JPH09166496A - Method for inspecting pipe deposit - Google Patents

Method for inspecting pipe deposit

Info

Publication number
JPH09166496A
JPH09166496A JP34803195A JP34803195A JPH09166496A JP H09166496 A JPH09166496 A JP H09166496A JP 34803195 A JP34803195 A JP 34803195A JP 34803195 A JP34803195 A JP 34803195A JP H09166496 A JPH09166496 A JP H09166496A
Authority
JP
Japan
Prior art keywords
pipe
temperature
liquid
liquid film
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34803195A
Other languages
Japanese (ja)
Other versions
JP3362587B2 (en
Inventor
Tetsuya Tsubokura
徹哉 坪倉
Hiroyuki Ichikawa
裕之 市川
Naoji Kasegawa
直司 加瀬川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP34803195A priority Critical patent/JP3362587B2/en
Publication of JPH09166496A publication Critical patent/JPH09166496A/en
Application granted granted Critical
Publication of JP3362587B2 publication Critical patent/JP3362587B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To understand the condition of deposits in a pipe by measuring the temperature change in the surface of the pipe. SOLUTION: A liquid film retaining member 18 is fixed to a pipe 16 and a nozzle 36 is provided at a position opposite to tight adhesion surface 23. Then, a temperature measurement part 14 is installed so that the surface temperature of the tight adhesion surface 23 can be measured. A pump which is not shown in the figure is operated in this state and a liquid 20 at 20 deg.C is supplied to the pipe 16. On the other hand, the temperature of a spray liquid 28 stored at a water bath 26 is set to 50 deg.C and the spray liquid 28 is sprayed from the nozzle 36 to the adhesion surface 23. The spray liquid 28 enters a retention hole 24 of a liquid film retention member 18 and forms a water film, and spraying is stopped and at the same time, the temperature change of the adhesion surface 23 is measured. Since the liquid film retention member 18 subdivides the spray liquid 28, thus delaying the thermal conduction with an adjacent liquid film and thereby, delaying the temperature change rate of an entire pipe surface. Therefore, a thermal change which cannot be chased by naked eyes can be fully captured, thus the adhesion state of a deposit in the pipe can be grasped.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、配管およびタンク
等の内部に発生した腐食生成物やスケールの付着状況を
検知する方法に係り、特に非接触温度センサを用いて配
管およびタンク等の表面温度変化を計測し、時間経過と
ともに変動する熱分布の状態から、配管およびタンク等
の内部に発生した腐食生成物やスケールの付着状況を検
知する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting the state of corrosion products and scale adhesion inside pipes and tanks, and more particularly to the surface temperature of pipes and tanks using a non-contact temperature sensor. The present invention relates to a method for measuring a change and detecting a state of adhesion of a corrosion product or a scale generated inside a pipe, a tank, or the like from a state of heat distribution that changes with time.

【0002】[0002]

【従来の技術】従来、配管やタンク内の腐食生成物やス
ケール付着等の内部状況を検出する方法としては、超
音波センサをスケール等が付着していると思われる部分
に取り付けて測定する方法、X線透過装置を用いてそ
の透過像から腐食生成物やスケールの付着部位を検出す
る方法、ファイバースコープ鏡等を配管やタンク内に
挿入して観察する方法、配管やタンクの一部を切り取
り、腐食生成物やスケールの付着状況をノギス、マイク
ロメータ、写真、目視等によって計測する方法、非接
触温度センサを用いた方法では、配管やタンク等の測定
物内部にできた腐食生成物やスケール付着等による凹凸
によって、その部分における温度の伝達速度が異なるこ
とに注目する。第1の測定方法としては一定温度の流体
を測定物に流し、測定物を均一な温度(定常温度)に保
つ。その後、測定物に定常温度と異なる温度の流体を流
し、加温または冷却し、配管表面温度の熱分布が変化す
る過程を解析する。そしてこの解析により測定物の内面
状態を検知するという方法が用いられている。第2の測
定方法としては、一定温度の流体を測定物に流し、測定
物を均一な温度(定常温度)に保つ。その後、測定物表
面に定常温度と異なる温度の液体を噴霧し、加温または
冷却する。そして配管表面に形成された液膜を介して配
管表面温度の熱分布が変化する過程を解析する。この解
析により測定物の内面状態を検知するという方法が用い
られている。
2. Description of the Related Art Conventionally, as a method for detecting internal conditions such as corrosion products in pipes and tanks, scale adhesion, etc., an ultrasonic sensor is attached to a portion where scale is believed to be adhered and measured. , A method of detecting corrosion products and scale adhesion sites from the transmission image using an X-ray transmission device, a method of observing by inserting a fiberscope mirror etc. into the pipe or tank, cutting out a part of the pipe or tank , The method of measuring the state of adhesion of corrosion products and scales by calipers, micrometer, photographs, visual inspection, etc., and the method using a non-contact temperature sensor, the corrosion products and scales formed inside pipes and tanks It should be noted that the temperature transfer speed at that portion differs due to unevenness due to adhesion or the like. As a first measuring method, a fluid having a constant temperature is flown through the object to be measured, and the object is kept at a uniform temperature (steady temperature). After that, a fluid having a temperature different from the steady temperature is caused to flow through the object to be measured, heated or cooled, and the process in which the heat distribution of the pipe surface temperature changes is analyzed. A method of detecting the inner surface state of the measurement object by this analysis is used. As a second measuring method, a fluid having a constant temperature is flown through the object to be measured, and the object is maintained at a uniform temperature (steady temperature). Then, a liquid having a temperature different from the steady temperature is sprayed on the surface of the object to be measured and heated or cooled. Then, the process in which the heat distribution of the pipe surface temperature changes through the liquid film formed on the pipe surface is analyzed. A method of detecting the inner surface state of the measurement object by this analysis is used.

【0003】またこの測定物表面に形成された液膜は、
太陽光等が測定物表面に直接照射し乱反射するのを防
ぐ。このことから液膜は、測定時のノイズを低減させる
作用があることも知られている。
The liquid film formed on the surface of the object to be measured is
Prevents sunlight from directly irradiating the surface of the object to be measured and causing irregular reflection. From this, it is also known that the liquid film has a function of reducing noise during measurement.

【0004】[0004]

【発明が解決しようとする課題】しかし、の超音波セ
ンサを用いる方法については、付着部位が測定物の外面
からでは不明であり、また超音波センサも小面積対応で
あることから、測定点を増やすことが必要であった。こ
のことから多大な労力を必要とし、また測定点の計測漏
れ等が起きる可能性があった。
However, regarding the method using the ultrasonic sensor, since the adhesion site is unknown from the outer surface of the object to be measured, and the ultrasonic sensor also corresponds to a small area, the measuring point is It was necessary to increase. For this reason, a great deal of labor is required, and there is a possibility that measurement omissions at measurement points may occur.

【0005】のX線透過装置を用いる方法では、測定
装置が大がかりになり、計測そして計測したデータの解
析にも高度な技術が必要である。またX線を使用するこ
とから安全性が低下するのではないかという危惧があっ
た。
In the method using the X-ray transmission device, the measuring device becomes large in scale, and a high level technique is required for measurement and analysis of the measured data. In addition, there was a fear that the safety might be reduced due to the use of X-rays.

【0006】のファイバースコープ鏡等を用いる方法
では、測定物の一部分を破壊するため、稼働を一時停止
させたり、スケール等の汚損物で視野が妨げられ正確な
計測が行われない可能性があった。
[0006] In the method using the fiberscope mirror or the like, a part of the object to be measured is destroyed, so that there is a possibility that the operation is temporarily stopped or that the field of view is obstructed by a contaminant such as a scale and accurate measurement cannot be performed. It was

【0007】のマイクロメータおよびノギスを用いる
方法では、ボイラもしくは冷凍機等の運転を止めて配管
を停止させなければならないため、運転制限の問題があ
った。
In the method using the micrometer and the caliper, the operation of the boiler, the refrigerator or the like must be stopped to stop the piping, so that there is a problem of operation limitation.

【0008】の測定物表面に液体を噴霧し、液膜を介
して測定物表面温度の変化過程を非接触温度センサで計
測する方法では、配管表面と液膜との間に温度差が生じ
た場合、伝熱作用がはたらき両者間で熱移動が発生す
る。ここで液膜は、測定物表面に仕切られることなく形
成されているので、配管からの伝熱作用があった場合、
液膜へと移動した熱は液膜内部で拡散する。このため液
膜の熱分布を計測することで、配管内部における付着物
の付着状況を検知しようと試みても、液膜の熱分布が明
確にならないことから、正確な検知を行うことが困難で
あった。よって配管付着物検査を行っても、配管の内部
状態が正しく把握できないという問題点があった。
In the method of spraying a liquid on the surface of the object to be measured and measuring the change process of the surface temperature of the object to be measured with the non-contact temperature sensor through the liquid film, a temperature difference occurs between the surface of the pipe and the liquid film. In this case, the heat transfer function works and heat transfer occurs between the two. Here, since the liquid film is formed without being partitioned on the surface of the object to be measured, if there is a heat transfer action from the pipe,
The heat transferred to the liquid film diffuses inside the liquid film. Therefore, even if an attempt is made to detect the adhered state of deposits inside the pipe by measuring the heat distribution of the liquid film, the heat distribution of the liquid film is not clear, making it difficult to perform accurate detection. there were. Therefore, there is a problem that the internal state of the pipe cannot be correctly grasped even if the pipe deposit inspection is performed.

【0009】本発明は、非接触温度センサを使用する際
の問題点に注目し、測定物表面に噴霧された液体を小領
域に分割し保持することで、液膜における熱拡散を抑
え、液膜での熱分布を明確にし、配管付着物検査の精度
を向上させることを目的とする。
The present invention focuses on the problems when using a non-contact temperature sensor, and suppresses the thermal diffusion in the liquid film by dividing the liquid sprayed on the surface of the object to be measured and holding it in small areas. The purpose is to clarify the heat distribution in the film and improve the accuracy of pipe deposit inspection.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、配管およびタンク等からなる測定物に
液体を噴霧して液膜を形成し、伝熱作用で変化する前記
測定物の表面温度の熱分布を温度センサにて前記液膜を
介して捕らえ、前記熱分布の偏りから前記測定物内部に
付着したスケール等の分布を検知する配管付着物検査方
法において、前記測定物表面に前記液体の前記液膜を小
領域に分割させ保持し、分割された前記液膜の熱分布の
偏りから前記測定物内部に付着したスケール等の分布を
検知するようにした。
In order to achieve the above-mentioned object, the present invention provides the above-mentioned measurement in which a liquid film is formed by spraying a liquid on an object to be measured, which is composed of a pipe, a tank and the like, and which changes by heat transfer action. In the pipe adhering matter inspection method, which captures the heat distribution of the surface temperature of the object through the liquid film with a temperature sensor, and detects the distribution of the scale and the like adhering to the inside of the measurement object from the deviation of the heat distribution, the measurement object The liquid film of the liquid is divided into small regions and held on the surface, and the distribution of scale and the like adhering to the inside of the object to be measured is detected from the uneven distribution of the heat distribution of the divided liquid film.

【0011】また前記測定物表面に前記液膜を保持可能
にする液膜保持物質を、前記測定物および前記液体より
も熱伝導率の小さい網目状の部材で構成し、前記部材に
より細分化された前記液膜間の熱伝達を低減させるよう
にした。
Further, the liquid film holding substance capable of holding the liquid film on the surface of the measurement object is composed of a mesh member having a smaller thermal conductivity than the measurement object and the liquid, and is subdivided by the member. In addition, heat transfer between the liquid films is reduced.

【0012】[0012]

【作用】上記構成によれば、液体は測定物表面で小領域
に分割され液膜となり保持される。そして分割された液
膜間では熱伝達が抑えられる。よって測定物表面に温度
差が発生し、液膜へ熱が移動しても熱の拡散が抑えら
れ、明確な温度分布を形成することができる。このこと
から液膜を非接触温度センサで計測すると明確な温度分
布が捕らえられ、配管内部における付着物の付着状態を
把握することができるのである。
According to the above construction, the liquid is divided into small areas on the surface of the object to be measured and held as a liquid film. Then, heat transfer is suppressed between the divided liquid films. Therefore, even if a temperature difference occurs on the surface of the object to be measured and heat is transferred to the liquid film, the diffusion of heat is suppressed, and a clear temperature distribution can be formed. Therefore, when the liquid film is measured by the non-contact temperature sensor, a clear temperature distribution can be captured, and the adhered state of the adhered matter inside the pipe can be grasped.

【0013】また液膜を小領域に分割し保持するための
液膜保持物質を、測定物および噴霧する液体より熱伝導
率の小さな網目状の部材にて形成したことで、液膜保持
物質は、隣接する液膜間の熱伝導の時間を遅延させ、熱
の拡散を抑え、配管表面全体での温度変化速度を遅延さ
せることができる。よって肉眼では追いづらい熱変化が
十分に捕らえられ、配管内部における付着物の付着状態
を把握することができるのである。
Further, since the liquid film holding substance for dividing and holding the liquid film into small regions is formed by a mesh member having a smaller thermal conductivity than the measurement object and the liquid to be sprayed, the liquid film holding substance is It is possible to delay the time of heat conduction between adjacent liquid films, suppress the diffusion of heat, and delay the rate of temperature change over the entire surface of the pipe. Therefore, the change in heat, which is difficult to follow with the naked eye, can be sufficiently captured, and the adhered state of the adhered matter inside the pipe can be grasped.

【0014】[0014]

【発明の実施の形態】以下に、本発明に係る配管付着物
検査方法の好適な具体的実施例を図面を参照して詳細に
説明する。図1は本発明に係る配管付着物検査方法を達
成するための装置概略図である。同図に示すような装置
とは、検査測定物となる検査部10と、検査部10に液
体を噴霧する噴霧部12と、検査部10の温度測定を行
う非接触温度センサとなる温度測定部14とで構成され
ている。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the pipe deposit inspection method according to the present invention will now be described in detail with reference to the drawings. FIG. 1 is a schematic view of an apparatus for achieving the pipe deposit inspection method according to the present invention. The apparatus as shown in the figure includes an inspection unit 10 that is an inspection measurement object, a spray unit 12 that sprays a liquid onto the inspection unit 10, and a temperature measurement unit that is a non-contact temperature sensor that measures the temperature of the inspection unit 10. 14 and.

【0015】検査部10は、測定物となる配管16と、
当該配管16の表面に固定された液膜保持物質となる液
膜保持部材18とで構成されている。そして図示しない
が、配管16にはポンプが接続されており、当該ポンプ
を駆動させることで、配管16に水20を流し込むこと
が可能になっている。また配管16は炭素鋼にて形成さ
れ、肉厚は均一となっている。
The inspection unit 10 includes a pipe 16 as a measurement object,
A liquid film holding member 18 serving as a liquid film holding substance is fixed to the surface of the pipe 16. Although not shown, a pump is connected to the pipe 16 and the water 20 can be poured into the pipe 16 by driving the pump. The pipe 16 is made of carbon steel and has a uniform wall thickness.

【0016】液膜保持部材18は四辺形状からなり、配
管16の中心軸に対して平行に位置する2辺には、ゴム
ひもにフックを取り付けた固定具22が設けられてい
る。そして液膜保持部材18を配管16に掛け、両端の
固定具22を同一方向に引っ張ることで、液膜保持部材
18を配管16の半周面に密着固定する。またこのとき
液膜保持部材18の密着面23方向は、後述する噴霧部
12に設けたノズルと対面するように設定する。液膜保
持部材18は、配管16および後述する噴霧液よりも熱
伝導の小さな材料によって形成され、また網目状に無数
の孔が設けられている。当該孔は、後述するノズルより
噴霧した噴霧液を保持するための保持孔24となってお
り、当該保持孔24は、噴霧液が保持孔24に入り込ん
だ際、表面張力により保持孔24から再び流れでないだ
けの大きさおよび形状となっていればよい。本実施例で
は、保持孔24の大きさおよび形状は、一辺が1mm以
下の四辺形状となっている。
The liquid film holding member 18 has a quadrilateral shape, and a fixture 22 having a hook attached to a rubber cord is provided on two sides of the pipe 16 which are parallel to the central axis of the pipe 16. Then, the liquid film holding member 18 is hung on the pipe 16 and the fixtures 22 at both ends are pulled in the same direction, so that the liquid film holding member 18 is tightly fixed to the half circumferential surface of the pipe 16. At this time, the direction of the contact surface 23 of the liquid film holding member 18 is set so as to face the nozzle provided in the spraying section 12 described later. The liquid film holding member 18 is formed of a material having a smaller thermal conductivity than that of the pipe 16 and the spray liquid described later, and has a mesh-like number of holes. The hole serves as a holding hole 24 for holding the spray liquid sprayed from a nozzle described later, and when the spray liquid enters the holding hole 24, the holding hole 24 is restarted from the holding hole 24 by surface tension. The size and shape may be such that it does not flow. In the present embodiment, the size and shape of the holding hole 24 is a quadrilateral whose one side is 1 mm or less.

【0017】上述した内容では、液膜保持部材18は配
管16に対して1枚のみの使用となっているが、密着面
23を拡大するために、配管16表面に複数の液膜保持
部材18を固定してもよい。また液膜保持物質は、噴霧
液を配管16表面にて小領域に分割し保持すればよいと
いう観点から、液膜保持物質を細かなブロックなどで構
成し、噴霧液をブロック間に囲まれた隙間に保持させ
る。このようにブロックの配列により隙間を形成するこ
とで、噴霧液を小領域に分割し、保持するようにしても
よい。
In the above description, only one liquid film holding member 18 is used for the pipe 16, but in order to enlarge the contact surface 23, a plurality of liquid film holding members 18 are provided on the surface of the pipe 16. May be fixed. Further, the liquid film-holding substance is composed of fine blocks or the like, and the spray liquid is surrounded by the blocks, from the viewpoint that the spray liquid may be divided and held in small areas on the surface of the pipe 16. Hold it in the gap. The spray liquid may be divided into small regions and held by forming the gaps by the block arrangement in this manner.

【0018】噴霧部12には水槽26が設けられてお
り、前述した噴霧液28を溜められるようになってい
る。そして水槽26内部には、噴霧液28の温度調整を
行うためのヒータ30が取り付けられており、水槽26
外部に設置されたヒータコントローラ32によって任意
に噴霧液28の温度を設定することが可能になってい
る。また水槽26底部からはチューブが引き出され、ポ
ンプ34の吸引口へと接続されている。当該ポンプ34
には噴霧液28の吸引口と吐出口とが設けてあり、当該
吐出口にはチューブを介してノズル36が取り付けられ
ている。そしてポンプ34を動作させることで、噴霧液
28を吸引口より取り込み、ノズル36より噴霧液28
を噴霧させることができるのである。
The spray section 12 is provided with a water tank 26 so that the spray liquid 28 described above can be stored therein. A heater 30 for adjusting the temperature of the spray liquid 28 is attached inside the water tank 26.
The temperature of the spray liquid 28 can be arbitrarily set by the heater controller 32 installed outside. A tube is pulled out from the bottom of the water tank 26 and connected to the suction port of the pump 34. The pump 34
Is provided with a suction port and a discharge port for the spray liquid 28, and a nozzle 36 is attached to the discharge port via a tube. Then, by operating the pump 34, the spray liquid 28 is taken in through the suction port, and the spray liquid 28 is discharged from the nozzle 36.
Can be sprayed.

【0019】温度計測部14は、測定対象物から出てい
る放射線のエネルギの強弱を計測し、測定対象物の温度
分布を知るものであり、赤外線放射温度センサ38と赤
外線放射温度分布表示装置40とで構成される。赤外線
放射温度センサ38は、集光レンズにより測定物の放射
線を集光し、必要により特定の波長を選択する。そして
集光した放射エネルギを検出素子により電気信号に変換
するのである。また赤外線放射温度分布表示装置40
は、赤外線放射温度センサ38からの電気信号を受け、
その電気信号を増幅処理し、放射率補正、リニアライ
ズ、信号処理などを行うものである。そして赤外線放射
温度分布表示装置40内に設置してあるモニタ42に測
定結果である熱分布を色彩、色濃度等の表現で表示する
ようにしている。この表示方法により測定担当者は、モ
ニタを一目しただけで測定物の熱分布が理解できるので
ある。なおこのように構成した温度測定部14は、液膜
保持部材18が取り付けられた配管16の表面温度が計
測できるように設置されている。
The temperature measuring unit 14 measures the intensity of the energy of the radiation emitted from the object to be measured and knows the temperature distribution of the object to be measured, and the infrared radiation temperature sensor 38 and the infrared radiation temperature distribution display device 40. Composed of and. The infrared radiation temperature sensor 38 collects the radiation of the object to be measured by a condenser lens and selects a specific wavelength as necessary. Then, the collected radiant energy is converted into an electric signal by the detection element. Also, infrared radiation temperature distribution display device 40
Receives an electric signal from the infrared radiation temperature sensor 38,
The electric signal is amplified, and emissivity correction, linearization, and signal processing are performed. Then, the heat distribution as the measurement result is displayed on the monitor 42 installed in the infrared radiation temperature distribution display device 40 by expression such as color and color density. This display method allows the person in charge of measurement to understand the heat distribution of the object to be measured with a glance at the monitor. The temperature measuring unit 14 configured in this manner is installed so that the surface temperature of the pipe 16 to which the liquid film holding member 18 is attached can be measured.

【0020】ここで上述した装置を用いて配管における
配管付着物検査方法を行う手順を説明する。まず測定対
象となる配管16に、断熱材からなる液膜保持部材18
を固定具22を用いて密着固定する。そして密着面23
にノズル36を対面させるとともに、温度測定部14を
密着面23の表面温度を計測できるように配置する。
A procedure for carrying out the method for inspecting pipe deposits in pipes using the above-mentioned apparatus will be described. First, the liquid film holding member 18 made of a heat insulating material is attached to the pipe 16 to be measured.
Are tightly fixed using the fixture 22. And the contact surface 23
The nozzle 36 is faced to and the temperature measuring unit 14 is arranged so that the surface temperature of the contact surface 23 can be measured.

【0021】ここで図示しないポンプを動作させ、配管
16に水温20℃の水20を流し込む。この状態を継続
すると配管16の表面温度は、水20からの伝熱で水2
0の水温と同様の20℃となる。またこのとき水槽26
に溜められている噴霧液28を、ヒータ30とヒータコ
ントローラ32とを動作させ、50℃の水温に上昇させ
ておく。
Here, a pump (not shown) is operated to pour water 20 having a water temperature of 20 ° C. into the pipe 16. If this state is continued, the surface temperature of the pipe 16 will be 2
It becomes 20 ° C. which is the same as the water temperature of 0. At this time, the water tank 26
The heater 30 and the heater controller 32 are operated to raise the spray liquid 28 stored in the tank to a water temperature of 50 ° C.

【0022】ここでポンプ34を動作させ、ノズル36
より噴霧液28を約10秒間、密着面23に噴霧する。
噴霧液28は空気中にて霧状となり液膜保持部材18に
掛かり始める。そして液膜保持部材18に付着した噴霧
液28は、液膜保持部材18の保持孔24に入り込ん
で、密着面23に保持されるのである。そして噴霧液2
8の噴霧が終了すると密着面23における保持孔24に
は万遍無く噴霧液28が入り込み、密着面23には厚み
が均一な水膜が形成される。この水膜形成により炭素鋼
からなる配管16は乱反射が抑えられ、温度測定部14
にてより正確な計測が可能となるのである。また噴霧液
28は、配管16の表面温度よりも30℃高い温度であ
ることから、密着面23に噴霧すると配管16の表面温
度を一時的に上昇させる。
Here, the pump 34 is operated and the nozzle 36
The spray liquid 28 is sprayed on the contact surface 23 for about 10 seconds.
The spray liquid 28 becomes a mist in the air and starts to be applied to the liquid film holding member 18. Then, the spray liquid 28 attached to the liquid film holding member 18 enters the holding holes 24 of the liquid film holding member 18 and is held on the contact surface 23. And spray 2
When the spraying of No. 8 is completed, the spray liquid 28 uniformly enters the holding holes 24 in the contact surface 23, and a water film having a uniform thickness is formed on the contact surface 23. Due to this water film formation, diffuse reflection is suppressed in the pipe 16 made of carbon steel, and the temperature measuring unit 14
Therefore, more accurate measurement becomes possible. Further, since the spray liquid 28 has a temperature 30 ° C. higher than the surface temperature of the pipe 16, spraying on the contact surface 23 temporarily raises the surface temperature of the pipe 16.

【0023】図2は噴霧を停止し、その後のある瞬間を
温度測定部14にて計測した密着面23の表面温度分布
図である。この図に示すように密着面23の表面温度は
均一にならず(a)、(b)、(c)に示すように温度
が異なる位置が発生する。またこれらの温度分布は時間
経過とともに差がなくなり、十分時間が経過した後は元
の温度である20℃に戻る。これは時間の経過ととも
に、噴霧液28の熱が密着面23との熱交換によって奪
われていくためである。
FIG. 2 is a surface temperature distribution diagram of the contact surface 23 measured by the temperature measuring unit 14 at a certain moment after the spraying is stopped. As shown in this figure, the surface temperature of the contact surface 23 is not uniform, and there are positions where the temperatures are different as shown in (a), (b), and (c). Further, these temperature distributions have no difference with the passage of time, and after a sufficient time has passed, the temperature returns to the original temperature of 20 ° C. This is because the heat of the spray liquid 28 is removed by the heat exchange with the contact surface 23 with the passage of time.

【0024】図3は図2で示した(a)、(b)、
(c)における位置での温度の時間経過を示したもので
ある。この図に示すように時間t0で噴霧液28の噴霧
を停止させると、密着面23の表面温度は、やや遅れて
から急激に元の配管16の温度(20℃)に向かって低
下していく。しかし液膜保持部材18を用いず配管16
へ直接噴霧液28を噴霧した場合と比較すると、時間経
過に対する温度低下の度合いは、液膜保持部材18を用
いた場合のほうが少なく、現象を遅延させることが可能
である。これは、噴霧液28が液膜保持部材18の保持
孔24によって細分化されることで、隣接した水膜同士
の伝熱作用が減少するためである。そしてこの状態を温
度測定部14にて計測した場合、肉眼では追いづらい熱
変化が遅延するので、検知に十分な時間を確保すること
ができる。
FIG. 3 shows (a), (b), and FIG.
It shows the temperature with time at the position in (c). As shown in this figure, when the spraying of the spray liquid 28 is stopped at time t 0 , the surface temperature of the contact surface 23 suddenly drops to the original temperature (20 ° C.) of the pipe 16 after a slight delay. Go. However, without using the liquid film holding member 18, the pipe 16
Compared with the case where the spray liquid 28 is directly sprayed to the surface, the degree of temperature decrease over time is smaller when the liquid film holding member 18 is used, and the phenomenon can be delayed. This is because the spray liquid 28 is subdivided by the holding holes 24 of the liquid film holding member 18, so that the heat transfer action between adjacent water films is reduced. When this state is measured by the temperature measurement unit 14, the heat change, which is hard to follow with the naked eye, is delayed, and thus a sufficient time for detection can be secured.

【0025】密着面23に発生するこの温度低下の遅れ
や(a)、(b)、(c)の各位置における温度低下速
度の差は、配管16の内側に付着したスケール等の付着
範囲あるいは付着厚み等によって配管16各部の熱拡散
率が異なることが原因となっている。このことから同図
に示すように、ある短時間の範囲で温度差44が発生
し、前述したような偏った温度分布が見られるのであ
る。
The delay of the temperature drop occurring on the contact surface 23 and the difference in the temperature drop rates at the positions (a), (b) and (c) are due to the range of adhesion of scale or the like attached to the inside of the pipe 16. This is because the thermal diffusivity of each part of the pipe 16 varies depending on the adhesion thickness and the like. From this, as shown in the figure, the temperature difference 44 occurs within a certain short time range, and the uneven temperature distribution as described above is observed.

【0026】図4は、図2の断面I−Iにおける、配管
16内側の付着スケール等の厚さとその部分の外表面温
度との関係を示している。また図5は、配管内部に付着
したスケール等の厚さと熱の伝導との関係を示した関係
図である。
FIG. 4 shows the relationship between the thickness of the adhered scale and the like inside the pipe 16 and the outer surface temperature of that portion in the cross section II of FIG. Further, FIG. 5 is a relationship diagram showing the relationship between the thickness of the scale or the like attached to the inside of the pipe and the heat conduction.

【0027】これらの図に示すように外表面の温度分布
は、スケール等が厚く付着しているところほど温度が高
く、薄い部分ほど温度が低いという違いが見られる。こ
の現象は、スケール等の熱伝導率と比熱とが配管16を
構成する炭素鋼の値と異なることで発生するのである。
すなわちスケール等とは金属酸化物の多孔質体であり、
多孔内に水が滞留していることから、見かけの熱伝導率
は水に近くなっている。そのため熱伝達率は配管材とし
ての炭素鋼よりも著しく小さな値となり(水および炭素
鋼の熱伝導率は、それぞれ0.5kcal/mhr℃、
37kcal/mhr℃)、さらに比熱も炭素鋼より大
きくなっている(水および炭素鋼の比熱は、それぞれ
1.0kcal/kg℃、0.12kcal/kg
℃)。そのためスケール等の付着状況によって温度分布
に偏りが発生するのである。そして上述したようなスケ
ール等の厚みと測定物の外表面温度との関係をあらかじ
め、データとして採取しておけば、測定対象となる配管
16の温度変化を計測することで配管16内部に付着し
たスケール等の付着状況を把握することが可能となる。
As shown in these figures, there is a difference in the temperature distribution of the outer surface that the thicker the scale or the like is, the higher the temperature is, and the thinner the temperature is, the lower the temperature is. This phenomenon occurs because the thermal conductivity of the scale and the like and the specific heat differ from the value of the carbon steel forming the pipe 16.
That is, the scale or the like is a porous body of metal oxide,
The apparent thermal conductivity is close to that of water because water is retained in the pores. Therefore, the heat transfer coefficient is significantly smaller than that of carbon steel as a piping material (the heat conductivity of water and carbon steel is 0.5 kcal / mhr ° C,
37 kcal / mhr ° C), and the specific heat is larger than that of carbon steel (specific heat of water and carbon steel is 1.0 kcal / kg ° C and 0.12 kcal / kg, respectively).
° C). Therefore, the temperature distribution is biased depending on the adhesion state of scales and the like. Then, if the relationship between the thickness of the scale or the like and the outer surface temperature of the object to be measured is collected in advance as data, the temperature change of the pipe 16 to be measured is measured to adhere to the inside of the pipe 16. It is possible to grasp the adhesion status of scales and the like.

【0028】図6は、液膜保持部材18の拡大図を示
す。前述したように液膜保持部材18は、液膜を細分化
し、保持孔24に保持する。このことから隣接する液膜
に熱が伝導する時間を遅延させることができ、配管表面
全体での温度変化速度を遅延する効果がある。よってこ
の遅延効果により、配管内部の付着物検知に十分な時間
を確保することができる。
FIG. 6 is an enlarged view of the liquid film holding member 18. As described above, the liquid film holding member 18 subdivides the liquid film and holds it in the holding holes 24. From this, the time for heat conduction to the adjacent liquid film can be delayed, which has the effect of delaying the rate of temperature change over the entire surface of the pipe. Therefore, due to this delay effect, it is possible to secure a sufficient time for detecting the adhered matter inside the pipe.

【0029】本実施例では、配管温度より高温側の液体
を噴霧し水膜を形成させ、噴霧停止後の温度状態変化を
計測したが、噴霧液を配管温度よりも低温側に設定し、
温度状態変化を計測してもよい。また測定対象物も本実
施例では配管であったが、タンク等といった機器にも応
用例として用いることができる。
In the present embodiment, the liquid at a temperature higher than the pipe temperature was sprayed to form a water film, and the temperature state change after the spraying was stopped was measured. However, the spray liquid was set at a temperature lower than the pipe temperature,
You may measure a temperature state change. Further, the object to be measured is also a pipe in the present embodiment, but it can be used as an application example in a device such as a tank.

【0030】[0030]

【発明の効果】以上説明したように本発明によれば、液
体は測定物表面で小領域に分割され液膜となり保持され
る。そして分割された液膜間では熱伝達が抑えられる。
よって測定物表面に温度差が発生し、液膜へ熱が移動し
ても熱の拡散が抑えられ、明確な温度分布を形成するこ
とができる。このことから液膜を非接触温度センサで計
測すると明確な温度分布が捕らえられ、配管内部におけ
る付着物の付着状態を把握することができるのである。
As described above, according to the present invention, the liquid is divided into small areas on the surface of the object to be measured and held as a liquid film. Then, heat transfer is suppressed between the divided liquid films.
Therefore, even if a temperature difference occurs on the surface of the object to be measured and heat is transferred to the liquid film, the diffusion of heat is suppressed, and a clear temperature distribution can be formed. Therefore, when the liquid film is measured by the non-contact temperature sensor, a clear temperature distribution can be captured, and the adhered state of the adhered matter inside the pipe can be grasped.

【0031】また液膜を小領域に分割し保持するための
液膜保持物質を、測定物および噴霧する液体より熱伝導
率の小さな網目状の部材にて形成したことで、液膜保持
物質は、隣接する液膜との熱伝導の時間を遅延させ、熱
の拡散を抑え、配管表面全体での温度変化速度を遅延さ
せることができる。よって肉眼では追いづらい熱変化が
十分に捕らえられ、配管内部における付着物の付着状態
を把握することができるのである。
Further, since the liquid film holding substance for dividing and holding the liquid film into small regions is formed by a mesh member having a smaller thermal conductivity than the measurement object and the liquid to be sprayed, the liquid film holding substance is It is possible to delay the time of heat conduction with the adjacent liquid film, suppress the diffusion of heat, and delay the rate of temperature change on the entire surface of the pipe. Therefore, the change in heat, which is difficult to follow with the naked eye, can be sufficiently captured, and the adhered state of the adhered matter inside the pipe can be grasped.

【図面の簡単な説明】[Brief description of the drawings]

【図1】発明の実施の形態に係る配管付着物検査方法を
達成するための装置概略図である。
FIG. 1 is a schematic view of an apparatus for achieving a pipe deposit inspection method according to an embodiment of the present invention.

【図2】発明の実施の形態に係る密着面の表面温度分布
図である。
FIG. 2 is a surface temperature distribution diagram of a contact surface according to the embodiment of the invention.

【図3】発明の実施の形態に係る表面温度の変化を表示
した説明図である。
FIG. 3 is an explanatory view showing a change in surface temperature according to the embodiment of the invention.

【図4】配管の断面I−Iにおける付着スケールの厚さ
と外表面温度の関係を示した説明図である。
FIG. 4 is an explanatory view showing the relationship between the thickness of the adhered scale and the outer surface temperature in the cross section II of the pipe.

【図5】配管内部に付着したスケール等の厚さと熱の伝
導との関係を示す関係図である。
FIG. 5 is a relationship diagram showing a relationship between the thickness of a scale or the like attached to the inside of a pipe and heat conduction.

【図6】発明の実施の形態に係る液膜保持部材の拡大図
である。
FIG. 6 is an enlarged view of the liquid film holding member according to the embodiment of the invention.

【符号の説明】[Explanation of symbols]

10 検査部 12 噴霧部 14 温度測定部 16 配管 18 液膜保持部材 20 液体 22 固定具 23 密着面 24 保持孔 26 水槽 28 噴霧液 30 ヒータ 32 ヒータコントローラ 34 ポンプ 36 ノズル 38 赤外線放射温度センサ 40 赤外線放射温度分布表示装置 42 モニタ 44 温度差 10 Inspection Part 12 Spraying Part 14 Temperature Measuring Part 16 Piping 18 Liquid Film Holding Member 20 Liquid 22 Fixing Device 23 Adhesion Surface 24 Holding Hole 26 Water Tank 28 Spraying Liquid 30 Heater 32 Heater Controller 34 Pump 36 Nozzle 38 Infrared Radiation Temperature Sensor 40 Infrared Radiation Radiation Temperature distribution display 42 Monitor 44 Temperature difference

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 配管およびタンク等からなる測定物に液
体を噴霧して液膜を形成し、伝熱作用で変化する前記測
定物の表面温度の熱分布を非接触温度センサにて前記液
膜を介して捕らえ、前記熱分布の偏りから前記測定物内
部に付着したスケール等の分布を検知する配管付着物検
査方法において、前記測定物表面に前記液体の前記液膜
を小領域に分割させ保持し、分割された前記液膜の熱分
布の偏りから前記測定物内部に付着したスケール等の分
布を検知するようにしたことを特徴とする配管付着物検
査方法。
1. A liquid film is formed by spraying a liquid on a measurement object including a pipe, a tank, etc., and the non-contact temperature sensor measures the heat distribution of the surface temperature of the measurement object which changes due to heat transfer action. In the pipe adhering matter inspection method of detecting the distribution of scale and the like adhering to the inside of the measured object from the bias of the heat distribution, the liquid film of the liquid is divided into small areas and held on the surface of the measured object. Then, the distribution of scales or the like adhering to the inside of the object to be measured is detected from the deviation of the heat distribution of the divided liquid film.
【請求項2】 前記測定物表面に前記液膜を保持可能に
する液膜保持物質を、前記測定物および前記液体よりも
熱伝導率の小さい網目状の部材で構成し、前記部材によ
り細分化された前記液膜間の熱伝達を低減させるように
したことを特徴とする請求項1に記載の配管付着物検査
方法。
2. The liquid film-holding substance capable of holding the liquid film on the surface of the measurement object is composed of a mesh-like member having a smaller thermal conductivity than the measurement object and the liquid, and is subdivided by the member. The pipe deposit inspecting method according to claim 1, wherein heat transfer between the formed liquid films is reduced.
JP34803195A 1995-12-15 1995-12-15 Inspection method for pipe deposits Expired - Fee Related JP3362587B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34803195A JP3362587B2 (en) 1995-12-15 1995-12-15 Inspection method for pipe deposits

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34803195A JP3362587B2 (en) 1995-12-15 1995-12-15 Inspection method for pipe deposits

Publications (2)

Publication Number Publication Date
JPH09166496A true JPH09166496A (en) 1997-06-24
JP3362587B2 JP3362587B2 (en) 2003-01-07

Family

ID=18394275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34803195A Expired - Fee Related JP3362587B2 (en) 1995-12-15 1995-12-15 Inspection method for pipe deposits

Country Status (1)

Country Link
JP (1) JP3362587B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014048092A (en) * 2012-08-30 2014-03-17 Kobe Univ Method and apparatus for detecting coking thickness in heating tube
CN104407015A (en) * 2014-11-06 2015-03-11 北京环境特性研究所 Tubular workpiece infrared detection device and method
JP2016166781A (en) * 2015-03-09 2016-09-15 国立大学法人東京海洋大学 Monitoring system and method of scale in pipeline

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014048092A (en) * 2012-08-30 2014-03-17 Kobe Univ Method and apparatus for detecting coking thickness in heating tube
CN104407015A (en) * 2014-11-06 2015-03-11 北京环境特性研究所 Tubular workpiece infrared detection device and method
JP2016166781A (en) * 2015-03-09 2016-09-15 国立大学法人東京海洋大学 Monitoring system and method of scale in pipeline

Also Published As

Publication number Publication date
JP3362587B2 (en) 2003-01-07

Similar Documents

Publication Publication Date Title
CN102159940B (en) Method for detecting defect in material and system for same
US4983836A (en) Method for detecting thinned out portion on inner surface or outer surface of pipe
US7909507B2 (en) Thermal inspection system and method
US20080317090A1 (en) Method and apparatus for thermographic nondestructive evaluation of an object
JPH01239443A (en) Method and device for detecting defect in external surface of tube
JPS61120950A (en) Inspection for inside of piping
CN102597742B (en) Deposition sensor based on differential heat transfer resistance
US4826326A (en) Crack sizing
JPS63159741A (en) Detecting method for corrosion part of piping
JP3362587B2 (en) Inspection method for pipe deposits
JP2008014959A (en) Method for inspecting coating member for interface defects
JP3543947B2 (en) Device for monitoring film thickness deposited in reactor and dry processing method
KR20110075582A (en) Apparatus and the method of defect detection using infrared thermography technique
JP3173367B2 (en) How to detect the inner surface state of the DUT
US3795133A (en) Thickness measuring method and apparatus
RU2659617C1 (en) Objects control thermographic method and device for its implementation
JPS63250554A (en) Method and device for corrosion diagnosis
JP5333933B2 (en) Surface temperature measuring method and steel material manufacturing method
JPH0293315A (en) Thickness examining method of metallic pipe wall or the like
JP5974434B2 (en) Method for detecting peeled part of inner pipe coating layer
Endo et al. Efficient inspection for gas pipes by infrared thermography
JP3872587B2 (en) Boiler thermal conductivity decreasing substance adhesion judgment device
RU2568044C1 (en) Electrothermal method for detecting and identifying defects in walls of structural members
JPH07218459A (en) Method for detecting inside corrosion of pipe
OGASAWARA et al. Image Processing for Reduction of Background Reflection from Thermal Image

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071025

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081025

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20081025

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20091025

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101025

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees