JPH09160895A - Wavelength multiplexed light receiver - Google Patents

Wavelength multiplexed light receiver

Info

Publication number
JPH09160895A
JPH09160895A JP7314985A JP31498595A JPH09160895A JP H09160895 A JPH09160895 A JP H09160895A JP 7314985 A JP7314985 A JP 7314985A JP 31498595 A JP31498595 A JP 31498595A JP H09160895 A JPH09160895 A JP H09160895A
Authority
JP
Japan
Prior art keywords
wavelength
signal
teacher signal
light
teacher
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7314985A
Other languages
Japanese (ja)
Inventor
Hiroshi Miyao
浩 宮尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP7314985A priority Critical patent/JPH09160895A/en
Publication of JPH09160895A publication Critical patent/JPH09160895A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To correctly execute the learning of a light receiver even when the distance between the light receiver and a light transmitter is large by adopting a reception reproducing teacher signal as a teacher signal so as to make the relative phase of the teacher signal normally coincide with the relative phase of a reception learning signal. SOLUTION: Signals having mutually different speeds by the repetition pattern of one and zero are generated as the wavelength-corresponding teacher signal from a teacher signal generator 31 on the transmission side so as to transmit wavelength-multiplexed light. On the reception side, wavelength-multiplexed light from an optical fiber 1 is branched and transduced into an electric signal by a photodetector 45. Then, the basic frequency components of the respective teaching signals are separated by filters 461 -464 and supplied to a learning circuit 23 as the teacher signal of the one and zero pattern. The other branced light is wavelength-separated, transduced into the electric signal by photodetector array 7 and supplied to a neural network 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は波長多重光から各
波長毎にその変調信号をニューラルネットワークを用い
て分離し、かつそのニューラルネットワークにその重
み、しきい値を学習させる学習手段を有する光受信器に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical receiver having a learning means for separating a modulated signal for each wavelength from a wavelength multiplexed light by using a neural network, and for allowing the neural network to learn its weight and threshold value. It is related to vessels.

【0002】[0002]

【従来の技術】光通信では、伝送路の有効利用を図るた
め、同時に複数の波長の光信号を伝送してそれぞれの波
長に異なる情報を割り当てる、いわゆる波長多重技術が
ある。この技術では、光信号を波長毎に分離する機能を
有する光受信器が必要となる。まず、この波長多重光受
信器の動作について図3を用いて説明する。この光受信
器は特願平2−101627に示されている。図3にお
いて、光ファイバ1から入射側レンズ2を介して伝搬し
てきた波長λ1 ,λ2 ,…,λn の波長多重信号光3を
バルク形の回折格子4に入射させ、ここで回折されて各
波長が角度分散された光5は出射側レンズ6を介して受
光素子アレイ7に入射される。つまり波長多重信号光3
は波長分離手段、この例では回折格子4により波長分離
され、その波長分離された光の空間分布が光電気変換手
段としての受光素子アレイ7に入射される。
2. Description of the Related Art In optical communication, there is a so-called wavelength multiplexing technique for transmitting optical signals of a plurality of wavelengths at the same time and assigning different information to each wavelength in order to effectively utilize a transmission line. This technique requires an optical receiver having a function of separating an optical signal for each wavelength. First, the operation of this wavelength division multiplexing optical receiver will be described with reference to FIG. This optical receiver is shown in Japanese Patent Application No. 2-101627. In FIG. 3, wavelength-multiplexed signal light 3 of wavelengths λ 1 , λ 2 , ..., λ n propagated from the optical fiber 1 through the incident side lens 2 is made incident on a bulk type diffraction grating 4 and is diffracted here. The light 5 in which the respective wavelengths are angularly dispersed is incident on the light receiving element array 7 via the exit side lens 6. That is, the wavelength multiplexed signal light 3
Is wavelength-separated by the wavelength separation means, in this example, the diffraction grating 4, and the spatial distribution of the wavelength-separated light is incident on the light-receiving element array 7 as the photoelectric conversion means.

【0003】受光素子アレイ7においては、回折された
光5は、各波長λ1 ,λ2 ,…,λ n 毎に異なる受光素
子アレイ位置において光強度のピークをもつ2次元の光
強度分布に変換される。受光素子アレイ7から得られる
2次元光強度分布に対応する電流分布をもつ電気信号8
をニューラルネットワーク9に入力して、その出力ポー
ト10から各波長に対応した出力信号(変調信号)
1 ,O2 ,…,On を得る。各波長ごとに受光素子ア
レイ7の異なる素子から電気信号が得られるが、分離さ
れた各波長の光分布の隣接するものの裾が重なり、受光
素子アレイ7から波長ごとに必ずしも正確に分離された
電気信号を得ることが困難であり、かつ送信側の光源波
長の変動などにより、受光素子アレイ7の各素子と波長
との関係が一定しない。このような点からニューラルネ
ットワーク9が用いられている。
In the light receiving element array 7, the light is diffracted.
Light 5 has each wavelength λ1, ΛTwo,… , Λ nDifferent light receiving element for each
Two-dimensional light with peak light intensity at the child array position
Converted to intensity distribution. Obtained from the light receiving element array 7
An electrical signal 8 having a current distribution corresponding to the two-dimensional light intensity distribution
To the neural network 9 and output its output port.
Output signal (modulation signal) corresponding to each wavelength from G.10
O1, OTwo, ..., OnGet. For each wavelength
Electrical signals can be obtained from different elements in Ray 7, but separated
The tails of adjacent light distributions of each
It was not always separated accurately from the element array 7 for each wavelength.
It is difficult to obtain an electrical signal, and the source wave on the transmitting side
Each element of the light-receiving element array 7 and wavelength due to fluctuations in length, etc.
Relationship with is not constant. From this point, neural network
Network 9 is used.

【0004】この光受信器におけるニューラルネットワ
ークの学習方法として特願平6−68582に示す提案
がなされている。その学習装置を図4を参照して説明す
る。ここで、図3と対応する部分に同一符号を付けてあ
る。送信側に設けられた教師信号発生部11は、同期信
号Tsと教師信号を発生することができ、まずはじめに
同期信号Tsを出力する。同期信号Tsは、レーザドラ
イバ120 に入力される。レーザドライバ120 〜12
4 では、教師信号発生部11の出力信号によりレーザダ
イオード13(LD0〜LD4)を駆動する駆動信号を
発生する。同期信号Tsは、レーザダイオードLD0の
信号(波長λ0 )で伝送される。同期信号Tsで変調さ
れた波長λ0 の光は、アイソレータ14、光分波器15
を順次通過後、光ファイバ1に入射される。光ファイバ
1からの出射光は光変換手段18(図3中のレンズ2、
回折格子4など)により波長分離された後、図3で説明
したようにレンズ6を通過して、受光素子アレイ7で受
光される。
As a learning method of a neural network in this optical receiver, a proposal shown in Japanese Patent Application No. 6-68582 has been made. The learning device will be described with reference to FIG. Here, parts corresponding to those in FIG. 3 are designated by the same reference numerals. The teacher signal generator 11 provided on the transmission side can generate the synchronization signal Ts and the teacher signal, and first outputs the synchronization signal Ts. Synchronizing signal Ts is inputted to the laser driver 12 0. Laser driver 12 0-12
At 4 , the drive signal for driving the laser diode 13 (LD0 to LD4) is generated by the output signal of the teacher signal generator 11. The synchronization signal Ts is transmitted as a signal (wavelength λ 0 ) of the laser diode LD0. The light of wavelength λ 0 modulated by the synchronization signal Ts is isolated by the isolator 14 and the optical demultiplexer 15.
After being sequentially passed through, the light is incident on the optical fiber 1. Light emitted from the optical fiber 1 is converted into a light converting means 18 (lens 2 in FIG. 3,
After being wavelength-separated by the diffraction grating 4 or the like), the light passes through the lens 6 and is received by the light receiving element array 7 as described in FIG.

【0005】波長λ0 の光信号は予め受光素子アレイ7
のエレメント(素子)PD0で受光するように設定され
ているものとする。受光素子アレイ7のエレメントPD
0より出力電気信号はプリアンプアレイ21で増幅され
て教師信号発生部24に導かれる。教師信号発生部24
では、教師信号発生部11から送出された同期信号Ts
を抽出し、その後に伝送されてくる教師信号発生部11
で発生された教師信号と同一の教師信号を発生する。つ
まり、受信側の教師信号発生部24は、送信側の教師信
号発生部11と同一の教師信号を発生する回路を内蔵し
ており、教師信号発生部11からの同期信号Tsと、同
期をとって、教師信号を発生させる。教師信号発生部2
4より出力された教師信号は学習回路23に入力され
る。
An optical signal of wavelength λ 0 is previously received by the light receiving element array 7
It is assumed that the element PD0 is set to receive light. Element PD of light receiving element array 7
The output electric signal from 0 is amplified by the preamplifier array 21 and guided to the teacher signal generator 24. Teacher signal generator 24
Then, the synchronization signal Ts sent from the teacher signal generator 11
Teacher signal generation unit 11 that extracts the
Generates the same teacher signal as the teacher signal generated in. That is, the teacher signal generator 24 on the receiving side has a built-in circuit that generates the same teacher signal as the teacher signal generator 11 on the transmitter side, and synchronizes with the synchronization signal Ts from the teacher signal generator 11. And generate a teacher signal. Teacher signal generator 2
The teacher signal output from 4 is input to the learning circuit 23.

【0006】一方、送信側の教師信号発生部11は同期
信号Tsを伝送した後、教師信号を送出する。教師信号
はレーザドライバ121 〜124 に入力される。レーザ
ドライバ121 〜124 では、教師信号発生部11の出
力信号によりレーザダイオード131 〜134 (LD1
〜LD4)を駆動する駆動信号を発生する。4つのレー
ザダイオード131 〜134 (LD1〜LD4)からの
出力光は、それぞれ、アイソレータ14を通過後、光合
波器15で合波され、一本の光ファイバ1に入射され
る。ここで、レーザダイオード131 〜134 よりの各
出射光の波長をλ 1 ,λ2 ,λ3 ,λ4 とする。光ファ
イバ1からの出射光は、光変換手段18、レンズ6を通
過後、受光素子アレイ7で受信される。受光素子アレイ
7からの出力信号はプリアンプアレイ21で増幅され
て、ニューラルネットワーク9に入力される。ニューラ
ルネットワーク9では、内部パラメータ(シナプス荷
重、しきい値)に従って処理を行い、出力ポート10よ
り出力信号を出力する。またニューラルネットワーク9
の出力信号は学習回路23にも分岐供給される。学習回
路23では、ニューラルネットワーク9からの出力信号
および教師信号発生部24からの教師信号を用いて学習
を行う。学習回路23では教師信号とニューラルネット
ワーク9の出力信号との誤差2乗和が小さくなるよう
に、ニューラルネットワーク9の内部パラメータである
シナプス荷重、しきい値を順次変更し、誤差2乗和があ
る設定値以下になると学習が終了したものとみなし、学
習処理を終了する。上述の学習回路23として、本出願
人により提案されている多周波振動学習法に基づく学習
回路を用いることができる(参考文献、1992年電子
情報通信学会春季全国大会、SD−2−6、多周波振動
学習法に基づくアナログニューラルネットワーク高速学
習実験)。
On the other hand, the teacher signal generator 11 on the transmitting side is synchronized.
After transmitting the signal Ts, the teacher signal is transmitted. Teacher signal
Is the laser driver 121~ 12FourIs input to laser
Driver 121~ 12FourThen, the output of the teacher signal generator 11
Laser diode 13 by force signal1~ 13Four(LD1
~ LD4) drive signal for driving. Four rays
The Diode 131~ 13FourFrom (LD1-LD4)
The output light passes through the isolator 14 and is then combined with the light.
Combined by wave filter 15 and incident on one optical fiber 1.
You. Here, the laser diode 131~ 13FourEach of
The wavelength of the emitted light is λ 1, ΛTwo, ΛThree, ΛFourAnd Light fa
The light emitted from the aver 1 passes through the light conversion means 18 and the lens 6.
After that, the light is received by the light receiving element array 7. Photodetector array
The output signal from 7 is amplified by the preamplifier array 21.
Is input to the neural network 9. Nura
In the network 9, internal parameters (synaptic load
Weight, threshold value) and output port 10
Output signal. Also the neural network 9
The output signal of is also branched and supplied to the learning circuit 23. Learning times
In path 23, the output signal from the neural network 9
And learning using the teacher signal from the teacher signal generator 24
I do. In the learning circuit 23, the teacher signal and the neural network
To reduce the error sum of squares with the output signal of work 9
Is an internal parameter of the neural network 9.
The synaptic weight and threshold are changed sequentially, and the error sum of squares
Learning is considered completed when
The learning process ends. As the learning circuit 23 described above, the present application
Learning based on the multi-frequency vibration learning method proposed by humans
Circuits can be used (references, 1992 Electronics
IEICE Spring National Convention, SD-2-6, Multi-frequency vibration
Analog Neural Network High Speed Based on Learning Method
Learning experiment).

【0007】図5に図4中の送信側の教師信号発生部1
1から送出される同期信号および学習信号(教師信号)
の例を示す。教師信号発生部11はまず、同期信号Ts
を一定時間発生し、その後、教師信号T1 〜T4 を送出
する。同期信号Tsが伝送されている間に受信側の教師
信号発生部24では、信号の同期をとり、教師信号T 1
〜T4 が伝送されてきたときに、同期して、送信側の教
師信号発生部11より送出された教師信号と同じ教師信
号を発生してその教師信号を学習回路23に入力する。
FIG. 5 shows the teacher signal generator 1 on the transmitting side in FIG.
1 synchronization signal and learning signal (teacher signal)
Here is an example. First, the teacher signal generator 11 first outputs the synchronization signal Ts.
Is generated for a certain period of time, and then the teacher signal T1~ TFourSend out
I do. Teacher on the receiving side while the synchronization signal Ts is being transmitted
The signal generation unit 24 synchronizes the signals and 1
~ TFourIs transmitted, the sender's teaching
The same teacher signal as the teacher signal sent from the teacher signal generator 11.
Signal is generated and the teacher signal is input to the learning circuit 23.

【0008】図6に学習終了後における従来の光受信器
の動作を示す。図6において図4と異なっている点は、
レーザダイオードLD0を必要としない点と、受信側の
教師信号発生部24およびその学習回路23に対する出
力、ニューラルネットワーク9の学習回路23に対する
出力が無い点である。学習終了後は各波長の光によって
送りたいデータ信号Data1〜Data4をレーザド
ライバ121 〜124に入力する。レーザドライバ12
1 〜124 の出力によりレーザダイオード13 1 〜13
4 がそれぞれ駆動され、各レーザダイオード(LD1〜
LD4)からはData1〜Data4で変調された光
信号が出力され、これらの光信号は合波器15で合波さ
れ、光ファイバ1に送られる。一方光受信器17では、
光ファイバ1から出力される波長多重光が光変換手段1
8、レンズ6を通過後、受光素子アレイ7で電気信号に
変換される。受光素子アレイ7からの出力信号は、プリ
アンプアレイ21で増幅された後、ニューラルネットワ
ーク9に入力される。ニューラルネットワーク9には、
学習によって得られた適切なシナプス荷重としきい値が
学習回路23から加えられている。入力された信号はシ
ナプス荷重としきい値にしたがって処理され、その結
果、Data1〜Data4がニューラルネットワーク
9の各出力ポート10から出力される。
FIG. 6 shows a conventional optical receiver after learning is completed.
Shows the operation of. 6 is different from FIG. 4 in that
The point that the laser diode LD0 is not required
Output to the teacher signal generator 24 and its learning circuit 23
Force, to the learning circuit 23 of the neural network 9
The point is that there is no output. After learning, with each wavelength of light
The data signals Data1 to Data4 you want to send are
Driver 121~ 12FourTo enter. Laser driver 12
1~ 12FourOutput of laser diode 13 1~ 13
FourAre driven respectively, and each laser diode (LD1 to LD1
Light modulated by Data1 to Data4 from LD4)
A signal is output, and these optical signals are combined by the multiplexer 15.
And sent to the optical fiber 1. On the other hand, in the optical receiver 17,
The wavelength-multiplexed light output from the optical fiber 1 is the optical conversion means 1.
8. After passing through the lens 6, the light receiving element array 7 converts it into an electrical signal.
To be converted. The output signal from the light receiving element array 7 is
After being amplified by the amplifier array 21, the neural network is
It is input to network 9. In the neural network 9,
The appropriate synaptic weights and thresholds obtained by learning are
It is added from the learning circuit 23. The input signal is
It is processed according to the naps load and the threshold,
As a result, Data1 to Data4 are neural networks.
It is output from each of the output ports 10 of 9.

【0009】[0009]

【発明が解決しようとする課題】光ファイバは波長によ
り異なる分散値を持つため、光ファイバ長が数十kmに
もおよぶ場合には、受信される各教師信号は相対的な位
相がずれている。しかしながら、従来の学習法では同期
信号Tsに基づいて送信側の教師信号発生部で発生した
教師信号と同一の信号を受信側の教師信号発生部で発生
させるため、ここで発生した教師信号間の相対位相と受
信された教師信号間の相対位相とが一致せず、光受信器
の学習が正しく行なわれない可能性がある。
Since optical fibers have different dispersion values depending on wavelengths, when the optical fiber length reaches several tens of km, the received teacher signals are out of phase with each other. . However, in the conventional learning method, the same signal as the teacher signal generated in the teacher signal generating section on the transmitting side is generated in the teacher signal generating section on the receiving side based on the synchronization signal Ts. There is a possibility that the relative phase and the relative phase between the received teacher signals do not match and learning of the optical receiver is not performed correctly.

【0010】[0010]

【課題を解決するための手段】この発明では送信側の教
師信号発生手段では教師信号として互いに速度が異なる
“0101・・・”固定パターンを用い、その各教師信
号でそれぞれの波長の光が変調されているものとし、こ
の発明の波長多重光受信器側では受信波長多重光から各
教師信号の基本周波数成分が帯域通過フィルタによって
電気信号として抽出され、これら信号が必要に応じて波
形整形手段により0101・・・に波形整形されて教師
信号が再生され、この再生教師信号が学習手段に教師信
号として供給される。
In the present invention, the teacher signal generating means on the transmitting side uses fixed patterns of "0101 ..." As the teacher signals, the speeds of which are different from each other, and light of each wavelength is modulated by each teacher signal. On the side of the wavelength-multiplexed optical receiver of the present invention, the fundamental frequency component of each teacher signal is extracted from the received wavelength-multiplexed light as an electric signal by the bandpass filter, and these signals are extracted by the waveform shaping means as necessary. The waveform is shaped into 0101 ... And the teacher signal is reproduced, and this reproduced teacher signal is supplied to the learning means as a teacher signal.

【0011】教師信号の再生には、受信波長多重光を分
岐し、その分岐光を光電気変換手段で一括して電気信号
とされ、その電気信号よりフィルタ手段により各基本周
波数成分が抽出される。或るいは、受信波長多重光から
その各変調信号を取り出すため、波長分離され、その波
長分離光を受光素子アレイで電気信号に変換されるが、
この受光素子アレイの各素子(エレメント)のニューラ
ルネットワークへ供給される信号がそれぞれ分岐され
て、加算手段で加算され、その加算信号がフィルタ手段
で各基本周波数成分に分離される。
To reproduce the teacher signal, the received wavelength-multiplexed light is branched, and the branched light is collectively converted into an electric signal by the photoelectric conversion means, and each fundamental frequency component is extracted from the electric signal by the filter means. . Or, in order to extract the respective modulated signals from the received wavelength-multiplexed light, the wavelengths are separated and the wavelength-separated light is converted into an electric signal by the light receiving element array.
The signals supplied to the neural network of each element (element) of this light receiving element array are branched and added by the adding means, and the added signal is separated into each fundamental frequency component by the filter means.

【0012】このような構成であるから、再生教師信号
は、伝送光ファイバの分散により受けた波長による相対
位相差が保持され、これは通信情報(データ)の受信時
に伝送光ファイバにおける分散値の波長による相違にも
とづく相対位相差と同一となり、つまり教師信号の相対
位相と学習信号の相対位相とが常に一致し、ニューラル
ネットワークが正しく学習され、正確に変調信号を復調
することができる。
With such a configuration, the reproduction teacher signal holds the relative phase difference due to the wavelength received by the dispersion of the transmission optical fiber, which is the dispersion value of the transmission optical fiber at the time of receiving the communication information (data). It becomes the same as the relative phase difference based on the difference due to the wavelength, that is, the relative phase of the teacher signal and the relative phase of the learning signal always match, the neural network is correctly learned, and the modulated signal can be demodulated accurately.

【0013】[0013]

【発明の実施の形態】図1にこの発明の第一の実施例を
示し、図4と対応する部分に同一符号を付けてある。送
信側の教師信号発生部31は、各出力毎(T1,T2,
T3,T4)に信号速度が異なる“0101・・・”固
定パターンを出力する。レーザドライバ121 〜124
では、教師信号発生部31の各出力信号によりレーザダ
イオード131 〜134 (LD1〜LD4)を駆動する
駆動信号を発生する。4つのレーザダイオード131
134 (LD1〜LD4)からの出力光は、それぞれ、
アイソレータ14を通過後、光合波器15で合波され、
一本の光ファイバ1に入射される。ここでレーザダイオ
ード131 ,132 ,133 ,134 の各出射光の波長
をそれぞれλ1 ,λ2 ,λ3 ,λ4 とする。光ファイバ
1からの受信波長多重光は、光分岐回路48で2つに分
岐され、一方の出射光は教師信号発生部44に入射され
る。教師信号発生部44に入射された光は受光素子45
で電気信号に変換され、その電気信号は、帯域通過フィ
ルタ461 〜464 (BPF1〜BPF4)に送られフ
ィルタ461 〜464 でそれぞれ教師信号の基本周波数
成分が抽出される。これら抽出された信号はそれぞれ波
形整形器491 〜494 でそれぞれしきい値処理などに
より“1”,“0”の繰り返しパターンに波形整形され
て再生された教師信号となって学習回路23へ供給され
る。ここで、帯域通過フィルタ46の出力信号を波形整
形することなく教師信号として学習回路23へ供給して
もよい。しかし波形整形すれば再生能力を向上させるこ
とができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a first embodiment of the present invention, in which parts corresponding to those in FIG. The teacher signal generation unit 31 on the transmission side outputs each output (T1, T2,
A fixed pattern of "0101 ..." With different signal speeds is output to T3 and T4). Laser driver 12 1 to 12 4
Then, a drive signal for driving the laser diodes 13 1 to 13 4 (LD1 to LD4) is generated by each output signal of the teacher signal generation unit 31. Four laser diodes 13 1 ~
Output light from 13 4 (LD1 to LD4) is
After passing through the isolator 14, it is multiplexed by the optical multiplexer 15.
It is incident on one optical fiber 1. Here, the wavelengths of the emitted lights of the laser diodes 13 1 , 13 2 , 13 3 , and 13 4 are λ 1 , λ 2 , λ 3 , and λ 4 , respectively. The wavelength division multiplexed light received from the optical fiber 1 is branched into two by the optical branching circuit 48, and one outgoing light is incident on the teacher signal generator 44. The light incident on the teacher signal generator 44 receives the light receiving element 45.
Is converted into an electric signal by the filter, and the electric signal is sent to the band pass filters 46 1 to 46 4 (BPF 1 to BPF 4 ) and the fundamental frequency components of the teacher signals are extracted by the filters 46 1 to 46 4 . Each of these extracted signal waveform shaper 49 1-49 4 due respectively thresholding "1", "0" repeating pattern to become the waveform-shaped the teacher signal reproduced by the learning circuit 23 Supplied. Here, the output signal of the bandpass filter 46 may be supplied to the learning circuit 23 as a teacher signal without waveform shaping. However, if the waveform is shaped, the reproducing ability can be improved.

【0014】光分岐回路48のもう一方の出射光は光受
信器17に入射され、光変換手段18、レンズ6を通過
後、受光素子アレイ7で受光される。受光素子アレイ7
では光信号を電気信号に変換し、その出力信号は必要に
応じてプリアンプアレイ21で増幅されてニューラルネ
ットワーク9に入力される。ニューラルネットワーク9
では、内部パラメータ(シナプス荷重、しきい値)に従
って処理を行い、出力ポート10より出力信号を出力す
る。ニューラルネットワーク9の出力信号は学習回路2
3に分岐入力される。学習回路23では、ニューラルネ
ットワーク9からの出力信号および教師信号発生部44
からの再生教師信号を用いて学習を行う。学習回路23
では教師信号とニューラルネットワーク9の出力信号の
誤差2乗和が小さくなるように、ニューラルネットワー
ク9の内部パラメータであるシナプス荷重、しきい値を
順次変更し、誤差2乗和がある設定値以下になると学習
が終了したものとみなし、学習処理を終了する。上述の
学習回路23として、本出願人により提案されている多
周波振動学習法に基づく学習回路を用いることができる
(参考文献、1992年電子情報通信学会春季全国大
会、SD−2−6、多周波振動学習法に基づくアナログ
ニューラルネットワーク高速学習実験)。
The light emitted from the other side of the light branching circuit 48 enters the light receiver 17, passes through the light converting means 18 and the lens 6, and is received by the light receiving element array 7. Light receiving element array 7
Then, the optical signal is converted into an electric signal, and the output signal thereof is amplified by the preamplifier array 21 as necessary and input to the neural network 9. Neural network 9
Then, processing is performed according to internal parameters (synapse weight, threshold value), and an output signal is output from the output port 10. The output signal of the neural network 9 is the learning circuit 2
3 is branched and input. In the learning circuit 23, the output signal from the neural network 9 and the teacher signal generator 44
Learning is performed using the reproduced teacher signal from. Learning circuit 23
Then, the synapse weight and the threshold value, which are internal parameters of the neural network 9, are sequentially changed so that the sum of squared errors between the teacher signal and the output signal of the neural network 9 becomes smaller, and the sum of squared errors falls below a certain set value. If so, it is considered that the learning has ended, and the learning process ends. As the learning circuit 23 described above, a learning circuit based on the multi-frequency vibration learning method proposed by the present applicant can be used (reference document, 1992 IEICE Spring National Convention, SD-2-6, Multi. Analog neural network high-speed learning experiment based on frequency vibration learning method).

【0015】送信側で送出する各波長対応の教師信号の
速度差は、受信側のフィルタ461〜464 で分離し易
い程度あればよく、通常の情報(データ)を伝送する速
度が150Mb/sの場合、各教師信号の速度としては
2Mb/s,1Mb/s,0.5Mb/s,0.25M
b/sなどとすることができる。図2にこの発明の第二
の実施例を示し、図1と対応する部分に同一符号を付け
てある。この第二の実施例の送信側では、前記第一の実
施例と同じ光信号が光ファイバ1に入射される。光ファ
イバ1からの出射光は光受信器17に入射され、光変換
手段18、レンズ6を通過後、受光素子アレイ7で電気
信号に変換され、受光素子アレイ7からの出力信号は、
必要に応じてコンパクトなプリアンプアレイで増幅され
て、ニューラルネットワーク9に入力されると同時に教
師信号発生部44に入力される。教師信号発生部44へ
入力された各信号は、加算器47で加算された後、帯域
通過フィルタ461 〜464 (BPF1〜BPF4)で
各教師信号の基本周波数成分が抽出される。この抽出さ
れた信号が教師信号として学習回路23へ供給される。
この場合も帯域通過フィルタ461 〜464 の出力信号
は波形整形器491 〜494 によって、波形整形して学
習回路23へ供給することにより再生能力を向上させる
ことができる。その他は第一の実施例と同様である。
The speed difference between the teacher signals corresponding to the respective wavelengths transmitted on the transmitting side may be such that they can be easily separated by the filters 46 1 to 46 4 on the receiving side, and the speed at which normal information (data) is transmitted is 150 Mb / In the case of s, the speed of each teacher signal is 2 Mb / s, 1 Mb / s, 0.5 Mb / s, 0.25 M
b / s or the like. FIG. 2 shows a second embodiment of the present invention, and the same reference numerals are given to the portions corresponding to those in FIG. On the transmitting side of the second embodiment, the same optical signal as in the first embodiment is incident on the optical fiber 1. The light emitted from the optical fiber 1 enters the optical receiver 17, passes through the optical conversion means 18 and the lens 6, is converted into an electric signal by the light receiving element array 7, and the output signal from the light receiving element array 7 is
If necessary, the signal is amplified by a compact preamplifier array and input to the neural network 9 and at the same time, to the teacher signal generation unit 44. The respective signals input to the teacher signal generator 44 are added by the adder 47, and then the fundamental frequency components of the respective teacher signals are extracted by the bandpass filters 46 1 to 46 4 (BPF1 to BPF4). The extracted signal is supplied to the learning circuit 23 as a teacher signal.
This output signal of the band pass filter 46 1 to 46 4 may the waveform shaper 49 1-49 4, it is possible to improve the reproduction capability by supplying to the waveform shaping to the learning circuit 23. Others are the same as the first embodiment.

【0016】[0016]

【発明の効果】以上述べたようにこの発明では受信再生
教師信号を教師信号としているため、この教師信号の相
対位相と、受信学習信号の相対位相とが常に一致するの
で、光受信器と光送信器間の距離が長距離であっても光
受信器の学習を正しく行なうことができ、正しくデータ
を復調することができる。
As described above, according to the present invention, the received reproduction teacher signal is used as the teacher signal. Therefore, since the relative phase of this teacher signal and the relative phase of the received learning signal always match, the optical receiver and the optical receiver Even if the distance between the transmitters is long, the learning of the optical receiver can be correctly performed and the data can be correctly demodulated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例を示すブロック図。FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】この発明の他の実施例を示すブロック図。FIG. 2 is a block diagram showing another embodiment of the present invention.

【図3】従来の光受信器を示すブロック図。FIG. 3 is a block diagram showing a conventional optical receiver.

【図4】従来の学習機能付き光受信器を示すブロック
図。
FIG. 4 is a block diagram showing a conventional optical receiver with a learning function.

【図5】従来の送信側の発生教師信号を示す波形図。FIG. 5 is a waveform diagram showing a conventional generated teacher signal on the transmission side.

【図6】従来の学習後の光受信器の動作を説明するため
のブロック図。
FIG. 6 is a block diagram for explaining the operation of a conventional optical receiver after learning.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年12月7日[Submission date] December 7, 1995

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項1[Correction target item name] Claim 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項2[Correction target item name] Claim 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H04B 10/14 10/04 10/06 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location H04B 10/14 10/04 10/06

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 受信波長多重光を波長分離手段により光
の波長の違いを空間的に分離し、 その波長分離された光の空間分布を光電気変換手段で電
気信号に変換し、 その変換された電気信号ニューラルネットワークにより
信号処理して上記各波長光の変調信号を分離して取出
す、 教師信号と上記ニューラルネットワークの出力とを学習
手段に入力して、上記ニューラルネットワークに重みお
よびしきい値を学習させる波長多重光受信器において、 上記波長多重光はその各波長が互いに速度が異なる
“1”,“0”の繰り返し固定パターンの教師信号でそ
れぞれ変調されており、 上記受信波長多重光から上記各教師信号が教師信号再生
手段より再生され、 その再生された教師信号と上記ニューラルネットワーク
の出力とにより上記学習手段が学習動作をすることを特
徴とする波長多重光受信器。
1. The received wavelength-multiplexed light is spatially separated by the wavelength separation means for the difference in the wavelength of the light, and the spatial distribution of the wavelength-separated light is converted into an electric signal by the photoelectric conversion means, which is then converted. The signal is processed by the electric signal neural network and the modulated signal of each wavelength light is separated and taken out. The teacher signal and the output of the neural network are input to the learning means, and the weight and the threshold are set in the neural network. In the wavelength-division-multiplexing optical receiver to be learned, the wavelength-division-multiplexing light is modulated by a teacher signal having a repeating fixed pattern of "1" and "0" whose speeds are different from each other. Each teacher signal is reproduced by the teacher signal reproducing means, and the learning means learns by learning the reproduced teacher signal and the output of the neural network. A wavelength division multiplexing optical receiver characterized by performing learning operation.
【請求項2】 上記教師信号再生手段は、上記受信波長
多重光を分岐する手段と、その分岐された波長多重光の
各波長を同時に電気信号に変換する手段と、その変換さ
れた電気信号から上記各教師信号の基本周波数成分を並
列に取り出して、これら取り出された各基本周波数成分
をその周波数の“1”,“0”の繰り返しパターンに波
形整形して上記再生教師信号を得るフィルタ手段とより
なることを特徴とする請求項1記載の波長多重光受信
器。
2. The teacher signal reproducing means, means for branching the received wavelength-multiplexed light, means for simultaneously converting each wavelength of the branched wavelength-multiplexed light into an electric signal, and the converted electric signal Filter means for extracting the fundamental frequency components of each of the teacher signals in parallel, shaping the extracted fundamental frequency components into a repeating pattern of "1" and "0" of the frequencies to obtain the reproduced teacher signal, and The wavelength division multiplexing optical receiver according to claim 1, characterized in that
【請求項3】 上記教師信号再生手段は、上記光電気変
換手段よりの各変換電気信号が分岐入力加算される加算
手段と、その加算手段の出力から上記各教師信号の基本
周波数成分を並列に取り出して上記再生教師信号を得る
フィルタ手段とよりなることを特徴とする請求項1記載
の波長多重光受信器。
3. The teacher signal reproducing means parallelly adds the fundamental frequency component of each teacher signal from the output of the adding means and the adder means to which the converted electrical signals from the photoelectric conversion means are branched and added. 2. The wavelength division multiplexing optical receiver according to claim 1, further comprising a filter means for taking out the reproduced teacher signal.
【請求項4】 上記フィルタ手段より取り出され、各基
本周波数成分をその周波数の“1”,“0”の繰り返し
パターンに波形整形して上記再生教師信号を得る波形整
形手段を含むことを特徴とする請求項2又は3記載の波
長多重光受信器。
4. A waveform shaping means for extracting the fundamental frequency component from the filter means and shaping the fundamental frequency component into a repeating pattern of "1" and "0" of the frequency to obtain the reproduction teacher signal. The wavelength division multiplexing optical receiver according to claim 2 or 3.
JP7314985A 1995-12-04 1995-12-04 Wavelength multiplexed light receiver Pending JPH09160895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7314985A JPH09160895A (en) 1995-12-04 1995-12-04 Wavelength multiplexed light receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7314985A JPH09160895A (en) 1995-12-04 1995-12-04 Wavelength multiplexed light receiver

Publications (1)

Publication Number Publication Date
JPH09160895A true JPH09160895A (en) 1997-06-20

Family

ID=18060037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7314985A Pending JPH09160895A (en) 1995-12-04 1995-12-04 Wavelength multiplexed light receiver

Country Status (1)

Country Link
JP (1) JPH09160895A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018142230A1 (en) * 2017-02-02 2018-08-09 International Business Machines Corporation Waveguide architecture for photonic neural component
WO2019167953A1 (en) * 2018-03-02 2019-09-06 日本電信電話株式会社 Optical signal processing device
US10451798B2 (en) 2017-02-02 2019-10-22 International Business Machines Corporation Waveguide architecture for photonic neural component with multiplexed optical signals on inter-node waveguides
WO2021033277A1 (en) * 2019-08-20 2021-02-25 日本電信電話株式会社 Optical information processor
CN113091782A (en) * 2021-04-26 2021-07-09 太原理工大学 PGC-based phase-sensitive optical time domain reflection system and phase demodulation method
CN114866145A (en) * 2021-01-20 2022-08-05 上海诺基亚贝尔股份有限公司 Method, apparatus, device and computer readable medium for optical communication
WO2022259523A1 (en) * 2021-06-11 2022-12-15 日本電信電話株式会社 Coherent optical receiver

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110291433B (en) * 2017-02-02 2020-09-08 国际商业机器公司 Waveguide structure for photonic neural elements
US10107959B2 (en) 2017-02-02 2018-10-23 International Business Machines Corporation Waveguide architecture for photonic neural component
US10353145B2 (en) 2017-02-02 2019-07-16 International Business Machines Corporation Waveguide architecture for photonic neural component
US10928586B2 (en) 2017-02-02 2021-02-23 International Business Machines Corporation Waveguide architecture for photonic neural component
WO2018142230A1 (en) * 2017-02-02 2018-08-09 International Business Machines Corporation Waveguide architecture for photonic neural component
CN110291433A (en) * 2017-02-02 2019-09-27 国际商业机器公司 Waveguiding structure for photon neural component
US10451798B2 (en) 2017-02-02 2019-10-22 International Business Machines Corporation Waveguide architecture for photonic neural component with multiplexed optical signals on inter-node waveguides
GB2573254A (en) * 2017-02-02 2019-10-30 Ibm Waveguide architecture for photonic neural component
US10514498B2 (en) 2017-02-02 2019-12-24 International Business Machines Corporation Waveguide architecture for photonic neural component
JP2019153058A (en) * 2018-03-02 2019-09-12 日本電信電話株式会社 Optical signal processing device
US20200363660A1 (en) * 2018-03-02 2020-11-19 Nippon Telegraph And Telephone Corporation Optical Signal Processing Device
WO2019167953A1 (en) * 2018-03-02 2019-09-06 日本電信電話株式会社 Optical signal processing device
US11982884B2 (en) * 2018-03-02 2024-05-14 Nippon Telegraph And Telephone Corporation Optical signal processing device
WO2021033277A1 (en) * 2019-08-20 2021-02-25 日本電信電話株式会社 Optical information processor
JPWO2021033277A1 (en) * 2019-08-20 2021-02-25
CN114866145A (en) * 2021-01-20 2022-08-05 上海诺基亚贝尔股份有限公司 Method, apparatus, device and computer readable medium for optical communication
CN114866145B (en) * 2021-01-20 2024-02-09 上海诺基亚贝尔股份有限公司 Method, apparatus, device and computer readable medium for optical communication
CN113091782A (en) * 2021-04-26 2021-07-09 太原理工大学 PGC-based phase-sensitive optical time domain reflection system and phase demodulation method
WO2022259523A1 (en) * 2021-06-11 2022-12-15 日本電信電話株式会社 Coherent optical receiver

Similar Documents

Publication Publication Date Title
CA1227296A (en) Optical communications systems
US3755676A (en) Spacially multiplexed optical beam communication system
US4648083A (en) All-optical towed and conformal arrays
EP2446561B1 (en) Transverse-mode multiplexing for optical communication systems
US5777763A (en) In-line optical wavelength reference and control module
US5796502A (en) Multiple independent/dependent monochromatic light frequency fiber optic communication system and method
US6271944B1 (en) Laser wavelength control in an optical communication system
US5696857A (en) WDM/FDM fiber optic sensor architecture using WDM tap coupler
US4662715A (en) Fiber optic network with reduced coupling losses
US5099114A (en) Optical wavelength demultiplexer
US6469812B2 (en) Method and system for identifying undesired products of non-linear optical mixing
JPH09160895A (en) Wavelength multiplexed light receiver
KR100916582B1 (en) System, apparatus for communicating using wavelength-band division multiplexing in the optical wireless communication and the method thereof
CA2015211C (en) Optical wavelength demultiplexer
US4430572A (en) Device for separating two light signals emitted by sources having different wavelengths and transmitted in a single optical fiber
KR102530552B1 (en) Scanning holography system for recording different colors
US5877999A (en) Method and apparatus of interrogating a distributed undersea optical surveillance system
JPS59216335A (en) Optical transmission system
EP1345342B1 (en) An optical transmitter for transmitting signals with high data rates, an optical transmission system and a method therefor
KR100444077B1 (en) A Wireless optical communication apparatus using multiple wavelength laser beams
JP2003115823A (en) Reconfigurable multi-user optical communication network with low delay time
Mousa et al. Design and implementation DWDM toward terabit for long-haul transmission system
JPH03179332A (en) Optical receiver
JPH01217424A (en) Fiber raman amplification optical communication system
JPS62170932A (en) Multiplex wavelength transmission system