JPS59216335A - Optical transmission system - Google Patents

Optical transmission system

Info

Publication number
JPS59216335A
JPS59216335A JP58091035A JP9103583A JPS59216335A JP S59216335 A JPS59216335 A JP S59216335A JP 58091035 A JP58091035 A JP 58091035A JP 9103583 A JP9103583 A JP 9103583A JP S59216335 A JPS59216335 A JP S59216335A
Authority
JP
Japan
Prior art keywords
optical
terminal
light emitting
optical fiber
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58091035A
Other languages
Japanese (ja)
Inventor
Takashi Toge
峠 隆
Kenjiro Yano
健次郎 矢野
Tetsuo Soejima
哲男 副島
Shigeo Amamiya
雨宮 成雄
Kazuo Murano
和雄 村野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP58091035A priority Critical patent/JPS59216335A/en
Publication of JPS59216335A publication Critical patent/JPS59216335A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2589Bidirectional transmission

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To make it possible to use light sources having the same wavelength and the same photodetectors by making frequencies of light emitting element driving subcarriers different from one another in an optical transmission system. CONSTITUTION:In case of the transmission from a terminal 1 to a terminal 1', the subcarrier from a subcarrier generator 8 is modulated to drive a light emitting element 3, and an optical signal is made incident to an optical fiber 5 through an optical coupler 6. The optical signal from the optical fiber 5 is branched in an optical coupler 7, and the electric signal from a photodetector 4' is allowed to pass through a band-pass filter, and a modulated subcarrier is outputted to the terminal 1'. In case of the transmission from a terminal 2 to a terminal 2', a light emitting element 3' is driven directly by the base band signal from the terminal 2, and an optical signal is made incident to the optical fiber 5. The output from a photodetector 4 is outputted from the terminal 2' through a low-pass filter 10. Since spectrums of modulation signals are different from each other, light sources having the same wavelength and the same photodetectors can be used.

Description

【発明の詳細な説明】 (a)  発明の技術分野 本発明は光ファイバを用いる光伝送における多重化方式
に関するものである0 (b)  R末技術及び問題点 一本の光ファイバを用いて、異なった複数の波長を使用
して同一方向あるいは双方向伝送を行う波長多重光伝送
は従来から行なわれている。この方法は、一本の光ファ
イバで多数の情報を伝送しノステムの経済性を図かろう
とするものであり、特に多数の画像信号のような広帯域
情報の伝送に適した方法である0 光ファイバは、その低損失性、広帯域性ばかりでなく電
磁肋導の影響を受けないという優れた特質を有している
0このような特長を積極的に活用し、例えば工場のよう
な悪環境下における安定な情報伝送手段として用いるこ
とが考えられている〇このような用途では必ずしも高速
かつ広帯域な信号伝送だけでなくむしろ低速の信号伝送
を行う場合が多く、かつ低価格化が重要なポイントとな
り、上述のような波長多重伝送は、光分波合波器、複数
類の発光素子、受光素子を用いることになり、必ずしも
適当とは言えない。
Detailed Description of the Invention (a) Technical Field of the Invention The present invention relates to a multiplexing system in optical transmission using optical fibers. (b) R-end technology and problems Using a single optical fiber, Wavelength multiplexing optical transmission, which uses a plurality of different wavelengths to perform transmission in the same direction or in both directions, has been practiced for some time. This method aims to achieve economical efficiency by transmitting a large amount of information using a single optical fiber, and is particularly suitable for transmitting broadband information such as a large number of image signals. It has the excellent characteristics of not only low loss and wide band, but also that it is not affected by electromagnetic conduction. By actively utilizing these features, it can be used in harsh environments such as factories, for example. It is considered to be used as a stable means of information transmission. In such applications, it is not always necessary to transmit high-speed and broadband signals, but rather low-speed signal transmission is often performed, and low cost is an important point. Wavelength multiplexing transmission as described above is not necessarily suitable because it uses an optical demultiplexer/multiplexer, multiple types of light emitting elements, and light receiving elements.

(c)  発明の目的 本発明の目的は、以上のような欠点を克服し、低価格の
多重伝送を行う方式を提供することにある0 (d)  発明の構成 光ファイバを用いる光伝送方式において、一本の光ファ
イバ、同一の発光波長の発光素子を光源とする被数の光
送信装置、それと同数の光受信装置から成り、各光送信
装置において発光素子の光出力を該光ファイバへ入力す
る手段、また各光受信装置の受光素子へ該光ファイバか
らの光を入力する手段を有し、該発光素子の発光発長を
各光装置において等しくするとともに、該発光素子駆動
用の副搬送波の周波数を異ならせたことを特徴とする光
伝送方式によって達成される。
(c) Purpose of the Invention The purpose of the present invention is to overcome the above-mentioned drawbacks and provide a low-cost multiplex transmission method. (d) Structure of the Invention In an optical transmission method using optical fibers. , consists of a single optical fiber, a number of optical transmitters each using a light emitting element with the same emission wavelength as a light source, and an equal number of optical receivers, and each optical transmitter inputs the optical output of the light emitting element to the optical fiber. and a means for inputting the light from the optical fiber to the light receiving element of each optical receiving device, making the light emission of the light emitting element equal in each optical device, and providing a subcarrier for driving the light emitting element. This is achieved using an optical transmission system characterized by having different frequencies.

(e)  発明の実施例 第1図に本発明における一実施例を示す0第2図は第1
図の方式構成において使用される光カプラの原理を示す
図、第3図は第1図の方式構成において用いられる変眺
信号の電気領域におけるスペクトル配置を示す図である
(e) Embodiment of the invention FIG. 1 shows an embodiment of the present invention.
FIG. 3 is a diagram showing the principle of the optical coupler used in the system configuration shown in the figure, and FIG. 3 is a diagram showing the spectral arrangement in the electrical domain of the variable-view signal used in the system configuration shown in FIG.

図中1.1’、 2.’2’は端子、3.3′は発光素
子、4.4 は受光素子、5は光ファイバ6.7は光カ
プラ、8は副搬送波発生器、9は変調器、10はローパ
スフィルタ、11はバンドパスフィルタである0 以下動作を説明すると、端子1から端子1 へのチャン
ネル(以下CH1と称す)では、第3図に示す様に副搬
送波17を使用するOこのため、端子1よりのベースバ
ンド信号により、副搬送波発生器8からの副搬送波を変
調し、発光素子3を駆動する。発光素子からの光信号は
光カプラ6を  へ介して光ファイバ5に入射する。光
カプラ7では光ファイバ5からの光信号を分岐し、受光
素子4に入射する・受光素子4′からの電気信号はバン
ドパスフィルタ11により、P波され端子l に変調さ
れた副搬送波を出力する。
In the figure, 1.1', 2. '2' is a terminal, 3.3' is a light emitting element, 4.4 is a light receiving element, 5 is an optical fiber, 6.7 is an optical coupler, 8 is a subcarrier generator, 9 is a modulator, 10 is a low pass filter, 11 is a bandpass filter 0 To explain the operation below, the channel from terminal 1 to terminal 1 (hereinafter referred to as CH1) uses subcarrier 17 as shown in Figure 3. The baseband signal modulates the subcarrier from the subcarrier generator 8 to drive the light emitting element 3. The optical signal from the light emitting element enters the optical fiber 5 via the optical coupler 6. The optical coupler 7 branches the optical signal from the optical fiber 5 and inputs it to the light-receiving element 4.The electrical signal from the light-receiving element 4' is converted into a P wave by the band-pass filter 11 and outputs a modulated subcarrier to the terminal l. do.

一方端子2から端子2 へのチャンネル(以下CH2と
称す)では第3図の如く、ベースバンド信号を用いる(
ベースバンドスペクトル16で示す)0つまり端子2か
らのベースバンド信号により、直接発光素子°3′を駆
動し、発生した光信号を光カプラ7を介して光ファイバ
5に入射する0光カプラ6では光ファイバ5からの光信
号を分岐し、受光素子4に入射する。受光素子4からの
出力はローパスフィルタ10を介して端子2 へ出力さ
れる0第2図に光カプラの構成例を示す。
On the other hand, the channel from terminal 2 to terminal 2 (hereinafter referred to as CH2) uses a baseband signal as shown in Figure 3.
In the optical coupler 6, the light emitting element 3' is directly driven by the baseband signal from the baseband spectrum 16), that is, from the terminal 2, and the generated optical signal is input to the optical fiber 5 via the optical coupler 7. The optical signal from the optical fiber 5 is branched and input to the light receiving element 4. The output from the light receiving element 4 is outputted to the terminal 2 via the low pass filter 10. An example of the configuration of the optical coupler is shown in FIG.

図中61.71はハーフミラ−162,63,64゜7
2.73.74はレンズである。
In the figure, 61.71 is a half mirror 162, 63, 64°7
2.73.74 are lenses.

発光素子3から出た光は、レンズ62により平行ビーム
に変換され、ハーフミラ−61を通過した後、レンズ6
4により収束され光ファイバ5に入射される。
The light emitted from the light emitting element 3 is converted into a parallel beam by the lens 62, passes through the half mirror 61, and then passes through the lens 6.
4 and enters the optical fiber 5.

−1光ファイバ5を伝搬して来た光は、レンズ64によ
り平行ビームに変換された後、ハーラミラー61で反射
され、レンズ63を通して受光素子4で受光される。
The light propagating through the -1 optical fiber 5 is converted into a parallel beam by the lens 64, reflected by the Hara mirror 61, and received by the light receiving element 4 through the lens 63.

このとき光ファイバ5から出射された光の一部はハーフ
ミラ−61を通過し発光素子3に入射する0たとえば発
光素子3として発光ダイオードを用いた場合、何の悲影
響も及ぼすことはない・−1発光素子3から出射した光
はレンズ64を通過後光フアイバ端面において反射しハ
ーフミラ−61、レンズ63を通して受光素子4で受光
され、本来の信号ch2に苅する妨音波となり得るoし
かしながら、この列においては同一波長を用いているも
ののchi、ch2において変肖信号のスペクトルは電
気領域において第3図のような配置をとっており、第1
図に示したローパスフィルタ10によりchiの信号を
容易に取り除くことができる0chiにおいても同様に
して第1図に示したバンドパスフィルタ11により、容
易にch2の影響を取除くことができる。
At this time, a part of the light emitted from the optical fiber 5 passes through the half mirror 61 and enters the light emitting element 3. For example, if a light emitting diode is used as the light emitting element 3, there will be no negative effect. 1. After passing through the lens 64, the light emitted from the light emitting element 3 is reflected at the end face of the optical fiber, passes through the half mirror 61 and the lens 63, and is received by the light receiving element 4, which can become an interfering sound wave that interferes with the original signal ch2. Although the same wavelength is used in , the spectra of the transformed signals in chi and ch2 are arranged as shown in Figure 3 in the electrical domain, and
Even in 0chi, where the signal of chi can be easily removed by the low-pass filter 10 shown in the figure, the influence of ch2 can be easily removed by the band-pass filter 11 shown in FIG.

以上一方をベースバンド伝送を行なうことを例に述べた
が互いに異なる周波数の副搬送波を用いる様にしてもよ
い。
Although baseband transmission is performed on one side as an example, it is also possible to use subcarriers with different frequencies.

(f)  発明の効果 以上の如く本発明の方法は、同一の波長の光源、同一の
受光素子を用いることができ、かつ高価な波長多重用光
分波、分波器が不要であることからシステムを安価に構
成出来、工業的価値が高い0
(f) Effects of the Invention As described above, the method of the present invention can use light sources of the same wavelength and the same light receiving element, and does not require expensive optical demultiplexers or demultiplexers for wavelength multiplexing. The system can be configured at low cost and has high industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す方式構成のブロック図
、第2図は光カプラの一構成例、第3図は第1図におけ
る麦調帖号の′I域気気領域おけるスペクトル配置を示
す図である。 図甲3.3 は発光素子、4.4’は受光*子、5は光
ファイバ、6.7は光カプラ、1oはローパスフィルタ
、11はバンドパスフィルタである。
Fig. 1 is a block diagram of a system configuration showing an embodiment of the present invention, Fig. 2 is an example of the configuration of an optical coupler, and Fig. 3 is a spectrum in the 'I region air region of Mugi Chocho No. in Fig. 1. It is a figure showing arrangement. Figure A 3.3 is a light emitting element, 4.4' is a light receiving element, 5 is an optical fiber, 6.7 is an optical coupler, 1o is a low pass filter, and 11 is a band pass filter.

Claims (1)

【特許請求の範囲】[Claims] 光ファイバを用いる光伝送方式において、一本の光ファ
イバ、同一の発光波長の発光素子を光源とする複数の光
送信装置、それと同数の光受信装置から成り、各光送信
装置において発光素子の光出力を該光ファイバへ入力す
る手段、また各光受信装置の受光素子へ該光ファイバか
らの光を入力する手段を有し、該発光素子の発光発長を
各光装置において等しくするとともに、該発光素子駆動
用の副搬送波の周波数を異ならせたことを特徴とする光
伝送方式。
An optical transmission system using optical fibers consists of a single optical fiber, multiple optical transmitters whose light sources are light emitting elements with the same emission wavelength, and the same number of optical receivers. It has means for inputting the output to the optical fiber, and means for inputting the light from the optical fiber to the light receiving element of each optical receiving device, so that the light emission length of the light emitting element is equalized in each optical device, and the light emitted from the optical fiber is made equal in each optical device. An optical transmission method characterized by using different subcarrier frequencies for driving light emitting elements.
JP58091035A 1983-05-24 1983-05-24 Optical transmission system Pending JPS59216335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58091035A JPS59216335A (en) 1983-05-24 1983-05-24 Optical transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58091035A JPS59216335A (en) 1983-05-24 1983-05-24 Optical transmission system

Publications (1)

Publication Number Publication Date
JPS59216335A true JPS59216335A (en) 1984-12-06

Family

ID=14015243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58091035A Pending JPS59216335A (en) 1983-05-24 1983-05-24 Optical transmission system

Country Status (1)

Country Link
JP (1) JPS59216335A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2632796A1 (en) * 1988-06-10 1989-12-15 Telecommunications Sa Duplex communication system and telephone installation with single optical fibre
EP0433023A2 (en) * 1989-12-12 1991-06-19 AT&T Corp. Improved interference suppression in optical communication systems
EP0458251A2 (en) * 1990-05-21 1991-11-27 Hughes Aircraft Company Single wavelength bidirectional optical fiber communication link
AU626177B2 (en) * 1989-02-16 1992-07-23 British Telecommunications Public Limited Company Two-way optical communications system
US5189544A (en) * 1990-09-14 1993-02-23 Siemens Aktiengesellschaft Bidirectional light waveguide telecommunication system
TR25412A (en) * 1990-05-22 1993-03-01 Hughes Aircraft Co LONG RANGE TWO-WAY OPTICAL FIBER COMMUNICATION LINK.
FR2690585A1 (en) * 1992-04-27 1993-10-29 Europ Agence Spatiale Digitally modulated laser beam for bidirectional communication between satellites - has laser transmitter-receiver with digital modulation and second beacon aligning laser beam
TR26009A (en) * 1990-05-21 1993-11-01 Hughes Aircraft Co SINGLE WAVE SIZE, TWO WAY OPTICAL FIBER COMMUNICATION LINK
US5267074A (en) * 1990-01-22 1993-11-30 U.S. Philips Corporation Coherent optical heterodyne transmission system
US5272555A (en) * 1990-10-26 1993-12-21 Nec Corporation Bidirectional optical transmission method and apparatus therefor
GB2289812A (en) * 1994-04-29 1995-11-29 Northern Telecom Ltd Bidirectional communications

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2632796A1 (en) * 1988-06-10 1989-12-15 Telecommunications Sa Duplex communication system and telephone installation with single optical fibre
AU626177B2 (en) * 1989-02-16 1992-07-23 British Telecommunications Public Limited Company Two-way optical communications system
US5305133A (en) * 1989-02-16 1994-04-19 British Telecommunications Public Limited Company Two-way optical communications system
EP0433023A2 (en) * 1989-12-12 1991-06-19 AT&T Corp. Improved interference suppression in optical communication systems
US5267074A (en) * 1990-01-22 1993-11-30 U.S. Philips Corporation Coherent optical heterodyne transmission system
EP0458251A2 (en) * 1990-05-21 1991-11-27 Hughes Aircraft Company Single wavelength bidirectional optical fiber communication link
TR26009A (en) * 1990-05-21 1993-11-01 Hughes Aircraft Co SINGLE WAVE SIZE, TWO WAY OPTICAL FIBER COMMUNICATION LINK
TR25412A (en) * 1990-05-22 1993-03-01 Hughes Aircraft Co LONG RANGE TWO-WAY OPTICAL FIBER COMMUNICATION LINK.
US5189544A (en) * 1990-09-14 1993-02-23 Siemens Aktiengesellschaft Bidirectional light waveguide telecommunication system
US5272555A (en) * 1990-10-26 1993-12-21 Nec Corporation Bidirectional optical transmission method and apparatus therefor
FR2690585A1 (en) * 1992-04-27 1993-10-29 Europ Agence Spatiale Digitally modulated laser beam for bidirectional communication between satellites - has laser transmitter-receiver with digital modulation and second beacon aligning laser beam
GB2289812A (en) * 1994-04-29 1995-11-29 Northern Telecom Ltd Bidirectional communications

Similar Documents

Publication Publication Date Title
JPH04290324A (en) Optical transmission device of rf auxiliary carrier wave in adjacent signal zone
KR20010101906A (en) Multi-channel wave division multiplexer system
TWI493899B (en) Optical router for dynamic wavelength assignment and terminal thereof
US4662715A (en) Fiber optic network with reduced coupling losses
JPS59216335A (en) Optical transmission system
JPH02199988A (en) Wavelength split optical exchange system
CN109104245B (en) Multi-channel stray-free wide-band non-cooperative signal phase-stable transmission system
US4430572A (en) Device for separating two light signals emitted by sources having different wavelengths and transmitted in a single optical fiber
US8478130B2 (en) Optical communication device
JPS60184216A (en) Hybrid optical multiplexer/demultiplexer
CN105827330B (en) The production method and system of a kind of millimeter wave
JPH04119023A (en) Optical transmission system
JP2769502B2 (en) Multiple information transmission optical network
US20010010586A1 (en) Light source used in wavelength multiplexing
JPH0324822B2 (en)
JPH0353628A (en) Optical communication system
JPH09247092A (en) Optical parallel transmission device
JPS62274939A (en) Optical communication system
JPS6253031A (en) Wavelength multiplex optical fiber transmission system
JPS62170932A (en) Multiplex wavelength transmission system
JPS6159573B2 (en)
JPS63110828A (en) Wavelength divided multiplex optical communication equipment
JP2689835B2 (en) WDM reference light source
JP4598615B2 (en) Optical wavelength division multiplexing signal transmitter / receiver
RU2017336C1 (en) Fiber-optic data transmission device