modulation of 50 GHz or higher while maintaining a high extinction ratio.

【0010】そこで、本発明の目的は、これらの問題を
解決し、光変調帯域の点で優れた吸収形半導体光変調器
を提供することにある。
Therefore, an object of the present invention is to solve these problems and provide an absorption type semiconductor optical modulator excellent in the optical modulation band.

【0011】[0011]

【課題を解決するための手段】このような目的を達成す
るために、本発明による吸収形半導体光変調器は、吸収
端波長が光信号の波長より短い半導体コアと、電圧印加
時に前記半導体コアの前記吸収端波長を長波長側に動か
すことにより、前記光信号を前記半導体コアに吸収させ
るための電圧印加用の電極を具備する吸収形半導体光変
調器において、前記電極を進行波形電極としたことを特
徴とする。
In order to achieve the above object, an absorption type semiconductor optical modulator according to the present invention comprises a semiconductor core having an absorption edge wavelength shorter than the wavelength of an optical signal, and the semiconductor core when a voltage is applied. In an absorption type semiconductor optical modulator including an electrode for voltage application for absorbing the optical signal in the semiconductor core by moving the absorption edge wavelength to a long wavelength side, the electrode is a traveling waveform electrode. It is characterized by

【0012】ここで、電極に電圧を印加するための駆動
信号源の特性インピーダンスと光変調器の特性インピー
ダンスが等しいとよい。
Here, the characteristic impedance of the drive signal source for applying a voltage to the electrodes and the characteristic impedance of the optical modulator may be equal.

【0013】半導体コアとその上部の上部クラッド層の
間にノンドープ半導体層が設けられているとよく、また
は、半導体コアとその下部の下部クラッド層の間にノン
ドープ半導体層が設けられているとよい。さらに、半導
体コアとその上部の上部クラッド層の間および下部の下
部クラッド層の間にそれぞれノンドープ半導体層が設け
られているとよい。
A non-doped semiconductor layer may be provided between the semiconductor core and the upper clad layer above it, or a non-doped semiconductor layer may be provided between the semiconductor core and the lower clad layer below it. . Further, it is preferable that a non-doped semiconductor layer is provided between the semiconductor core and the upper clad layer above the semiconductor core and between the lower clad layer below the semiconductor core.

【0014】さらに、信号光の等価屈折率と電気信号の
等価屈折率を実質的に等しくするとよい。
Further, it is preferable that the equivalent refractive index of the signal light and the equivalent refractive index of the electric signal are substantially equal.

【0015】[0015]

【発明の実施の形態】本発明においては、電圧を印加し
て半導体コアの吸収端波長を長波長側に動かし、それに
よって光信号を半導体コアに吸収させるための電圧印加
用の電極を進行波形電極としている。より具体的に言え
ば、光信号の入射側に電気信号(電圧)の入力部を設
け、一方、光信号の出射側に電気信号の出力部を設け
る。このような構成によって、電気信号と光信号は並走
する。本発明のこのような構成によって、電気3dB帯
域ΔfはCR定数で制限されるという問題がなくなる。
従って、特に、電気信号と光信号の速度整合をとれば、
光のOFF時に光を吸収する半導体コアの長さを長くす
ることができ、高い消光比を保ちつつ超高速光変調を実
現することができる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a voltage is applied to move the absorption edge wavelength of the semiconductor core to the long wavelength side, thereby causing the voltage application electrode for absorbing an optical signal to the semiconductor core to have a traveling waveform. It is used as an electrode. More specifically, an electric signal (voltage) input section is provided on the optical signal incident side, while an electric signal output section is provided on the optical signal outgoing side. With such a configuration, the electric signal and the optical signal run in parallel. Such a configuration of the present invention eliminates the problem that the electric 3 dB band Δf is limited by the CR constant.
Therefore, especially if the speed matching of the electrical signal and the optical signal is taken,
It is possible to increase the length of the semiconductor core that absorbs light when the light is turned off, and it is possible to realize ultrahigh-speed optical modulation while maintaining a high extinction ratio.

【0016】[0016]

【実施例】以下に図面を参照して本発明の実施例を詳細
に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0017】図1に本発明の一実施例を示す。図におい
て、従来例と同様に、1はp側電極、2はp+ −InG
aAsキャップ層、3はp−InPクラッド層、4はコ
ア層で、本実施例においても、i−InGaAlAs
(13nm)/InAlAs(5nm)多重量子井戸
(MQW)を例にとる。5はn−InPクラッド層、6
はn−InP基板、7はn側電極である。8はポリイミ
ド層、10はi−InP層である。このような構造は、
通常の半導体装置作製技術によって作製できる。
FIG. 1 shows an embodiment of the present invention. In the figure, as in the conventional example, 1 is a p-side electrode, 2 is p + -InG
aAs cap layer, 3 is a p-InP clad layer, and 4 is a core layer. In the present embodiment as well, i-InGaAlAs is used.
Take (13 nm) / InAlAs (5 nm) multiple quantum wells (MQW) as an example. 5 is an n-InP clad layer, 6
Is an n-InP substrate, and 7 is an n-side electrode. Reference numeral 8 is a polyimide layer, and 10 is an i-InP layer. Such a structure
It can be manufactured by an ordinary semiconductor device manufacturing technique.

【0018】ここで、本実施例が図3に示した従来例と
最も異なる点はp側電極1が進行波形電極となっている
点である。ポリイミド層8は光信号の入射側に設けら
れ、その上部の電極が電気信号の入力部Iとなり、図示
しない駆動信号源から電気信号(逆バイアス電圧)が入
力される。一方、光信号の出力側の電極には出力部II
が設けられ、この出力部には終端抵抗が接続される。つ
まり、光が入射してMQW光変調器を伝搬する間に、電
気信号も光変調器の全長に亘って光と同方向に伝搬す
る。両者が並走する間に、電気信号によりMQWコアの
吸収端波長は長波長側にシフトされるため、光は吸収さ
れOFF状態となる。
Here, the most different point of this embodiment from the conventional example shown in FIG. 3 is that the p-side electrode 1 is a traveling waveform electrode. The polyimide layer 8 is provided on the incident side of the optical signal, the upper electrode thereof serves as an input portion I for the electric signal, and the electric signal (reverse bias voltage) is input from a drive signal source (not shown). On the other hand, the output part II is provided on the electrode on the output side of the optical signal.
Is provided, and a terminating resistor is connected to this output section. That is, while the light is incident and propagates through the MQW optical modulator, the electric signal also propagates in the same direction as the light over the entire length of the optical modulator. While the both run in parallel, the absorption edge wavelength of the MQW core is shifted to the long wavelength side by the electric signal, so that the light is absorbed and turned off.

【0019】本実施例では、p側電極1は進行波形電極
となっているが、電気信号源SG の特性インピーダンス
が50Ωであるため、吸収形MQWの特性インピーダン
スも50Ωに等しいか、または近いことが望ましい。従
って、本実施例では、i−InP層10をMQWコア4
とp−InPクラッド層3との間に設けて、p側電極1
を含めたMQW変調器の特性インピーダンスを50Ωと
している。電極1の出力部IIに接続される終端抵抗の
値は50Ωである。
In the present embodiment, the p-side electrode 1 is a traveling waveform electrode, but since the characteristic impedance of the electric signal source S G is 50Ω, the characteristic impedance of the absorption type MQW is also equal to or close to 50Ω. Is desirable. Therefore, in this embodiment, the i-InP layer 10 is used as the MQW core 4.
And the p-InP clad layer 3 are provided between the p-side electrode 1 and
The characteristic impedance of the MQW modulator including the above is set to 50Ω. The value of the terminal resistance connected to the output part II of the electrode 1 is 50Ω.

【0020】図2に本実施例の等価回路を示す。SG
駆動信号源、RG は駆動信号源の特性インピーダンス、
L は終端抵抗、ZM は光変調器の特性インピーダンス
である。図5との比較からわかるように、この等価回路
は、従来の集中定数形の光変調器の等価回路とは非常に
異なっている。
FIG. 2 shows an equivalent circuit of this embodiment. S G is the drive signal source, R G is the characteristic impedance of the drive signal source,
R L is the terminating resistor, Z M is the characteristic impedance of the optical modulator. As can be seen from the comparison with FIG. 5, this equivalent circuit is very different from the equivalent circuit of the conventional lumped constant optical modulator.

【0021】さて、この進行波形の吸収形半導体光変調
器の3dB変調帯域Δfは、簡単のために、進行波形電
極の電気伝搬損失を0、特性インピーダンスZM を50
Ωと仮定すると、
For the sake of simplicity, the 3 dB modulation band Δf of this traveling-wave absorption semiconductor optical modulator has an electric propagation loss of the traveling-wave electrode of 0 and a characteristic impedance Z M of 50.
Assuming Ω,

【0022】[0022]

【数4】 Δf=1.4c0 /(π(|nm −n0 |)L) (4) と表される。ここで、c0 は光の速度、nm はMQW光
変調器の電気信号の等価屈折率、n0 は信号光の等価屈
折率、LはMQWコアの長さである。従って、Lを30
0μm、nm を3.4、n0 を3.2とすると、Δfは
約2200GHzと、超広帯域光変調を実現できること
になる。
Δf = 1.4c 0 / (π (| n m −n 0 |) L) (4) Here, c 0 is the speed of light, nm is the equivalent refractive index of the electric signal of the MQW optical modulator, n 0 is the equivalent refractive index of the signal light, and L is the length of the MQW core. Therefore, L is 30
When 0 μm, nm are 3.4, and n 0 is 3.2, Δf is about 2200 GHz, which means that ultrawideband optical modulation can be realized.

【0023】さらに、電気信号と光信号の速度整合をと
れば、すなわち、nm =n0 とすれば、光の消光比Rを
大きくするためにMQWコア4の長さLを長くしても、
帯域制限要因は電極の電気伝搬損失のみとなる。電気伝
搬損失は電極の厚みを厚くする等により低減できるた
め、やはり光変調器の超広帯域動作を実現できることに
なる。
Further, if the speed matching of the electric signal and the optical signal is taken, that is, if n m = n 0 , even if the length L of the MQW core 4 is increased to increase the extinction ratio R of the light. ,
The band limiting factor is only the electrical propagation loss of the electrodes. Since the electric propagation loss can be reduced by increasing the thickness of the electrodes, the ultra-wide band operation of the optical modulator can be realized.

【0024】なお、本実施例では、下部クラッド層5以
上の積層構造全体がリッジ状をなしMQWコアの側面が
大気に露出している、いわゆるハイメサ構造の光変調器
を示したが、上記積層構造のうち、i−InP層10の
一部、上部クラッド層3、InGaAsキャップ層2お
よびp側電極1のみをリッジ状とした、いわゆるストリ
ップ装荷形としてもよい。
In the present embodiment, an optical modulator having a so-called high-mesa structure in which the entire laminated structure of the lower cladding layer 5 and above has a ridge shape and the side surface of the MQW core is exposed to the atmosphere is shown. Of the structure, only a part of the i-InP layer 10, the upper clad layer 3, the InGaAs cap layer 2 and the p-side electrode 1 may have a ridge shape, that is, a so-called strip loading type.

【0025】また、本実施例では、i−InP層10を
MQWコア4と上部クラッド層3との間に設けたが、i
−InP層はMQWコア4と下部クラッド層5との間に
設けてもよい。このようにすることによって、特にノン
ドープのMQWコアおよびInP層の純度が充分高くな
い場合でもMQWコアに空乏層を生じさせるための信号
電圧の増加を避けることができる。もちろんノンドープ
のInP層をMQWコアの上下に設けてもよい。
In this embodiment, the i-InP layer 10 is provided between the MQW core 4 and the upper clad layer 3, but i
The -InP layer may be provided between the MQW core 4 and the lower clad layer 5. By doing so, it is possible to avoid an increase in the signal voltage for generating a depletion layer in the MQW core, even when the purity of the undoped MQW core and the InP layer is not sufficiently high. Of course, non-doped InP layers may be provided above and below the MQW core.

【0026】本発明では電極が進行波形電極であれば良
いので、p側およびn側電極の構成の形態は問わない
し、基板として半絶縁性基板を用いても良いことは言う
までもない。さらに、コア4はi−InGaAsP/I
nP等、他のMQW組成でも良いし、i−InGaAs
P等の4元バルク組成を用いることも可能である。
In the present invention, since the electrode may be a traveling waveform electrode, it goes without saying that the p-side and n-side electrodes may have any configuration, and a semi-insulating substrate may be used as the substrate. Further, the core 4 is i-InGaAsP / I
Other MQW compositions such as nP may be used, or i-InGaAs
It is also possible to use a quaternary bulk composition such as P.

【0027】[0027]

【発明の効果】以上説明したように、本発明によれば、
電極を進行波形電極とすることにより、消光比を劣化さ
せることなく、光変調帯域の点で優れた吸収形半導体光
変調器を実現することができる。
As described above, according to the present invention,
By making the electrode a traveling waveform electrode, it is possible to realize an absorption type semiconductor optical modulator excellent in the light modulation band without deteriorating the extinction ratio.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による吸収形半導体光変調器の一実施例
の構造を示す図である。
FIG. 1 is a diagram showing the structure of an embodiment of an absorption type semiconductor optical modulator according to the present invention.

【図2】図1の実施例を動作させる場合の等価回路図で
ある。
FIG. 2 is an equivalent circuit diagram for operating the embodiment of FIG.

【図3】従来の吸収形半導体光変調器の構造を示す図で
ある。
FIG. 3 is a diagram showing a structure of a conventional absorption type semiconductor optical modulator.

【図4】従来例の動作原理を説明する図である。FIG. 4 is a diagram illustrating an operation principle of a conventional example.

【図5】従来例を動作させる場合の等価回路図である。FIG. 5 is an equivalent circuit diagram for operating a conventional example.

【符号の説明】[Explanation of symbols]

1 p側電極 2 p+ −InGaAsキャップ層 3 p−InPクラッド層 4 i−InGaAlAs/InAlAs多重量子井戸
(MQW)コア 5 n−InPクラッド層 6 n−InP基板 7 n側電極 8 ポリイミド層 9 ボンディングワイヤ 10 i−InP層
1 p-side electrode 2 p + -InGaAs cap layer 3 p-InP clad layer 4 i-InGaAlAs / InAlAs multiple quantum well (MQW) core 5 n-InP clad layer 6 n-InP substrate 7 n-side electrode 8 polyimide layer 9 bonding Wire 10 i-InP layer

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 吸収端波長が光信号の波長より短い半導
体コアと、電圧印加時に前記半導体コアの前記吸収端波
長を長波長側に動かすことにより、前記光信号を前記半
導体コアに吸収させるための電圧印加用の電極を具備す
る吸収形半導体光変調器において、前記電極を進行波形
電極としたことを特徴とする吸収形半導体光変調器。
1. A semiconductor core having an absorption edge wavelength shorter than the wavelength of an optical signal, and for moving the absorption edge wavelength of the semiconductor core to a longer wavelength side when a voltage is applied, thereby absorbing the optical signal in the semiconductor core. 2. An absorption type semiconductor optical modulator having an electrode for voltage application according to claim 1, wherein said electrode is a traveling waveform electrode.
【請求項2】 前記電極に電圧を印加するための駆動信
号源の特性インピーダンスと前記光変調器の特性インピ
ーダンスが等しいことを特徴とする請求項1に記載の吸
収形半導体光変調器。
2. The absorption type semiconductor optical modulator according to claim 1, wherein the characteristic impedance of a drive signal source for applying a voltage to the electrode is equal to the characteristic impedance of the optical modulator.
【請求項3】 前記半導体コアとその上部の上部クラッ
ド層の間にノンドープ半導体層が設けられていることを
特徴とする請求項2に記載の吸収形半導体光変調器。
3. The absorption-type semiconductor optical modulator according to claim 2, wherein a non-doped semiconductor layer is provided between the semiconductor core and an upper clad layer above the semiconductor core.
【請求項4】 前記半導体コアとその下部の下部クラッ
ド層の間にノンドープ半導体層が設けられていることを
特徴とする請求項2に記載の吸収形半導体光変調器。
4. The absorption type semiconductor optical modulator according to claim 2, wherein a non-doped semiconductor layer is provided between the semiconductor core and a lower clad layer below the semiconductor core.
【請求項5】 前記半導体コアとその上部の上部クラッ
ド層の間および下部の下部クラッド層の間にそれぞれノ
ンドープ半導体層が設けられていることを特徴とする請
求項2に記載の吸収形半導体光変調器。
5. The absorption-type semiconductor light according to claim 2, wherein a non-doped semiconductor layer is provided between the semiconductor core and an upper clad layer above the semiconductor core and between a lower clad layer below the semiconductor core. Modulator.
【請求項6】 信号光の等価屈折率と電気信号の等価屈
折率が実質的に等しいことを特徴とする請求項1から5
のいずれかに記載の吸収形半導体光変調器。
6. The equivalent refractive index of the signal light and the equivalent refractive index of the electric signal are substantially equal to each other.
5. An absorption type semiconductor optical modulator according to any one of 1.
JP7328635A 1995-12-18 1995-12-18 Absorption type semiconductor optical modulator Expired - Fee Related JP2996287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7328635A JP2996287B2 (en) 1995-12-18 1995-12-18 Absorption type semiconductor optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7328635A JP2996287B2 (en) 1995-12-18 1995-12-18 Absorption type semiconductor optical modulator

Publications (2)

Publication Number Publication Date
JPH09166764A true JPH09166764A (en) 1997-06-24
JP2996287B2 JP2996287B2 (en) 1999-12-27

Family

ID=18212471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7328635A Expired - Fee Related JP2996287B2 (en) 1995-12-18 1995-12-18 Absorption type semiconductor optical modulator

Country Status (1)

Country Link
JP (1) JP2996287B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5995270A (en) * 1996-10-17 1999-11-30 Nippon Telegraph & Telephone Corporation Ultra-high-speed semiconductor optical modulator with traveling-wave electrode
JP2012078759A (en) * 2010-10-06 2012-04-19 Mitsubishi Electric Corp Optical modulator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5995270A (en) * 1996-10-17 1999-11-30 Nippon Telegraph & Telephone Corporation Ultra-high-speed semiconductor optical modulator with traveling-wave electrode
US6160654A (en) * 1996-10-17 2000-12-12 Nippon Telegraph And Telephone Corporation Ultra high-speed semiconductor optical modulator with traveling-wave electrode
JP2012078759A (en) * 2010-10-06 2012-04-19 Mitsubishi Electric Corp Optical modulator

Also Published As

Publication number Publication date
JP2996287B2 (en) 1999-12-27

Similar Documents

Publication Publication Date Title
JP3885528B2 (en) Light modulator
US6777718B2 (en) Semiconductor optical device
JP2606079B2 (en) Optical semiconductor device
JPH06509428A (en) Independent station limited electroabsorption modulator
US20050058385A1 (en) Low-pass filter transmission line with integral electroabsorption modulator
US5191630A (en) Nonlinear optical device for controlling a signal light by a control light
US5742423A (en) Semiconductor optical modulator
JPH0990301A (en) Mach-zehunder modulator and its driving method
US5995270A (en) Ultra-high-speed semiconductor optical modulator with traveling-wave electrode
JP2996287B2 (en) Absorption type semiconductor optical modulator
JP4244671B2 (en) Optical transmitter
JPH07231132A (en) Semiconductor optical device
JP3422279B2 (en) Optical modulator, optical communication light source, optical module using the same, and optical communication system
US20070189344A1 (en) Modulator-integrated light source and its manufacturing method
JP3009037B2 (en) Broadband electroabsorption semiconductor optical modulator
JPH1096879A (en) Semiconductor optical modulator and optical communication device formed by using the same
JP3004902B2 (en) Electroabsorption semiconductor optical modulator
JP2760276B2 (en) Selectively grown waveguide type optical control device
JP3001365B2 (en) Optical semiconductor element and optical communication device
JP4280316B2 (en) Waveguide type semiconductor optical functional device
KR100369319B1 (en) Electrical-Absorption optical device of mushroom type for velocity match between microwave and light wave
JP3490510B2 (en) Optical semiconductor device
JP3697092B2 (en) Light modulator
JP3529072B2 (en) Optical phase modulator and optical modulator
JP2001264711A (en) Quantum well structure of semiconductor device for optical control

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071029

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20101029

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20121029

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20131029

LAPS Cancellation because of no payment of annual fees