JPH09162144A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH09162144A
JPH09162144A JP31650795A JP31650795A JPH09162144A JP H09162144 A JPH09162144 A JP H09162144A JP 31650795 A JP31650795 A JP 31650795A JP 31650795 A JP31650795 A JP 31650795A JP H09162144 A JPH09162144 A JP H09162144A
Authority
JP
Japan
Prior art keywords
film
polished
polishing
semiconductor device
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31650795A
Other languages
Japanese (ja)
Inventor
Masayuki Murota
雅之 室田
Hideki Shibata
英毅 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP31650795A priority Critical patent/JPH09162144A/en
Priority to KR1019960062028A priority patent/KR970052613A/en
Publication of JPH09162144A publication Critical patent/JPH09162144A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the flattening technology of an inter-layer insulating film and an insulating material and to improve reliability in a semiconductor device using a CMP method at low cost. SOLUTION: The TEOS inter-layer insulating film 13 by a VVD method is formed on a base pattern where wirings 12 are formed on the semiconductor substrate 11, and a BPSG film 14 is formed on the film 13. As ions are implanted through a photoresist film 15 so that density profiles are given to projecting parts 141 which are flattened with the grinding of the BPSG film 14. Later, the photoresist film 15 is peeled off. The As ions in the projecting parts 141 enter into the mesh-like holes of the BPSG film 14. Glass hardness is lowered about 30%, the projecting parts 141 become soft compared to the other parts and grinding becomes facile. Thus, the grinding speed of the projecting parts 141 locally increases and an effect that a grinding selection ratio with the part except for the projecting parts 141 increases is obtained. Then, the grinding of the part except for the projecting parts 141 is suppressed to a minimum and dishing is eliminated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、化学的/機械的研
磨(Chemical Mechanical Polishing) 法(以下、CMP
法と記す)を用いる半導体装置の層間絶縁膜および絶縁
体の平坦化に関するものであり、特に半導体層間絶縁膜
や絶縁体の平坦性改善、信頼性向上が達成される半導体
装置の製造方法に関する。
TECHNICAL FIELD The present invention relates to a chemical / mechanical polishing method (hereinafter referred to as CMP).
Method) is used to planarize an interlayer insulating film and an insulator of a semiconductor device, and particularly to a method of manufacturing a semiconductor device in which the flatness and reliability of the semiconductor interlayer insulating film and the insulator are improved.

【0002】[0002]

【従来の技術】半導体素子を形成したウェハの層間膜や
配線のCMP法では、研磨残膜のばらつきが主に2種類
考えられる。一つはウェハ面内のばらつきで、研磨装置
等のハードウェア要因が大きく、プロセス上の対策は容
易ではない。もう一つはチップ内のパターン毎のばらつ
きで、主にパターン密度に起因する。例えば層間膜の凹
部(下地パターンが粗な部分)が薄くなるディッシング
(dishing )現象等が生じ、凹部・凸部共に所望の平坦
化レベルを持つ残膜に仕上げることは現状では非常に難
しい。
2. Description of the Related Art In the CMP method of an interlayer film or a wiring of a wafer on which a semiconductor element is formed, there are mainly two types of variations in the polishing residual film. One is the variation within the wafer surface, which is largely due to hardware factors such as the polishing apparatus, and it is not easy to take countermeasures in the process. The other is variation in each pattern in the chip, which is mainly caused by the pattern density. For example, a dishing phenomenon in which a concave portion (a portion having a rough underlying pattern) of an interlayer film becomes thin occurs, and it is very difficult at present to finish a residual film having a desired flattening level on both the concave portion and the convex portion.

【0003】上記チップ内のパターン密度に起因する層
間膜の平坦化の困難性に対する設計・プロセス上の対策
として、(1)チップ内パターン上、ある一定値以上の
広いスペース(粗の部分)ができないように、下地にダ
ミーパターンを形成することや、(2)被研磨膜より研
磨速度の遅い膜(ストッパ)をパターン凹部に形成する
こと等があげられる。
As a design / process countermeasure against the difficulty of flattening the interlayer film due to the above-mentioned pattern density in the chip, (1) a wide space (rough portion) of a certain value or more is formed on the pattern in the chip. To prevent this, a dummy pattern may be formed on the base, and (2) a film (stopper) having a slower polishing rate than the film to be polished may be formed in the pattern recess.

【0004】しかし、上記(1)、(2)いずれの場合
も高額なリソグラフィ工程とその前後の冗長な工程が増
え、コストアップにつながるという二次的問題がある。
このようなことから、現状のCMP法を用いてチップ内
あるいはウェハ面内を工程増すなわちコスト増なしに平
坦化することは難しい。
However, in any of the above cases (1) and (2), there is a secondary problem that an expensive lithography process and redundant processes before and after the process increase, leading to an increase in cost.
For this reason, it is difficult to planarize the inside of the chip or the wafer surface by using the current CMP method without increasing the number of steps, that is, increasing the cost.

【0005】[0005]

【発明が解決しようとする課題】従来では、半導体装置
の層間絶縁膜や絶縁体の平坦化に高精度を求めようとす
ると、コストアップが必須という問題があった。この発
明は上記のような事情を考慮して、CMP法を用いた半
導体装置の層間絶縁膜や絶縁体の平坦化技術の改善およ
び信頼性向上に、極力コストをかけずに達成できる半導
体装置の製造方法を提供することを目的とする。
Conventionally, there has been a problem that cost increase is indispensable in order to obtain high precision in planarizing an interlayer insulating film or an insulator of a semiconductor device. In consideration of the above-mentioned circumstances, the present invention provides a semiconductor device which can be improved in the planarization technique of the interlayer insulating film and the insulator of the semiconductor device using the CMP method and the reliability of the semiconductor device at the lowest cost. It is intended to provide a manufacturing method.

【0006】[0006]

【課題を解決するための手段】この発明では、表面に所
定の被研磨膜が形成された半導体基板をウェハ研磨装置
に対向させ、前記被研磨膜を研磨する工程を有する半導
体装置の製造方法において、前記被研磨膜形成後に、こ
の膜中に、この膜の本来の原子構造を変形させた領域を
選択的に形成する工程を経てから前記被研磨膜を研磨し
平坦化することを特徴とする。
According to the present invention, there is provided a method of manufacturing a semiconductor device comprising a step of facing a semiconductor substrate having a predetermined film to be polished on a surface thereof to a wafer polishing apparatus and polishing the film to be polished. After the formation of the film-to-be-polished, the film-to-be-polished is polished and flattened after a step of selectively forming a region in which the original atomic structure of the film is deformed in the film. .

【0007】この発明によって、被研磨層間膜の凸部分
のみにイオン種を分布させれば、この部分の膜の硬度を
下げる(軟化させる)ような改質が施される。これによ
り、凸部分の研磨速度が局所的に増大し、凸部分以外と
の研磨選択比が増大する効果が得られる。
According to the present invention, if ionic species are distributed only in the convex portion of the interlayer film to be polished, the hardness of the film in this portion is reduced (softened). As a result, the polishing rate of the convex portion locally increases, and the polishing selectivity with respect to the portion other than the convex portion increases.

【0008】[0008]

【発明の実施の形態】図1はこの発明の半導体装置の製
造方法の実施の形態の最も特徴となる部分を示す断面図
である。半導体基板11上に第1配線(ゲート配線)12を
形成した下地パターン上に、CVD法によるTEOS層
間絶縁膜13が形成される。層間絶縁膜13上にはBPSG
層間絶縁膜14(BPSG膜とも記す)が形成される。こ
の層間絶縁膜14には下地のパターン段差を反映して凸部
分141 が存在する。この凸部分141 において、BPSG
膜14本来の原子構造を人工的に変形させ、他の部分と比
べて研磨容易となるように硬度を低下させる。
1 is a sectional view showing the most characteristic part of an embodiment of a method for manufacturing a semiconductor device according to the present invention. A TEOS interlayer insulating film 13 is formed by a CVD method on a base pattern having a first wiring (gate wiring) 12 formed on a semiconductor substrate 11. BPSG is formed on the interlayer insulating film 13.
An interlayer insulating film 14 (also referred to as a BPSG film) is formed. The interlayer insulating film 14 has a convex portion 141 reflecting the underlying pattern step. At this convex portion 141, BPSG
The original atomic structure of the film 14 is artificially deformed, and the hardness is lowered so as to facilitate polishing as compared with other portions.

【0009】このようにすれば、CMP処理に対し、上
記凸部分141 のみ研磨速度が増大するので、この凸部分
141 以外の堆積領域142 との研磨選択比が増大する効果
が得られる。このため領域142 をほとんど削ることな
く、かつ短時間で凸部分141 を選択的に研磨除去するこ
とが可能となる。その結果、研磨残膜(BPSG膜14)
の不均一性が改善される。
By doing so, the polishing rate of only the convex portion 141 is increased with respect to the CMP process.
The effect of increasing the polishing selectivity with the deposition region 142 other than 141 can be obtained. Therefore, it is possible to selectively polish and remove the convex portion 141 in a short time without shaving the region 142. As a result, the polishing residual film (BPSG film 14)
Non-uniformity is improved.

【0010】図2、図3はこの発明の第1の実施の形態
に係る半導体装置の製造方法を工程順に示す断面図であ
る。まず、図2に示すように、シリコン基板11上の第1
配線(ゲート配線)12を形成した下地パターン上に、C
VD法によるTEOS層間絶縁膜13を150乃至200
nm形成し、さらに、層間絶縁膜13上にはBPSG層間
絶縁膜14を1000乃至1100nm堆積する。このと
き、下地のパターン段差を反映して凸部分141 ができ
る。この結果、BPSG膜14の最表面の段差は、最大で
500乃至700nmとなる。ここで用いるBPSG層
間絶縁膜14はアルコキシド系[Si(OC254
B(OCH33 −PH3 ]の有機ガラスである。
2 and 3 are sectional views showing a method of manufacturing a semiconductor device according to the first embodiment of the present invention in the order of steps. First, as shown in FIG.
C on the underlying pattern on which the wiring (gate wiring) 12 is formed
The TEOS interlayer insulating film 13 by the VD method is formed into a layer of 150 to 200
Then, a BPSG interlayer insulating film 14 is deposited on the interlayer insulating film 13 in a thickness of 1000 to 1100 nm. At this time, a convex portion 141 is formed by reflecting the pattern difference of the base. As a result, the step difference on the outermost surface of the BPSG film 14 becomes 500 to 700 nm at the maximum. The BPSG interlayer insulating film 14 used here is an alkoxide-based [Si (OC 2 H 5 ) 4
Organic glass B (OCH 3) 3 -PH 3 ].

【0011】次に、図3のように、自己平坦性を有した
フォトレジスト膜15を犠牲膜としてBPSG膜14上に約
1000nm塗布し、100乃至200℃のベークを施
す。その後、BPSG膜14の研磨によって平坦にしたい
凸部分141 に濃度プロファイルを有するように、Asイ
オンをフォトレジスト膜15越しに注入する。このときの
Asイオンを注入するための加速電圧は数十keV〜2
00keV、ドーズ量は1015〜1017個/cm2 程度
である。
Next, as shown in FIG. 3, a photoresist film 15 having self-planarity is applied as a sacrificial film on the BPSG film 14 by about 1000 nm and baked at 100 to 200.degree. After that, As ions are implanted through the photoresist film 15 so that the convex portion 141 desired to be flattened by polishing the BPSG film 14 has a concentration profile. The acceleration voltage for implanting As ions at this time is several tens keV to 2
00 keV, the dose amount is about 10 15 to 10 17 pieces / cm 2 .

【0012】この後、前記図1のようにフォトレジスト
膜15を灰化および過酸化水素系の処理で選択的に剥離す
る。凸部分141 に注入されたAsイオンは、図4に示す
ようにBPSG膜14の網目構造(テトラヘドラ網目構
造)の空孔145 に入り込み、網目構造が解放構造になる
ことによりガラスの硬度が30%程度下がる。図中表示
してあるR+ は、ここではAsイオンを表す。
Thereafter, as shown in FIG. 1, the photoresist film 15 is selectively stripped by ashing and hydrogen peroxide treatment. As ions implanted in the convex portion 141 enter the holes 145 of the network structure (tetrahedra network structure) of the BPSG film 14 as shown in FIG. 4, and the network structure becomes an open structure, so that the hardness of the glass is 30%. It goes down. R + shown in the figure represents an As ion here.

【0013】図5は上記BPSG膜14の研磨時間に対す
る研磨レート(ポリッシュレート)の変化を示す特性図
である。曲線R0 はBPSG膜14の凸部分141 以外の凹
部分であり、曲線R1 がAsイオンが注入されたBPS
G膜14の凸部分141 の特性である。研磨が始まるとポリ
ッシュレートの高い凸部分141 が短時間で除去され、や
がて選択比の異なる凸部分141 以外のBPSG膜14が共
に研磨される研磨点に入り、ポイントJ1 で研磨終点と
なる。
FIG. 5 is a characteristic diagram showing changes in the polishing rate (polishing rate) with respect to the polishing time of the BPSG film 14. A curve R0 is a concave portion other than the convex portion 141 of the BPSG film 14, and a curve R1 is a BPS in which As ions are implanted.
This is the characteristic of the convex portion 141 of the G film 14. When polishing is started, the convex portion 141 having a high polish rate is removed in a short time, and eventually the BPSG film 14 other than the convex portion 141 having a different selectivity is polished together, and the polishing end point is reached at the point J1.

【0014】また、曲線R2 は従来技術すなわち、イオ
ン注入されていない場合のBPSG膜14の凸部分の研磨
である。本発明よりポリッシュレートが低く、凸部分14
1 以外のBPSG膜14と選択比に差はないので、凸部分
141 が完全に除去されるまで、それ以外のBPSG膜14
が共に研磨される研磨点に入っても一定時間研磨する必
要があり、ポイントJ2 で研磨終点となる。
The curve R2 represents the conventional technique, that is, the polishing of the convex portion of the BPSG film 14 when ion implantation is not performed. The polishing rate is lower than that of the present invention, and the convex portion 14
Since there is no difference in the selection ratio from the BPSG film 14 other than 1, the convex portion
Other 141 BPSG films until completely removed
It is necessary to polish for a certain time even if it enters the polishing point where both are polished, and the polishing end point is reached at point J2.

【0015】図6は上述の発明の方法により図1の構成
を研磨し平坦化した断面図である。下地パターンに依存
するdishing が生じることなく、研磨残膜(BPSG膜
14)の不均一性が改善されている。因みに図7は従来方
法により平坦化した図6に対応する断面図である。パタ
ーン凹部にdishing が生じている。
FIG. 6 is a sectional view showing the structure of FIG. 1 polished and flattened by the method of the invention described above. Polishing residual film (BPSG film) without dishing depending on the underlying pattern
The non-uniformity of 14) is improved. Incidentally, FIG. 7 is a sectional view corresponding to FIG. 6 flattened by the conventional method. There is dishing in the pattern recess.

【0016】この発明の方法によれば、終点検出機能を
駆使して従来の研磨終点J2 よりも短い時間の研磨終点
J1 にて良好な平坦化形状が得られる。これにより、ス
ループットが向上し生産性が上がる利点がある。また、
この後の各工程で行われるフォトリソグラフィにおいて
フォーカスマージンが損なわれないという信頼性をも生
み、高品質の製品が期待できる。
According to the method of the present invention, a good flattened shape can be obtained at the polishing end point J1 which is shorter than the conventional polishing end point J2 by making full use of the end point detection function. This has the advantages of improved throughput and increased productivity. Also,
High-quality products can be expected by producing reliability that the focus margin is not impaired in the photolithography performed in each process thereafter.

【0017】図8はこの発明の第2の実施の形態に係る
半導体装置の製造方法の要部を示す断面図である。第1
の実施の形態と異なる工程は、自己平坦性を有したフォ
トレジスト膜15を犠牲膜としてBPSG膜14上に塗布す
る際、BPSG膜14の凹部分が埋められ凸部分141 が少
なくとも露出する程度に塗布し、100乃至200℃の
ベークを施すことである。その後、BPSG膜14の研磨
によって平坦にしたい凸部分141 に濃度プロファイルを
有するように、Asイオンをフォトレジスト膜15越しに
注入する。その他の工程は上述の第1の実施の形態と同
様である。
FIG. 8 is a sectional view showing a main part of a method of manufacturing a semiconductor device according to the second embodiment of the present invention. First
The process different from the embodiment is that when the photoresist film 15 having self-flatness is applied as a sacrificial film on the BPSG film 14, the concave portion of the BPSG film 14 is filled and the convex portion 141 is at least exposed. It is applied and baked at 100 to 200 ° C. After that, As ions are implanted through the photoresist film 15 so that the convex portion 141 desired to be flattened by polishing the BPSG film 14 has a concentration profile. Other steps are the same as those in the above-described first embodiment.

【0018】上記実施の形態においてもBPSG膜14の
凸部分145 が他の部分より軟化されているため、凸部分
145 の研磨速度が局所的に増大し、凸部分145 以外の領
域との研磨選択比が増大する効果が得られる。この結
果、BPSG膜14は下地パターン密度に依存しない均一
な平坦化が可能となる。
Also in the above-described embodiment, since the convex portion 145 of the BPSG film 14 is softer than the other portions, the convex portion
The polishing rate of 145 locally increases, and the polishing selectivity with the region other than the convex portion 145 increases. As a result, the BPSG film 14 can be uniformly flattened without depending on the underlying pattern density.

【0019】なお、上記各実施の形態において、イオン
注入にはAsを用いたが、注入イオン種はP、B(BF
2 )、Ge、F、Ar等、層間膜の部分的な硬度の変化
の効果を有するものであれば何でもよい。
Although As was used for ion implantation in each of the above-mentioned embodiments, the implanted ion species are P, B (BF
2 ), Ge, F, Ar or the like as long as it has an effect of partially changing the hardness of the interlayer film.

【0020】また、イオン注入だけではイオン種の所望
の濃度プロファイルが得られない場合、フォトレジスト
膜(15)剥離後に、イオン種を固相拡散させる目的でア
ニール処理を行ってもよい。さらに、1回のイオン注入
だけでは所望の濃度プロファイルが得られない場合、イ
オン注入工程乃至CMP工程を、2回以上繰り返すこと
も可能である。本発明はすべての配線層の層間膜に適用
可能で、被研磨膜としてもBPSG膜に限らず、網目構
造を有するガラスであれば何でもよい。
When a desired concentration profile of ionic species cannot be obtained by only ion implantation, annealing treatment may be performed for the purpose of solid-phase diffusion of ionic species after the photoresist film (15) is peeled off. Further, when the desired concentration profile cannot be obtained by only one ion implantation, the ion implantation step or CMP step can be repeated twice or more. The present invention can be applied to the interlayer films of all wiring layers, and the film to be polished is not limited to the BPSG film, and any glass having a mesh structure may be used.

【0021】[0021]

【発明の効果】以上説明したようにこの発明によれば、
主に下地パターン密度に依存した、研磨残膜の不均一性
(dishing 現象等)が改善される。また、dishing を防
止するための下地ダミーパターンの形成や、ストッパ膜
のパターニングにかかる高額なフォトリソグラフィ工程
を入れなくてもよいため、冗長的なコストアップが不要
である。
As described above, according to the present invention,
Non-uniformity of the polishing residual film (dishing phenomenon, etc.) mainly depending on the underlying pattern density is improved. In addition, since it is not necessary to include an expensive photolithography process for forming a base dummy pattern for preventing dishing and patterning a stopper film, redundant cost increase is unnecessary.

【0022】さらに、研磨速度において装置的な最適化
を行いつつ、被研磨部分の膜の研磨速度を上げることが
きるので、短時間でかつ従来よりも格段に平坦化される
研磨処理が可能になり、スループットが向上する。ま
た、下地のマスクパターンが変わっても、大きなプロセ
ス変更は不要で、汎用性のある柔軟な対応ができる半導
体装置の製造方法が提供できる。
Further, since it is possible to increase the polishing rate of the film of the portion to be polished while optimizing the polishing rate in terms of the apparatus, it is possible to perform the polishing treatment which is significantly flattened in a short time as compared with the conventional method. Therefore, the throughput is improved. Further, even if the underlying mask pattern is changed, a large process change is not required, and a versatile and flexible semiconductor device manufacturing method can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の半導体装置の製造方法の実施の形態
の最も特徴となる部分を示す断面図
FIG. 1 is a sectional view showing the most characteristic part of an embodiment of a method for manufacturing a semiconductor device of the present invention.

【図2】この発明の第1の実施の形態に係る半導体装置
の製造方法を工程順に示す第1断面図。
FIG. 2 is a first cross-sectional view showing the method of manufacturing the semiconductor device according to the first embodiment of the present invention in the order of steps.

【図3】 この発明の第1の実施の形態に係る半導体装
置の製造方法を工程順に示す図2に続く第2断面図。
FIG. 3 is a second cross-sectional view following FIG. 2 showing the method of manufacturing the semiconductor device according to the first embodiment of the invention in the order of steps.

【図4】 アルコキシド系有機ガラス(BPSG)のテ
トラヘドラ網目構造の模式図。
FIG. 4 is a schematic diagram of a tetrahedra network structure of alkoxide-based organic glass (BPSG).

【図5】 上記BPSG膜14の研磨時間に対する研磨レ
ート(ポリッシュレート)の変化を示す特性図。
FIG. 5 is a characteristic diagram showing changes in the polishing rate (polishing rate) with respect to the polishing time of the BPSG film 14.

【図6】 上述の発明の方法により図1の構成を研磨し
平坦化した断面図。
FIG. 6 is a cross-sectional view of the structure of FIG. 1 polished and flattened by the method of the invention described above.

【図7】 従来方法により平坦化した図6に対応する断
面図。
FIG. 7 is a sectional view corresponding to FIG. 6, which is flattened by a conventional method.

【図8】 この発明の第2の実施の形態に係る半導体装
置の製造方法の要部を示す断面図。
FIG. 8 is a sectional view showing an essential part of the method for manufacturing a semiconductor device according to the second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11…シリコン基板、12…第1配線(ゲート配線)、13…
TEOS層間絶縁膜、14…BPSG層間絶縁膜(BPS
G膜)、141 …Asが高濃度に分布した凸部分、145 …
BPSG膜の網目構造(テトラヘドラ網目構造)の空
孔、15…フォトレジスト膜
11 ... Silicon substrate, 12 ... First wiring (gate wiring), 13 ...
TEOS interlayer insulating film, 14 ... BPSG interlayer insulating film (BPS
G film), 141 ... Convex portion where As is distributed in high concentration, 145 ...
Holes of network structure (tetrahedra network structure) of BPSG film, 15 ... Photoresist film

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 表面に所定の被研磨膜が形成された半導
体基板をウェハ研磨装置に対向させ、前記被研磨膜を研
磨する工程を有する半導体装置の製造方法において、 前記被研磨膜形成後に、この膜中に、この膜の本来の原
子構造を変形させた領域を形成する工程を経てから前記
被研磨膜を研磨し平坦化することを特徴とする半導体装
置の製造方法。
1. A method of manufacturing a semiconductor device, comprising the step of facing a semiconductor substrate having a predetermined film to be polished on a surface thereof to a wafer polishing apparatus and polishing the film to be polished, the method comprising: A method of manufacturing a semiconductor device, comprising the steps of forming a region in which the original atomic structure of the film is deformed, and then polishing and planarizing the film to be polished.
【請求項2】 表面に所定の被研磨膜が形成された半導
体基板をウェハ研磨装置に対向させ、前記被研磨膜を研
磨する工程を有する半導体装置の製造方法において、 前記被研磨膜形成後に、この膜上にこの膜より自己平坦
性を有する犠牲膜を形成する工程と、 前記犠牲膜越しに前記被研磨膜中の所定領域に不純物が
分布するようにイオン注入する工程と、 前記犠牲膜を剥離してから前記被研磨膜を研磨し平坦化
する工程とを有することを特徴とする半導体装置の製造
方法。
2. A method of manufacturing a semiconductor device, comprising the step of facing a semiconductor substrate having a predetermined film to be polished on a surface thereof to a wafer polishing apparatus and polishing the film to be polished, the method comprising: A step of forming a sacrificial film having self-flatness on the film, a step of implanting ions so that impurities are distributed to a predetermined region in the film to be polished through the sacrificial film; And a step of polishing and flattening the film to be polished after the film is peeled off.
【請求項3】 表面に所定の被研磨膜が形成された半導
体基板をウェハ研磨装置に対向させ、前記被研磨膜を研
磨する工程を有する半導体装置の製造方法において、 前記被研磨膜形成後に、前記被研磨膜の凹部分が埋めら
れ凸部分が露出する程度の厚さで前記被研磨膜上にこの
膜より自己平坦性を有する犠牲膜を形成する工程と、 前記犠牲膜がマスクとなり前記被研磨膜の凸部分の領域
に不純物が分布するようにイオン注入する工程と、 前記犠牲膜を剥離してから前記被研磨膜を研磨し平坦化
する工程とを有することを特徴とする半導体装置の製造
方法。
3. A method of manufacturing a semiconductor device, comprising the step of facing a semiconductor substrate having a predetermined film to be polished on a surface thereof to a wafer polishing apparatus and polishing the film to be polished, the method comprising: Forming a sacrificial film having a self-flatness on the film to be polished and having a thickness such that the concave portions of the film to be polished are filled and the convex portions are exposed; A semiconductor device comprising: a step of implanting ions so that impurities are distributed in a region of a convex portion of a polishing film; and a step of removing the sacrificial film and then polishing and flattening the film to be polished. Production method.
【請求項4】 前記イオン注入により、前記被研磨膜中
の原子構造を不純物が分布する領域だけ局所的に変形さ
せることを特徴とする請求項2または3記載の半導体装
置製造方法。
4. The method of manufacturing a semiconductor device according to claim 2, wherein the ion implantation locally deforms an atomic structure in the film to be polished only in a region where impurities are distributed.
【請求項5】 前記イオン注入により、前記被研磨膜中
の原子構造を前記不純物が分布する領域だけ局所的に変
形させることにより前記被研磨膜において前記不純物が
分布する領域だけ機械的硬度を下げ研磨速度を選択的に
増大させることを特徴とする請求項2または3記載の半
導体装置の製造方法。
5. The ion implantation locally deforms the atomic structure in the film to be polished only in the region where the impurities are distributed, thereby lowering the mechanical hardness only in the region where the impurities are distributed in the film to be polished. 4. The method for manufacturing a semiconductor device according to claim 2, wherein the polishing rate is selectively increased.
【請求項6】 前記イオン注入による被研磨膜中の不純
物を拡散させるため、前記犠牲膜を剥離した後、熱処理
する工程を具備することを特徴とする請求項2または3
記載の半導体装置の製造方法。
6. The method according to claim 2, further comprising the step of heat-treating after removing the sacrificial film in order to diffuse impurities in the film to be polished by the ion implantation.
The manufacturing method of the semiconductor device described in the above.
【請求項7】 前記被研磨膜に対する前記イオン注入及
び研磨を2回以上繰り返すことを特徴とする請求項2ま
たは3記載の半導体装置の製造方法。
7. The method of manufacturing a semiconductor device according to claim 2, wherein the ion implantation and the polishing for the film to be polished are repeated twice or more.
JP31650795A 1995-12-05 1995-12-05 Manufacture of semiconductor device Pending JPH09162144A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP31650795A JPH09162144A (en) 1995-12-05 1995-12-05 Manufacture of semiconductor device
KR1019960062028A KR970052613A (en) 1995-12-05 1996-12-05 Manufacturing Method of Semiconductor Device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31650795A JPH09162144A (en) 1995-12-05 1995-12-05 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH09162144A true JPH09162144A (en) 1997-06-20

Family

ID=18077882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31650795A Pending JPH09162144A (en) 1995-12-05 1995-12-05 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH09162144A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100326220B1 (en) * 1998-06-03 2002-02-27 다니구찌 이찌로오, 기타오카 다카시 Semiconductor device
US6503836B2 (en) 2000-08-08 2003-01-07 Mitsubishi Denki Kabushiki Kaisha Method and apparatus for manufacturing semiconductor device
US10008390B2 (en) 2014-07-25 2018-06-26 Toshiba Memory Corporation Manufacturing method of semiconductor device and semiconductor manufacturing apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100326220B1 (en) * 1998-06-03 2002-02-27 다니구찌 이찌로오, 기타오카 다카시 Semiconductor device
US6368956B2 (en) 1998-06-03 2002-04-09 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing a semiconductor device
US6503836B2 (en) 2000-08-08 2003-01-07 Mitsubishi Denki Kabushiki Kaisha Method and apparatus for manufacturing semiconductor device
US10008390B2 (en) 2014-07-25 2018-06-26 Toshiba Memory Corporation Manufacturing method of semiconductor device and semiconductor manufacturing apparatus

Similar Documents

Publication Publication Date Title
US7098116B2 (en) Shallow trench isolation method for reducing oxide thickness variations at different pattern densities
US6033963A (en) Method of forming a metal gate for CMOS devices using a replacement gate process
KR100274924B1 (en) Process for restoring rejected wafers in line for reuse as new
TW200939347A (en) Low temperature conformal oxide formation and applications
CN102468139A (en) Patterning methodology for uniformity control
JPH09107028A (en) Element isolation method for semiconductor device
US5891763A (en) Damascene pattering of SOI MOS transistors
US7229904B2 (en) Method for forming landing plug contacts in semiconductor device
KR100281892B1 (en) Method for fabricating a golbally planarized semiconductor device
JPH09162144A (en) Manufacture of semiconductor device
US6596639B1 (en) Method for chemical/mechanical planarization of a semiconductor wafer having dissimilar metal pattern densities
JPH11186526A (en) Semiconductor device for planarizing and its manufacture
JP3013787B2 (en) Method for manufacturing semiconductor device
US6309942B1 (en) STI punch-through defects and stress reduction by high temperature oxide reflow process
US7566924B2 (en) Semiconductor device with gate spacer of positive slope and fabrication method thereof
US6624041B2 (en) Method for forming trench type isolation film using annealing
JPH08139334A (en) Thin film transistor and manufacturing method thereof
JPH07273326A (en) Semiconductor device and manufacture of it
KR0156143B1 (en) Planerizing method of semiconductor device
JP2006032700A (en) Method of manufacturing semiconductor device with memory region and logic region mixed therein
JPH11340174A (en) Producing method for semiconductor device
JP2002252349A (en) Method for forming pattern
US6716720B2 (en) Method for filling depressions on a semiconductor wafer
JPS59124142A (en) Manufacture of semiconductor device
KR100286776B1 (en) Method of manufacturing silicon on insulator wafer