JPH09163887A - Apparatus for water culture - Google Patents
Apparatus for water cultureInfo
- Publication number
- JPH09163887A JPH09163887A JP7328647A JP32864795A JPH09163887A JP H09163887 A JPH09163887 A JP H09163887A JP 7328647 A JP7328647 A JP 7328647A JP 32864795 A JP32864795 A JP 32864795A JP H09163887 A JPH09163887 A JP H09163887A
- Authority
- JP
- Japan
- Prior art keywords
- rhizosphere
- fountain
- ground
- box body
- hydroponic device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y02P60/216—
Landscapes
- Hydroponics (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は水耕装置に係り、特
に、地面もしくは地中との熱交換に好適な水耕装置に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydroponic device, and more particularly to a hydroponic device suitable for heat exchange with the ground or the ground.
【0002】[0002]
【従来の技術】従来の水耕装置は、その底面部が地表と
切り離されたものが多い。また、噴水型水耕装置(例え
ば特願平6−9096号)は、その底面部が地表に接し
てはいるけれども、その底面部パネルには断熱的材料を
使用している。つまり、これらは地中と装置内根圏部と
が非断熱的関係にある。2. Description of the Related Art In many conventional hydroponic devices, the bottom surface is separated from the ground surface. A fountain-type hydroponic device (for example, Japanese Patent Application No. 6-9096) uses a heat insulating material for its bottom panel, although its bottom is in contact with the ground surface. That is, in these, the underground and the rhizosphere in the device have a non-adiabatic relationship.
【0003】[0003]
【発明が解決しようとする課題】上記従来の構成では、
根圏部環境の熱容量は小さいので、根圏部は室内空気の
変動の影響を受けやすく、それゆえ、この変動を適正範
囲内に補正するために、多大の人工的エネルギーを投入
しがちである。SUMMARY OF THE INVENTION In the above conventional configuration,
Since the heat capacity of the rhizosphere environment is small, the rhizosphere is easily affected by fluctuations in indoor air, and therefore, a large amount of artificial energy tends to be input in order to correct this fluctuation within an appropriate range. .
【0004】本発明の目的は、地中の緩衝機能ならびに
自然のエネルギーをできるだけ利用しながら、投入する
人工的エネルギーをできるだけ低減するための水耕装置
の技術を提供することにある。An object of the present invention is to provide a technique of a hydroponic device for reducing the artificial energy to be input as much as possible while utilizing the buffer function in the ground and the natural energy as much as possible.
【0005】[0005]
【課題を解決するための手段】上記目的を達成させるた
めに本発明は、植物体の根圏部に噴水流を供給する噴水
型の水耕装置において、前記根圏部と地面もしくは地中
との間に、両者間の温度差によって、熱の授受が行われ
る伝熱手段が設けられていることを特徴とするものであ
る。また、前記根圏部の収納される函体の底面部材を非
断熱性部材で構成し、前記底面部材を地面または地中に
密着して設置することを特徴とするものである。また、
前記根圏部を収納する函体と、前記根圏部へ養液を供給
する養液タンクとからなり、前記根圏部へ噴水流を供給
する噴水チューブと前記養液タンクとが、前記養液を循
環させるポンプを具備した給液往路を介して連結し、前
記噴水チューブから供給した噴水流を集水する集水路と
前記養液タンクとが、給液復路を介して連結させ、前記
函体底面の周辺および前記養液タンク周辺には、それぞ
れ地中蓄熱部が形成されるようにしたものである。ま
た、函体を上面、側面、底面のそれぞれのパネルで構成
し、前記上面パネルの適宜箇所の穿孔部で植物体を保持
し、前記植物体の根圏部を前記函体内に懸垂し、前記底
面パネル上方には前記根圏部へ噴水流を供給する噴水手
段を設置した噴水型の水耕装置において、前記底面パネ
ルを非断熱性材料で形成し、前記底面パネルを地面もし
くは地中に密着して設置したことを特徴とするものであ
る。To achieve the above object, the present invention provides a fountain type hydroponic device for supplying a fountain flow to a rhizosphere of a plant body, wherein the rhizosphere and the ground or underground Between the two, a heat transfer means for transferring heat by a temperature difference between the two is provided. Further, the bottom member of the box in which the rhizosphere portion is housed is formed of a non-insulating member, and the bottom member is installed in close contact with the ground or the ground. Also,
A box containing the rhizosphere and a nutrient solution tank for supplying nutrient solution to the rhizosphere, and a fountain tube for supplying a fountain flow to the rhizosphere and the nutrient solution tank, A water collecting path, which is connected through a liquid supply forward path equipped with a pump for circulating a liquid, and collects the fountain flow supplied from the fountain tube, and the nutrient solution tank are connected through a liquid supply return path, and An underground heat storage section is formed around the bottom of the body and around the nutrient solution tank. Also, the box body is composed of respective panels of the top surface, the side surface, and the bottom surface, and the plant body is held by perforated portions at appropriate positions of the top panel, and the rhizosphere portion of the plant body is suspended in the box body, In a fountain-type hydroponic device having a fountain means for supplying a fountain flow to the rhizosphere above the bottom panel, the bottom panel is formed of a non-insulating material, and the bottom panel is closely attached to the ground or the ground. It is characterized by being installed.
【0006】上記構成によれば、非断熱性部材あるいは
伝熱手段により、地中と水耕装置根圏部とは熱的に結合
することになる。すなわち、両者間の温度差によって熱
の授受が起こる。従って地中の熱的緩衝作用であり、こ
れを積極的に利用することにより、例えば、日中には根
圏部の余熱を地中に蓄熱し、夜間には地中の余熱を根圏
部へ放出する等の作用がある。この熱的緩衝作用は、根
圏部を収容した函体周辺の地中ばかりでなく、根圏部へ
養液を循環供給する養液タンク周辺にも地中蓄熱部が形
成されるようにすると、より効果的である。このように
して、函体中の熱環境が安定化し、かつ省エネルギー化
が図られることになる。According to the above construction, the ground and the rhizosphere of the hydroponic device are thermally coupled by the non-insulating member or the heat transfer means. That is, heat transfer occurs due to the temperature difference between the two. Therefore, it is a thermal buffering effect in the ground, and by positively utilizing this, for example, the residual heat of the rhizosphere is stored in the ground during the daytime, and the residual heat of the ground is used at night. There is an action such as releasing to. This thermal buffering effect is achieved by forming an underground heat storage part not only in the ground around the box housing the rhizosphere but also around the nutrient solution tank that circulates the nutrient solution to the rhizosphere. , More effective. In this way, the thermal environment in the box is stabilized and energy is saved.
【0007】[0007]
【発明の実施の形態】以下、本発明の実施形態を、図面
を参照して説明する。図1は、本発明の一実施形態であ
る噴水型水耕装置の函体の断面図である。図1におい
て、本実施形態の函体は、上面パネル1および側面パネ
ル2を有し、底面部材3は、防水性を有する非断熱的材
料とする。この底面部材3としては、例えば、通常の農
業用プラスチックシートや合成ゴムシート等であり、ま
た部材の熱伝導率が地中のそれに近く、望ましくはそれ
よりも大きいことである。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a box body of a fountain type hydroponic device according to an embodiment of the present invention. In FIG. 1, the box of this embodiment has a top panel 1 and a side panel 2, and a bottom member 3 is made of a non-adiabatic material having a waterproof property. The bottom surface member 3 is, for example, an ordinary agricultural plastic sheet, synthetic rubber sheet, or the like, and the thermal conductivity of the member is close to that in the ground, and is preferably larger than that.
【0008】また、植物は、上面パネル1より上方に植
物上体部8が、下方に根圏部7が配置され、噴水用チュ
ーブ4からの噴水流5が、根圏部7にかけられ、集水路
6に集められるようになっている。さらに、養液タンク
9の養液は、ポンプ10により給液往路11を介して噴
水用チューブ4に送られ、また、集水路6から給液復路
12を介して養液タンク9に戻るようになっている。函
体周辺には函体周辺地中蓄熱部13があり、養液タンク
周辺には養液タンク周辺地中蓄熱部14がある。Further, the plant has a plant upper part 8 above the top panel 1 and a rhizosphere 7 below, and a fountain flow 5 from a fountain tube 4 is applied to the rhizosphere 7 to collect the plant. It can be collected in the waterway 6. Further, the nutrient solution in the nutrient solution tank 9 is sent by the pump 10 to the fountain tube 4 via the solution feeding outward path 11, and returns to the nutrient solution tank 9 from the water collecting path 6 via the liquid feeding return path 12. Has become. Around the box body, there is an underground heat storage section 13 around the box body, and around the nutrient solution tank, there is an underground heat storage section 14 around the nutrient solution tank.
【0009】このような構成において、栽培としては、
ポンプ10を作動させることによって、養液は給液往路
11を通り、噴水チューブ4から噴水流5となって根圏
部7へ供給される。このとき、熱の授受の観点からは、
日中、函体外部が高温の場合、側面パネル2を通して伝
熱があり、函体内を昇温させ、これが噴水流に伝熱され
る。In such a structure, cultivation is as follows.
By operating the pump 10, the nutrient solution is supplied to the rhizosphere part 7 from the fountain tube 4 as the fountain flow 5 through the solution feeding path 11. At this time, from the viewpoint of transfer of heat,
During the daytime, when the outside of the box is hot, there is heat transfer through the side panel 2, which causes the inside of the box to rise in temperature and is transferred to the fountain flow.
【0010】このうちの一部分の熱は、底面部材3を通
して、函体周辺の地中蓄熱部13に伝熱されて蓄熱さ
れ、他の一部の熱は、給液往路12を通って養液タンク
9に蓄熱され、さらに、その養液タンク周辺の地中蓄熱
部14に伝熱して蓄熱される。この蓄熱の作用は、同時
に、函体根圏部に対する冷房作用でもある。A part of the heat is transferred to the underground heat storage section 13 around the box body through the bottom member 3 to be stored, and the other part of the heat is passed through the liquid supply outward path 12 to feed the nutrient solution. The heat is stored in the tank 9, and is further transferred to the underground heat storage unit 14 around the nutrient solution tank to store the heat. At the same time, the action of this heat storage is the action of cooling the rhizosphere of the box.
【0011】一方、夜間、函体外の温度が低下してくる
と、上述の熱の流れは逆になる。すなわち、函体周辺地
中蓄熱部13から底面部材3を通して函体中へ放熱が行
われ、根圏部が暖房される。これらの作用は穏やかに進
行するので、植物にとっては好ましいものとなる。On the other hand, when the temperature outside the box is reduced at night, the above heat flow is reversed. That is, heat is radiated from the underground heat storage section 13 around the box body into the box body through the bottom surface member 3, and the rhizosphere is heated. These actions proceed moderately, which is preferable for plants.
【0012】もしそれでも根圏部温度が所定の値よりも
低い場合には、ポンプ10を作動して養液を循環し、熱
エネルギーを供給する。このとき、まずタンク10中の
保有熱が送られ、つぎに、養液タンク周辺地中蓄熱部1
4からの伝熱によって、タンク10に熱が補給される。If the rhizosphere temperature is still lower than the predetermined value, the pump 10 is operated to circulate the nutrient solution and supply thermal energy. At this time, first, the heat retained in the tank 10 is sent, and then the underground heat storage section 1 around the nutrient solution tank.
Heat is supplied to the tank 10 by heat transfer from the tank 4.
【0013】すなわち、地中からの放熱作用は、同時に
函体中での暖房作用でもある。従来のように、函体を地
中と熱的に絶縁すると、暖房用エネルギーを多く投入す
る必要が生じる。したがって本実施形態のように、地中
蓄熱作用と太陽熱とを積極的に利用する方式とすれば、
大幅な省エネルギー効果が得られる。That is, the function of radiating heat from the ground is also the function of heating the inside of the box. When the box body is thermally insulated from the ground as in the conventional case, a large amount of heating energy needs to be input. Therefore, as in the present embodiment, if the method that positively utilizes the underground heat storage effect and solar heat,
A significant energy saving effect can be obtained.
【0014】一方、夏期の高温時では、日中、地中温度
が比較的低いので、函体中に対して冷房の作用が生じ
る。また、タンク水を強制的に冷却して、冷房運転を行
う場合には、この低温エネルギーは、函体周辺地中蓄熱
部13や、養液タンク周辺地中蓄熱部14にも蓄冷され
る。そしてこれが、夜間には函体中に伝熱して穏やかな
る冷房作用を発揮する。このように、函体や養液タンク
の周辺の地中を利用することによって、冷房エネルギー
の効果的蓄積が得られる。なお、図1において、底面部
凹型の集水路6の部分を大きくして湛液量を増大する
と、それだけ、函体中の実質的蓄熱量も大きくなる効果
が得られ、また、タンク容量を小さくすることも可能と
なる。On the other hand, when the temperature is high in summer, the underground temperature during the daytime is relatively low, so that the inside of the box is cooled. Further, when the tank water is forcibly cooled and the cooling operation is performed, this low-temperature energy is also stored in the underground heat storage part 13 around the box and the underground heat storage part 14 around the nutrient solution tank. And, at night, this heat is transferred to the box to exert a gentle cooling effect. In this way, by effectively utilizing the ground around the box and the nutrient solution tank, effective storage of cooling energy can be obtained. In addition, in FIG. 1, by increasing the amount of the liquid immersion by enlarging the portion of the bottom surface concave water collecting channel 6, the effect that the substantial amount of heat stored in the box is also increased, and the tank capacity is reduced. It is also possible to do.
【0015】図2および図3は、それぞれ、本発明の参
考例であるが、断熱性底面部材15等により、明らか
に、函体は大地より熱的に遮断されているので、根圏部
7は周辺気温の影響を受けやすい。したがって、函体中
の環境を調節するのに大きなエネルギーを、しかも急激
に、人工的に投入せざるをえない。FIGS. 2 and 3 are reference examples of the present invention, respectively, but since the box body is clearly thermally shielded from the ground by the heat insulating bottom member 15 and the like, the rhizosphere portion 7 is shown. Is susceptible to ambient temperature. Therefore, in order to control the environment in the box, a large amount of energy has to be input artificially and rapidly.
【0016】このように、大地の緩衝作用ならびに自然
のエネルギとを適宜活用することが本発明の基本であ
り、これによって付加すべき人工的エネルギーを大幅に
削減可能となるばかりでなく、函体中の環境を安定化さ
せることができる。As described above, it is the basis of the present invention to appropriately utilize the buffering action of the earth and the natural energy, whereby not only the artificial energy to be added can be significantly reduced, but also the box body. It can stabilize the environment inside.
【0017】[0017]
【発明の効果】以上のとおり、本発明によれば、噴水型
の水耕装置において、函体底面を非断熱部材で構成し、
また、その底面を地上もしくは地中に設置するようにし
たため、函体中の熱容量が実質的に増大し、緩衝機能が
向上する。したがって自然エネルギーの利用割合が増大
する一方、人工エネルギーの使用割合が減少し、大幅な
省エネルギー効果を生む。また函体中の熱環境が安定化
する効果を生む。As described above, according to the present invention, in the fountain type hydroponic device, the bottom of the box is made of a non-insulating member,
Moreover, since the bottom surface is installed on the ground or in the ground, the heat capacity in the box is substantially increased, and the cushioning function is improved. Therefore, while the utilization rate of natural energy increases, the utilization rate of artificial energy decreases, producing a significant energy saving effect. It also produces the effect of stabilizing the thermal environment in the box.
【図1】本発明の一実施形態である噴水型水耕装置の断
面図。FIG. 1 is a cross-sectional view of a fountain-type hydroponic device that is an embodiment of the present invention.
【図2】従来の噴水型水耕装置の断面図。FIG. 2 is a sectional view of a conventional fountain type hydroponic device.
【図3】従来の湛液型水耕装置の断面図。FIG. 3 is a sectional view of a conventional submerged hydroponic device.
1 函体上面パネル 2 側面パネル 3 底面部材 4 噴水チューブ 5 噴水流 6 集水路 7 根圏部 8 上体部 9 養液タンク 10 ポンプ 11 給液往路 12 給液復路 13 函体周辺地中蓄熱部 14 養液タンク周辺地中蓄熱部 15 断熱性底面部材 1 Box top panel 2 Side panel 3 Bottom member 4 Fountain tube 5 Fountain flow 6 Water collection channel 7 Rhizosphere 8 Upper body 9 Nutrient solution tank 10 Pump 11 Liquid feed return path 12 Liquid feed return path 13 Ground heat storage area around the box 14 Underground heat storage part around nutrient solution tank 15 Insulating bottom member
Claims (10)
型の水耕装置において、前記根圏部と地面もしくは地中
との間に、両者間の温度差によって、熱の授受が行われ
る伝熱手段が設けられていることを特徴とする水耕装
置。1. A fountain-type hydroponic device for supplying a fountain flow to a rhizosphere of a plant, wherein heat is transferred between the rhizosphere and the ground or the ground due to a temperature difference between the two. A hydroponic device characterized in that it is provided with a heat transfer means.
型の水耕装置において、前記根圏部の収納される函体の
底面部材を非断熱性部材で構成し、前記底面部材を地面
または地中に密着して設置することを特徴とする水耕装
置。2. A fountain-type hydroponic device for supplying a fountain flow to a rhizosphere of a plant, wherein a bottom member of a box in which the rhizosphere is housed is constituted by a non-insulating member, and the bottom member is A hydroponic device characterized by being installed in close contact with the ground or the ground.
納され、前記函体より上方に植物上体部が形成される請
求項1または2に記載の水耕装置。3. The hydroponic device according to claim 1, wherein the plant has the rhizosphere portion housed in a box body, and a plant upper body section is formed above the box body.
ーブと、供給した噴水流を集水する集水路とを備えてい
る請求項1または2に記載の水耕装置。4. The hydroponic device according to claim 1, further comprising a fountain tube for supplying a fountain flow to the rhizosphere and a water collecting channel for collecting the supplied fountain flow.
を備えている請求項1または2に記載の水耕装置。5. The hydroponic device according to claim 1, further comprising a nutrient solution tank for supplying the nutrient solution to the rhizosphere.
着する周辺の地中には、函体周辺地中蓄熱部が形成され
る請求項1または2に記載の水耕装置。6. The hydroponic device according to claim 1, wherein an underground heat storage section for a box body is formed in the surrounding ground where the bottom surface of the box body in which the rhizosphere portion is housed is in close contact.
部へ養液を供給する養液タンクとからなり、前記根圏部
へ噴水流を供給する噴水チューブと前記養液タンクと
が、前記養液を循環させるポンプを具備した給液往路を
介して連結し、前記噴水チューブから供給した噴水流を
集水する集水路と前記養液タンクとが、給液復路を介し
て連結している請求項1または2に記載の水耕装置。7. A fountain tube for supplying a fountain flow to the rhizosphere and the nutrient solution tank, which comprises a box housing the rhizosphere and a nutrient solution tank for supplying the nutrient solution to the rhizosphere. Is connected via a liquid supply outward path equipped with a pump for circulating the nutrient solution, and a water collection path for collecting the fountain flow supplied from the fountain tube and the nutrient solution tank are connected via a liquid supply return path. The hydroponic device according to claim 1 or 2, which is connected.
の密着部が、非断熱性部材で構成されている請求項7に
記載の水耕装置。8. The hydroponic device according to claim 7, wherein the nutrient solution tank has a non-adiabatic member at the contact portion with the ground or the ground.
は、函体周辺地中蓄熱部が形成され、前記養液タンクが
密着する周辺の地中には、養液タンク周辺地中蓄熱部が
形成される請求項7に記載の水耕装置。9. An underground heat storage part around the box is formed in the surrounding ground where the bottom surface of the box comes into close contact, and in the surrounding ground where the nutrient solution tank comes into close contact therewith The hydroponic device according to claim 7, wherein a middle heat storage unit is formed.
パネルで構成し、前記上面パネルの適宜箇所の穿孔部で
植物体を保持し、前記植物体の根圏部を前記函体内に懸
垂し、前記底面パネル上方には前記根圏部へ噴水流を供
給する噴水手段を設置した噴水型の水耕装置において、
前記底面パネルを非断熱性材料で形成し、前記底面パネ
ルを地面もしくは地中に密着して設置したことを特徴と
する水耕装置。10. A box body is constituted by respective panels of an upper surface, a side surface and a bottom surface, and a plant body is held by perforated portions at appropriate places of the top panel, and a rhizosphere portion of the plant body is suspended in the box body. Then, in the fountain-type hydroponic device, in which a fountain means for supplying a fountain flow to the rhizosphere is installed above the bottom panel,
A hydroponic device characterized in that the bottom panel is formed of a non-insulating material, and the bottom panel is installed in close contact with the ground or the ground.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7328647A JPH09163887A (en) | 1995-12-18 | 1995-12-18 | Apparatus for water culture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7328647A JPH09163887A (en) | 1995-12-18 | 1995-12-18 | Apparatus for water culture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09163887A true JPH09163887A (en) | 1997-06-24 |
Family
ID=18212608
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7328647A Pending JPH09163887A (en) | 1995-12-18 | 1995-12-18 | Apparatus for water culture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09163887A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014217316A (en) * | 2013-05-08 | 2014-11-20 | 株式会社大林組 | Plant cultivation system |
JP2017509347A (en) * | 2014-03-28 | 2017-04-06 | プラントゥイ オサケ ユキチュアPlantui Oy | Hydroponic indoor gardening method |
-
1995
- 1995-12-18 JP JP7328647A patent/JPH09163887A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014217316A (en) * | 2013-05-08 | 2014-11-20 | 株式会社大林組 | Plant cultivation system |
JP2017509347A (en) * | 2014-03-28 | 2017-04-06 | プラントゥイ オサケ ユキチュアPlantui Oy | Hydroponic indoor gardening method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0517432A1 (en) | Method of and means for conditioning air in an enclosure | |
US4707995A (en) | Apparatus and method for controlling temperature and humidity within an enclosure | |
DE3268112D1 (en) | Heat pump air conditioning system | |
US5967085A (en) | Sea water well-driven heat exchange system coupled to an agricultural system and aquaculture preserve | |
CN209482529U (en) | A kind of water circulation outer wall structure of building and temperature regulation system | |
JPH09163887A (en) | Apparatus for water culture | |
WO2021147399A1 (en) | Solar greenhouse heat storage and release system and heat storage and release method | |
CN105737303B (en) | Automatic temperature-control selective cold storage self-circulation cooling system | |
CN111348709B (en) | Seawater desalination and irrigation integrated full-automatic floating platform and application thereof | |
JP2012167919A (en) | Environment-conscious thermoacoustic constant-temperature bath | |
JP2011004739A (en) | Greenhouse cultivation system | |
JP2003185368A (en) | Space heating device for agriculture | |
JP3333380B2 (en) | Environmental adjustment equipment | |
Fath | Transient analysis of naturally ventilated greenhouse with built-in solar still and waste heat and mass recovery system | |
KR101737044B1 (en) | Heating system | |
FR2404817A1 (en) | Self regulating greenhouse air conditioning system - uses solar heating system with liq. circulation initiated by solar heat | |
JPS62101086A (en) | Solar battery cooling system | |
CN218851433U (en) | Facility agriculture microenvironment low heat load planting structure | |
CN110996653A (en) | Environmental control system | |
KR200214496Y1 (en) | House bank and heating system | |
KR102702667B1 (en) | Temperature control system for air house of smart farm | |
EP0699383B1 (en) | Crop cultivation apparatus | |
JPS6240225A (en) | Method for heating greenhouse | |
KR101128173B1 (en) | An integrated cooling and heating system of the self supply type using the solar energy and the device | |
JP3295707B2 (en) | Greenhouse cooling and heating equipment |