JP3173367B2 - How to detect the inner surface state of the DUT - Google Patents

How to detect the inner surface state of the DUT

Info

Publication number
JP3173367B2
JP3173367B2 JP08691996A JP8691996A JP3173367B2 JP 3173367 B2 JP3173367 B2 JP 3173367B2 JP 08691996 A JP08691996 A JP 08691996A JP 8691996 A JP8691996 A JP 8691996A JP 3173367 B2 JP3173367 B2 JP 3173367B2
Authority
JP
Japan
Prior art keywords
temperature
pipe
heat storage
storage material
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08691996A
Other languages
Japanese (ja)
Other versions
JPH09281064A (en
Inventor
徹哉 坪倉
裕之 市川
直司 加瀬川
Original Assignee
日立プラント建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立プラント建設株式会社 filed Critical 日立プラント建設株式会社
Priority to JP08691996A priority Critical patent/JP3173367B2/en
Publication of JPH09281064A publication Critical patent/JPH09281064A/en
Application granted granted Critical
Publication of JP3173367B2 publication Critical patent/JP3173367B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は被測定物の内面状態
の検出方法に係り、特に非接触温度センサを用いて配管
内部の腐食部位やスケール等の付着位置を非破壊測定す
る被測定物の内面状態の検出方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting an inner surface state of an object to be measured, and more particularly, to a method of non-destructively measuring the position of adhesion of a corrosion portion or scale inside a pipe using a non-contact temperature sensor. The present invention relates to a method for detecting an inner surface state.

【0002】[0002]

【従来の技術】従来、配管やタンク内の腐食部分やスケ
ール付着等の内部状態を検出する方法として、非接触温
度センサを用いて配管やタンクの外部表面の温度を測定
する方法が知られている。この非接触温度センサによる
方法は、配管やタンク等の被測定物内にできた腐食やス
ケール付着等による凹凸によって、その部分における熱
の伝わる速度が異なることを利用したものである。即
ち、一定温度の流体や液体が流れて、均一な温度(定常
温度)を保持している被測定物の内面側か外面側に、定
常温度とは異なる温度の液体で加温又は冷却(ヒートシ
ョック)し、その後定常温度に戻る過程を解析すること
によって、被測定物の内面状態を計測するものである。
2. Description of the Related Art Conventionally, as a method of detecting an internal state such as a corroded portion or scale adhesion in a pipe or a tank, a method of measuring a temperature of an outer surface of the pipe or a tank using a non-contact temperature sensor has been known. I have. This method using a non-contact temperature sensor utilizes the fact that the speed at which heat is transmitted at that portion is different due to unevenness due to corrosion, scale adhesion, or the like formed in an object to be measured such as a pipe or a tank. That is, a fluid or liquid at a constant temperature flows, and the inside or outside of the device under test, which maintains a uniform temperature (steady temperature), is heated or cooled (heated) with a liquid at a temperature different from the steady temperature. The inner surface state of the object to be measured is measured by analyzing a process of shock and then returning to a steady temperature.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、非接触
温度センサにより配管表面の温度を検知する際、金属の
熱変化が速いため、検知範囲を小面積に分割しなければ
ならず、このため広範囲の視野を得るために連続検知用
の大掛かりな装置が必要となる。また、検知時に配管表
面の微小な凹凸による太陽光等の乱反射によりノイズが
発生するため、使用する環境が限られてしまうとういう
問題があった。
However, when the temperature of the pipe surface is detected by the non-contact temperature sensor, since the heat change of the metal is fast, the detection range must be divided into small areas. In order to obtain a visual field, a large-scale device for continuous detection is required. Further, at the time of detection, since noise is generated due to irregular reflection of sunlight or the like due to minute irregularities on the pipe surface, there has been a problem that the use environment is limited.

【0004】本発明はこのような事情に鑑みてなされた
もので、被測定物表面の温度分布により配管やタンク等
の内部の腐食部位やスケール付着等の内面状態を検出す
る方法において、非接触温度センサ等で被測定物表面の
温度分布を肉眼でも容易に検知することができるととも
に、検知の作業効率を向上できる被測定物の内面状態の
検出方法を提供することを目的とする。
The present invention has been made in view of such circumstances, and a method for detecting an internal surface state such as a corroded portion inside a pipe or a tank or scale adhesion from a temperature distribution on the surface of an object to be measured has been proposed. It is an object of the present invention to provide a method for detecting the inner surface state of an object to be measured, which can easily detect the temperature distribution on the surface of the object to be measured with a naked eye with a temperature sensor or the like and can improve the work efficiency of the detection.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するため
に、請求項1に記載の発明は、配管やタンク等の中空の
被測定物内面の腐食部位やスケール付着位置等の内面状
態の検出方法において、粘着部を備えた均一厚の蓄熱物
質を該粘着部により前記被測定物の表面に接着し、前記
被測定物の表面温度を定常温度に安定させ、前記蓄熱物
質の温度を前記被測定物の定常温度と異なる温度に加温
又は冷却し、前記加温又は冷却によって前記蓄熱物質の
温度分布が一様になった後、前記加温又は冷却を停止さ
せ、前記加温又は冷却の停止直後から前記蓄熱物質の温
度分布を検知し、前記検知した温度分布に基づいて前記
被測定物の内面状態を検出することを特徴としている。
また、請求項2に記載の発明は、配管やタンク等の中空
の被測定物内面の腐食部位やスケール付着位置等の内面
状態の検出方法において、シート状のヒータを蓄熱物質
として前記被測定物の表面に設置し、前記被測定物の表
面温度を定常温度に安定させ、前記ヒータの温度を前記
被測定物の定常温度と異なる温度に加温し、前記加温に
よって前記ヒータの温度分布が一様になった後、前記加
温を停止させ、前記加温の停止直後から前記ヒータの温
度分布を検知し、前記検知した温度分布に基づいて前記
被測定物の内面状態を検出することを特徴としている。
In order to achieve the above object, an invention according to claim 1 is a method for detecting a state of an inner surface such as a corroded portion of an inner surface of a hollow object to be measured such as a pipe or a tank or a scale attachment position. In the method, a heat storage material having a uniform thickness having an adhesive portion is adhered to the surface of the object by the adhesive portion, the surface temperature of the object is stabilized at a steady temperature, and the temperature of the heat storage material is adjusted to the temperature. Heating or cooling to a temperature different from the steady temperature of the measured object, after the temperature distribution of the heat storage material becomes uniform by the heating or cooling, the heating or cooling is stopped, and the heating or cooling is performed. Immediately after the stop, the temperature distribution of the heat storage material is detected, and the inner surface state of the measured object is detected based on the detected temperature distribution.
According to a second aspect of the present invention, in the method for detecting an inner surface state such as a corrosion site on an inner surface of a hollow object to be measured, such as a pipe or a tank, or a scale attachment position, the sheet object heater is used as a heat storage material. The surface temperature of the object to be measured is stabilized at a steady temperature, the temperature of the heater is heated to a temperature different from the steady temperature of the object to be measured, and the temperature distribution of the heater is increased by the heating. After the temperature becomes uniform, the heating is stopped, the temperature distribution of the heater is detected immediately after the stop of the heating, and the inner surface state of the device under test is detected based on the detected temperature distribution. Features.

【0006】本発明によれば、蓄熱物質を介して被測定
物に熱を伝達することにより、被測定物表面の熱変化速
度を遅延させることができる。従って、被測定物表面の
広い範囲について被測定物表面の各位置における温度変
化の違いを肉眼でも容易に検出することができる。
According to the present invention, the rate of heat change on the surface of the object to be measured can be delayed by transferring heat to the object to be measured via the heat storage material. Therefore, a difference in temperature change at each position on the surface of the measured object over a wide range of the surface of the measured object can be easily detected with the naked eye.

【0007】[0007]

【発明の実施の形態】以下添付図面に従って本発明に係
る被測定物の内面状態の検出方法の好ましい実施の形態
を詳説する。図1は本発明に係る被測定物の内面状態の
検出方法によって配管内面の腐食部位を検出する状況を
示した図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of a method for detecting an inner surface state of an object to be measured according to the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a view showing a situation in which a corroded portion on the inner surface of a pipe is detected by the method for detecting the inner surface state of an object to be measured according to the present invention.

【0008】同図に示すように、配管10の腐食診断箇
所に均一厚でかつ平滑面を有する配管表面温度差検出用
の蓄熱物質12を接着する。具体的に蓄熱物質12には
テープ類を使用する(例えば、ガムテープ(支持体はス
フ、粘着部はゴム系から成る。))。テープ類は、配管
表面へ蓄熱物質を固定する粘着部があり、配管表面温度
差検出用の蓄熱物質12として大変有効である。また、
テープ類以外に蓄熱物質12としてゲル状の膜を使用す
ることもできる。水分(液分)を帯びたゲル状の薄膜は
蓄熱物質12として有効で、例えば、膜内部に芯として
繊維を封入したもの、若しくは、繊維にゲル状物質を絡
ませたものを配管10に接着する。尚、蓄熱物質12は
熱伝導率0.1〜10W/mK、肉厚0.1〜1mmの
物性値を有するものが好ましいと考えられるが、この限
りではない。
As shown in FIG. 1, a heat storage material 12 for detecting a temperature difference on a pipe surface having a uniform thickness and a smooth surface is bonded to a corrosion diagnosis portion of the pipe 10. Specifically, tapes are used as the heat storage material 12 (for example, a gum tape (a support is made of soft cloth and an adhesive part is made of a rubber material)). The tapes have an adhesive portion for fixing the heat storage material to the pipe surface, and are very effective as the heat storage material 12 for detecting the pipe surface temperature difference. Also,
A gel-like film may be used as the heat storage material 12 other than the tapes. A gel-like thin film having moisture (liquid component) is effective as a heat storage material 12. For example, a film in which fibers are sealed as a core inside the film, or a film in which fibers are entangled with a gel-like material is adhered to the pipe 10. . It is considered that the heat storage material 12 preferably has physical properties of a thermal conductivity of 0.1 to 10 W / mK and a wall thickness of 0.1 to 1 mm, but is not limited thereto.

【0009】また、配管10(蓄熱物質12)の表面の
温度分布を測定する非接触温度センサ14を設置する。
この非接触温度センサ14はセンサ部16と温度分布表
示装置18とから構成されており、センサ部16によっ
て配管10から発生する赤外線の強度を非接触で測定し
て、温度分布表示装置18によって配管1の形状と温度
分布をブラウン管18A上に明るさの濃度、色彩等によ
って表示するようになっている。
A non-contact temperature sensor 14 for measuring the temperature distribution on the surface of the pipe 10 (heat storage material 12) is provided.
The non-contact temperature sensor 14 includes a sensor unit 16 and a temperature distribution display device 18. The intensity of infrared rays generated from the pipe 10 is measured by the sensor unit 16 in a non-contact manner. The shape and temperature distribution 1 are displayed on the cathode ray tube 18A in terms of brightness density, color, and the like.

【0010】このように診断準備を行った後、次に診断
作業を開始する。まず、配管10の表面温度を定常温度
に安定させる。例えば、配管10に温度20度(20度
で通常稼働している配管と過程する)の水24を流し配
管10の表面温度を安定させる。そして、温度調節器2
2に接続したシート状のヒータ20を配管10の表面温
度より10から30度程度高くした状態に加熱してお
き、配管10の表面温度を安定させた後に、このヒータ
20を蓄熱物質12に約30秒間密着させ、蓄熱物質1
2に一定熱量を与える。これにより、配管10の表面に
接着した蓄熱物質12に均一な熱量を保持させる。
[0010] After the preparation for diagnosis has been performed in this way, a diagnosis operation is started next. First, the surface temperature of the pipe 10 is stabilized at a steady temperature. For example, water 24 at a temperature of 20 degrees (which is a process similar to a pipe normally operating at 20 degrees) flows through the pipe 10 to stabilize the surface temperature of the pipe 10. And the temperature controller 2
After heating the sheet-like heater 20 connected to the pipe 2 to a state where it is higher than the surface temperature of the pipe 10 by about 10 to 30 degrees and stabilizing the surface temperature of the pipe 10, the heater 20 is Adhere for 30 seconds, heat storage substance 1
2 is given a constant amount of heat. Thereby, the heat storage material 12 adhered to the surface of the pipe 10 holds a uniform amount of heat.

【0011】ヒータ20によって蓄熱物質12に一定熱
量を与え、蓄熱物質12に均一な熱量を保持させた後、
このヒータ20を瞬時に撤去し、センサ部16と温度分
布表示装置18を用いて蓄熱物質12の温度分布を観測
する。図2は、シート状のヒータ20撤去後のある瞬間
の対象配管10の表面温度分布の模擬例を示した図であ
る。尚、同図に示す配管10には配管内面側に通称錆瘤
と呼ばれる腐食生成物が付着し、腐食部位26が発生し
ているものとする。
After applying a constant amount of heat to the heat storage material 12 by the heater 20 to cause the heat storage material 12 to maintain a uniform heat amount,
The heater 20 is immediately removed, and the temperature distribution of the heat storage material 12 is observed using the sensor unit 16 and the temperature distribution display device 18. FIG. 2 is a diagram illustrating a simulation example of the surface temperature distribution of the target pipe 10 at a certain moment after the removal of the sheet-shaped heater 20. In addition, it is assumed that a corrosion product commonly called a rust bump adheres to the pipe 10 shown in FIG.

【0012】ヒータ20により蓄熱物質12に一定の熱
量を与え、このヒータ20を撤去すると、蓄熱物資12
が保持している熱量30が配管内部へ熱移動する際に、
配管内部の腐食部位26が熱抵抗となり、蓄熱物質12
の保持している熱量が場所により偏る。これにより、腐
食部位26と健全部28との間に、ある時間において明
確な温度分布がみられる。
When a certain amount of heat is applied to the heat storage material 12 by the heater 20 and the heater 20 is removed, the heat storage material 12 is removed.
When the amount of heat 30 held by the heat transfer to the inside of the pipe,
The corroded portion 26 inside the pipe becomes a thermal resistance, and the heat storage material 12
The amount of heat that is held varies depending on the location. Thereby, a clear temperature distribution is observed between the corroded portion 26 and the healthy portion 28 at a certain time.

【0013】同図に示す模擬例の場合、腐食部位26へ
の熱移動は健全部28の熱移動の速度より遅くなるた
め、温度分布表示装置18のブラウン管18Aに表示さ
れる温度分布は、腐食部位26の方が健全部28より高
い温度を示すようになる。しかし、更に時間が経過する
と温度分布は見られなくなる。図3は、図2に示す配管
10のa,b,c点における温度の時間変化を示してい
る。時間t0 で蓄熱物質12からヒータ20を撤去する
と配管10の表面温度はやや遅れてから急激に20度の
水24(配管内表面温度)に向かって低下していく。配
管10表面に起こるこの遅れや温度の変化速度は、配管
の内表面側にできた腐食部位26の厚さにより熱抵抗と
なる率が異なるため、図3に示すように、ある短時間の
範囲で温度差38が発生し、図2に示すような温度分布
が得られる。尚、この温度分布はヒータ20撤去直後か
ら顕著に見られるが、一定時間経過した後は温度差38
が無くなり、温度分布が不明確となる。これは時間の経
過と共に、蓄熱物質12の熱が金属表面との熱交換によ
って奪われた後、均衡していると考えられる。
In the case of the simulation example shown in FIG. 1, since the heat transfer to the corroded portion 26 is slower than the heat transfer speed of the sound portion 28, the temperature distribution displayed on the cathode ray tube 18A of the temperature distribution display device 18 is corroded. The part 26 has a higher temperature than the healthy part 28. However, as time further elapses, the temperature distribution is no longer seen. FIG. 3 shows a temporal change in temperature at points a, b, and c of the pipe 10 shown in FIG. When the heater 20 is removed from the heat storage material 12 at the time t 0 , the surface temperature of the pipe 10 slightly decreases and then rapidly decreases toward the water 24 (pipe inner surface temperature). As shown in FIG. 3, the delay and the rate of change of temperature occurring on the surface of the pipe 10 vary in the rate of thermal resistance depending on the thickness of the corrosion site 26 formed on the inner surface side of the pipe. , A temperature difference 38 occurs, and a temperature distribution as shown in FIG. 2 is obtained. This temperature distribution is noticeable immediately after the removal of the heater 20, but after a certain period of time, the temperature difference 38
Disappears, and the temperature distribution becomes unclear. This is considered that the heat of the heat storage material 12 is deprived of heat by the heat exchange with the metal surface over time, and thereafter, is balanced.

【0014】従って、ヒータ20の撤去直後からの配管
10の温度分布変化を目視又はコンピュータ等で観測
し、定常温度に安定するまでに周辺部との温度状態が異
なる部位を検出することにより、配管内の腐食部位、ス
ケールの付着位置等を検出することができる。この時、
蓄熱物質を介して配管10に熱を伝達しているため、配
管10表面の熱変化速度を遅延させることができる。従
って、従来のように検知範囲を小面積に分割する必要が
なく、連続検知用の大がかりな装置を必要とせずに配管
表面の広い範囲を肉眼で容易に検知することができると
ともに、検知のための作業効率を格段に向上することが
できる。また、蓄熱物質の表面は平滑面なので、検知時
において太陽光等による乱反射の影響を受けず、精度良
く検知できる。
Accordingly, the temperature distribution change of the pipe 10 immediately after the removal of the heater 20 is visually or visually observed by a computer or the like, and a portion where the temperature state is different from that of the peripheral portion until the steady temperature is stabilized is detected. Corrosion sites in the inside, scale adhesion positions, etc. can be detected. At this time,
Since heat is transferred to the pipe 10 via the heat storage material, the rate of change of heat on the surface of the pipe 10 can be delayed. Therefore, there is no need to divide the detection range into small areas as in the conventional case, and a wide range of the pipe surface can be easily detected with the naked eye without the need for a large-scale device for continuous detection. Work efficiency can be significantly improved. Further, since the surface of the heat storage material is smooth, it can be accurately detected without being affected by diffuse reflection by sunlight or the like at the time of detection.

【0015】次に、上記実施の形態において蓄熱物質1
2を氷で代用する例を図4に示す。配管表面を液体窒素
32やエアクーラー等により、大気中の水分又は予め霧
吹き等で軽く配管表面に噴霧した水分を瞬時に薄い氷層
34にして配管表面に付着させ、配管内部温度が氷層に
熱移動する際の氷層の温度変化を非接触温度センサ14
を用いて測定する。
Next, in the above embodiment, the heat storage material 1
FIG. 4 shows an example in which 2 is replaced with ice. With the liquid nitrogen 32 or an air cooler, the pipe surface is instantaneously made into a thin ice layer 34 by the moisture in the air or the water that has been lightly sprayed on the pipe surface by spraying or the like, and adheres to the pipe surface. The non-contact temperature sensor 14 detects the temperature change of the ice layer during the heat transfer.
Measure using

【0016】また、シート状のヒータ20を撤去せず、
シート状のヒータ20自体を蓄熱物質とした例を図5に
示す。伝熱性のある両面テープ等によってシート状のヒ
ータ20を配管表面に接着し、一定時間加熱後温度調節
器22を切り、シート状のヒータ20の熱量が配管内部
へ奪われる様子を非接触温度センサ14を用いて測定す
る。これにより、煩わしいシート状のヒータ20の脱着
作業を省くことが可能である。
Also, without removing the sheet-like heater 20,
FIG. 5 shows an example in which the sheet-like heater 20 itself is used as a heat storage material. A sheet-like heater 20 is adhered to the pipe surface with a heat-conductive double-sided tape or the like. After heating for a certain time, the temperature controller 22 is turned off. Measure using No. 14. Thereby, it is possible to omit troublesome work of attaching and detaching the sheet-like heater 20.

【0017】更に、蓄熱物質12の上にサーモペイント
36を塗布した例を図6に示す。サーモペイント36と
は、熱を加えると徐々に変色する可逆性の塗料である。
これにより、非接触温度センサ14を用いなくても温度
変化を検知することが可能となる。尚、上記実施の形態
は、配管だけでなく、タンク等の機器にも応用すること
ができる。
FIG. 6 shows an example in which a thermopaint 36 is applied on the heat storage material 12. The thermopaint 36 is a reversible paint that gradually discolors when heat is applied.
This makes it possible to detect a temperature change without using the non-contact temperature sensor 14. The above embodiments can be applied not only to piping but also to equipment such as tanks.

【0018】また、超音波厚み計と併用すれば、肉厚の
測定を能率的に行うことができる。
When used in combination with an ultrasonic thickness gauge, the thickness can be measured efficiently.

【0019】[0019]

【発明の効果】以上説明したように本発明に係る被測定
物の内面状態の検出方法によれば、蓄熱物質によって配
管等の被測定物表面の熱変化速度を遅延させることによ
り、赤外線放射温度分布測定器等を用いて肉眼でも配管
内部の腐食部位やスケール付着位置を検知することがで
き、非破壊で、且つ稼働状態でも容易に検出することが
出来る。
As described above, according to the method for detecting the inner surface state of an object to be measured according to the present invention, the heat change rate of the surface of the object to be measured, such as a pipe, is delayed by the heat storage substance, thereby making it possible to obtain the infrared radiation temperature. Using a distribution measuring instrument or the like, the corrosion site or scale adhesion position inside the pipe can be detected even with the naked eye, and it can be easily detected in a nondestructive and operating state.

【0020】また、蓄熱物質の表面を平滑面にすること
によって、太陽光等の乱反射を防止し、外乱の影響を受
けずに精度良く配管内部の腐食部位やスケール付着位置
を検知することができる。
Further, by making the surface of the heat storage material a smooth surface, irregular reflection of sunlight or the like can be prevented, and a corroded portion or a scale adhesion position in the pipe can be accurately detected without being affected by disturbance. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、配管内面の腐食部位を検出する状況を
示した図である。
FIG. 1 is a diagram showing a situation in which a corrosion site on the inner surface of a pipe is detected.

【図2】図2は、配管表面温度分布の模擬例を示した図
である。
FIG. 2 is a diagram showing a simulation example of a pipe surface temperature distribution.

【図3】図3は、配管表面各部の経時温度変化を示した
図である。
FIG. 3 is a diagram showing a temporal change in temperature of each part of a pipe surface.

【図4】図4は、蓄熱物質を氷で代用した例を示した図
である。
FIG. 4 is a diagram showing an example in which ice is used as a heat storage material.

【図5】図5は、シート状のヒータを蓄熱物質とする例
を示した図である。
FIG. 5 is a diagram showing an example in which a sheet-like heater is used as a heat storage material.

【図6】図6は、非接触温度センサの代わりにサーモシ
ートを使用する例を示した図である。
FIG. 6 is a diagram showing an example in which a thermo sheet is used instead of a non-contact temperature sensor.

【符号の説明】[Explanation of symbols]

10…配管 12…蓄熱物質 14…非接触温度センサ 16…センサ部 18…温度分布表示装置 20…シートヒータ 22…温度調節器 24…水 DESCRIPTION OF SYMBOLS 10 ... Piping 12 ... Thermal storage substance 14 ... Non-contact temperature sensor 16 ... Sensor part 18 ... Temperature distribution display device 20 ... Seat heater 22 ... Temperature controller 24 ... Water

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−159741(JP,A) 特開 平2−218951(JP,A) 特開 平4−15550(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 25/72 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-63-159741 (JP, A) JP-A-2-218951 (JP, A) JP-A-4-15550 (JP, A) (58) Field (Int.Cl. 7 , DB name) G01N 25/72

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 配管やタンク等の中空の被測定物内面の
腐食部位やスケール付着位置等の内面状態の検出方法に
おいて、粘着部を備えた均一厚の蓄熱物質を該粘着部により前記
被測定物の表面に接着し、 前記被測定物の表面温度を定常温度に安定させ、 前記蓄熱物質の温度を前記被測定物の定常温度と異なる
温度に加温又は冷却し、 前記加温又は冷却によって前記蓄熱物質の温度分布が一
様になった後、前記加温又は冷却を停止させ、 前記加温又は冷却の停止直後から前記蓄熱物質の温度分
布を検知し、 前記検知した温度分布に基づいて前記被測定物の内面状
態を検出することを特徴とする被測定物の内面状態の検
出方法。
In a method for detecting the inner surface state of a hollow object such as a pipe or a tank, such as a corroded portion or a scale attachment position, a heat storage material having an adhesive portion and having a uniform thickness is provided by the adhesive portion.
Adhering to the surface of the DUT, stabilizing the surface temperature of the DUT to a steady temperature, heating or cooling the temperature of the heat storage material to a temperature different from the steady temperature of the DUT, After the temperature distribution of the heat storage material becomes uniform by cooling, the heating or cooling is stopped, and the temperature distribution of the heat storage material is detected immediately after the stop of the heating or cooling. Detecting a state of the inner surface of the object to be measured on the basis of the inner surface state of the object to be measured.
【請求項2】 配管やタンク等の中空の被測定物内面の
腐食部位やスケール付着位置等の内面状態の検出方法に
おいて、 シート状のヒータを蓄熱物質として前記被測定物の表面
に設置し、 前記被測定物の表面温度を定常温度に安定させ、 前記ヒータの温度を前記被測定物の定常温度と異なる温
度に加温し、 前記加温によって前記ヒータの温度分布が一様になった
後、前記加温を停止させ、 前記加温の停止直後から前記ヒータの温度分布を検知
し、 前記検知した温度分布に基づいて前記被測定物の内面状
態を検出することを特徴とする被測定物の内面状態の検
出方法。
2. A method for measuring the inner surface of a hollow object to be measured such as a pipe or a tank.
For detecting inner surface conditions such as corrosion sites and scale adhesion positions
The sheet-like heater is used as a heat storage material and the surface of the object is measured.
Installed in the surface temperature of the object to stabilize the steady state temperature, the temperature of the heater and the steady state temperature of the object to be measured different temperature
And the temperature distribution of the heater became uniform by the heating.
Thereafter, the heating is stopped, and the temperature distribution of the heater is detected immediately after the stopping of the heating.
And , based on the detected temperature distribution,
Of the inner surface of the DUT characterized by detecting the condition
How to get out.
JP08691996A 1996-04-09 1996-04-09 How to detect the inner surface state of the DUT Expired - Fee Related JP3173367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08691996A JP3173367B2 (en) 1996-04-09 1996-04-09 How to detect the inner surface state of the DUT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08691996A JP3173367B2 (en) 1996-04-09 1996-04-09 How to detect the inner surface state of the DUT

Publications (2)

Publication Number Publication Date
JPH09281064A JPH09281064A (en) 1997-10-31
JP3173367B2 true JP3173367B2 (en) 2001-06-04

Family

ID=13900273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08691996A Expired - Fee Related JP3173367B2 (en) 1996-04-09 1996-04-09 How to detect the inner surface state of the DUT

Country Status (1)

Country Link
JP (1) JP3173367B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108982584A (en) * 2018-07-11 2018-12-11 辽宁嘉顺化工科技有限公司 Electric heating tube internal oxidition magnesium uniformity detection system and method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3945607B2 (en) * 1999-11-16 2007-07-18 三菱電機株式会社 Linear expansion coefficient measuring device
JP3970510B2 (en) * 2000-09-28 2007-09-05 三菱電機株式会社 Linear expansion coefficient measuring device
JP4579749B2 (en) * 2005-04-01 2010-11-10 東電工業株式会社 Pipe thinning prediction apparatus and pipe thinning prediction method
JP4740187B2 (en) * 2007-04-20 2011-08-03 新日本製鐵株式会社 How to identify abnormal parts of pickling tank skin
JP2009031243A (en) * 2007-06-28 2009-02-12 Jfe Steel Kk Method for diagnosing clogging of piping
US9518946B2 (en) * 2013-12-04 2016-12-13 Watlow Electric Manufacturing Company Thermographic inspection system
CN111504955A (en) * 2020-04-26 2020-08-07 珠海格力电器股份有限公司 Scale detection method and device, scale detector and thermodynamic system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108982584A (en) * 2018-07-11 2018-12-11 辽宁嘉顺化工科技有限公司 Electric heating tube internal oxidition magnesium uniformity detection system and method
CN108982584B (en) * 2018-07-11 2020-11-06 辽宁嘉顺化工科技有限公司 System and method for detecting uniformity of magnesium oxide in electric heating pipe

Also Published As

Publication number Publication date
JPH09281064A (en) 1997-10-31

Similar Documents

Publication Publication Date Title
US5637027A (en) CO2 jet spray system employing a thermal CO2 snow plume sensor
JP3173367B2 (en) How to detect the inner surface state of the DUT
Buttsworth Assessment of effective thermal product of surface junction thermocouples on millisecond and microsecond time scales
US4996426A (en) Device for subsurface flaw detection in reflective materials by thermal transfer imaging
JPH09138205A (en) Detection method for flaw of material by infrared thermography
JPS61120950A (en) Inspection for inside of piping
GB2197465A (en) Crack sizing
JP2653532B2 (en) Surface defect inspection equipment
JPH04233405A (en) Method and apparatus for measuring thickness of paint film
JP3362587B2 (en) Inspection method for pipe deposits
JPS63250554A (en) Method and device for corrosion diagnosis
CN106679818B (en) Device and method for measuring temperature distribution of smooth surface
JPH04331360A (en) Detector of surface layer defect
JP3250506B2 (en) Slime or scale adhesion detector
JPH10281695A (en) Method and apparatus for sensing cleaning time of heat exchanger
JPH0293315A (en) Thickness examining method of metallic pipe wall or the like
JP2001004574A (en) Interface defect inspection method of coating member
JP3250505B2 (en) Slime or scale adhesion detector
Atmane et al. The effect of the liquid motion induced by air and vapor bubbles on heat transfer around a cylinder
JPH0222547A (en) Coating damage detecting method for external surface coated hollow material
JPH07225194A (en) Characteristic evaluation apparatus of coating film
JP2002071605A (en) Method and device for non-destructive inspection, and data determination device
JPH10332610A (en) Slime detective apparatus
JPH06308064A (en) Method for inspecting adhesive coated face
JPH09196873A (en) Slime detecting device

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080330

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090330

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090330

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees