JPH09159963A - Self-amplification deflecting and scanning optical system - Google Patents

Self-amplification deflecting and scanning optical system

Info

Publication number
JPH09159963A
JPH09159963A JP7322655A JP32265595A JPH09159963A JP H09159963 A JPH09159963 A JP H09159963A JP 7322655 A JP7322655 A JP 7322655A JP 32265595 A JP32265595 A JP 32265595A JP H09159963 A JPH09159963 A JP H09159963A
Authority
JP
Japan
Prior art keywords
optical system
polygon mirror
deflected
scanning
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7322655A
Other languages
Japanese (ja)
Other versions
JP3680871B2 (en
Inventor
Yujiro Nomura
雄二郎 野村
Nozomi Inoue
望 井上
高志 ▲浜▼
Takashi Hama
Kiyuu Takada
球 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP32265595A priority Critical patent/JP3680871B2/en
Publication of JPH09159963A publication Critical patent/JPH09159963A/en
Application granted granted Critical
Publication of JP3680871B2 publication Critical patent/JP3680871B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

PROBLEM TO BE SOLVED: To enlarge both the deflection angle and the diameter of a beam deflected for the third time even in the case of the small rotational angle of a rotary polygon mirror by making the beam incident on the rotary polygon mirror three times by using two sets of transmission optical systems. SOLUTION: The beam emitted from the laser 1 is made incident on the reflection surface t1 of the rotary polygon mirror 5 for the first time. The beam reflected by the reflection surface t1 passes through a lens 31, a returning mirror 33 and a lens 32, is guided to the mirror 5 again, and made incident on the reflection surface t2 for the second time. The beam reflected by the relflection surface t2 passes through a lens 41, returning mirrors 43 and 44 and a lens 42, further it is guided to the mirror 5 again, and made incident on the reflection surface t3 for the third time. The beam reflected by the reflection surface t3 passes through an fθ optical system 6 and is made incident on a surface 7 to be scanned. The surface 7 is scanned with the beam deflected by the mirror 5 at constant speed and a beam spot is formed on the surface 7 without causing the curvatute of field by the fθ optical system 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はレーザプリンタ、フ
ァクシミリなどの画像形成装置に用いられる走査光学系
に関し、特に回転多面鏡を用いてビーム偏向を行う場合
に伝達光学系を用いて偏向角を増幅させ、高速走査を可
能とする自己増幅偏向走査光学系に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning optical system used in an image forming apparatus such as a laser printer or a facsimile, and particularly when a beam is deflected by using a rotary polygon mirror, a transmission optical system is used to amplify the deflection angle. The present invention relates to a self-amplifying deflection scanning optical system that enables high-speed scanning.

【0002】[0002]

【従来の技術】回転多面鏡を用いた走査光学系におい
て、単位時間あたりの走査回数である走査速度を高速化
する方法としては、回転多面鏡の回転速度を高速化させ
る方法と回転多面鏡の反射面の数を増やす方法が知られ
ている。
2. Description of the Related Art In a scanning optical system using a rotary polygon mirror, a method of increasing the scanning speed which is the number of scans per unit time includes a method of increasing the rotation speed of the rotary polygon mirror and a method of increasing the rotation speed of the rotary polygon mirror. A method for increasing the number of reflecting surfaces is known.

【0003】しかしながら、回転速度を高速化させるこ
とは回転多面鏡の空気抵抗を増大させ、回転多面鏡の駆
動装置により大きなパワーを必要とし、駆動装置の大型
化や騒音の発生を招いてしまう。
However, increasing the rotation speed increases the air resistance of the rotary polygon mirror, requires more power for the driving device for the rotary polygon mirror, and causes an increase in the size of the driving device and noise.

【0004】一方、回転多面鏡の反射面の数を増やす方
法では、反射面の数が増えるとこれに反比例して反射面
1面当たりのビームの偏向角が小さくなり、最終的にビ
ームが走査する被走査面上で所定の像高を得るために
は、光路長を長くする必要がある。一般に被走査面での
走査ビームのスポット径を一定にした場合、回転多面鏡
で偏向されるビーム径は光路長に比例して大きくなるた
め、光路長を長くすると回転多面鏡で偏向するビーム径
も大きくする必要がある。ビーム径の大きなビームをビ
ーム巾全域にわたって、回転多面鏡の反射面でのケラレ
を小さくするように偏向走査するためには、外径の大き
な回転多面鏡を必要とする。従って通常、被走査面上で
のビーム径を一定にして回転多面鏡の反射面を増やすに
は、回転多面鏡の外径も大きくする必要がある。しか
し、外径の大きな回転多面鏡では空気抵抗が増大し、回
転速度を高速化した場合と同じように回転多面鏡の駆動
装置により大きなパワーを必要とし、駆動装置の大型化
や騒音の発生を招いてしまう。
On the other hand, in the method of increasing the number of reflecting surfaces of the rotary polygon mirror, when the number of reflecting surfaces increases, the deflection angle of the beam per reflecting surface decreases in inverse proportion to this, and the beam finally scans. In order to obtain a predetermined image height on the surface to be scanned, it is necessary to increase the optical path length. Generally, when the spot diameter of the scanning beam on the surface to be scanned is constant, the beam diameter deflected by the rotating polygon mirror increases in proportion to the optical path length. Also needs to be larger. In order to deflect and scan a beam having a large beam diameter over the entire beam width so as to reduce vignetting on the reflecting surface of the rotating polygon mirror, a rotating polygon mirror having a large outer diameter is required. Therefore, it is usually necessary to increase the outer diameter of the rotary polygon mirror in order to increase the number of reflecting surfaces of the rotary polygon mirror while keeping the beam diameter on the surface to be scanned constant. However, in a rotating polygon mirror with a large outer diameter, air resistance increases, and as in the case of increasing the rotation speed, a large amount of power is required for the driving device of the rotating polygon mirror, which causes an increase in the size of the driving device and noise generation. I will invite you.

【0005】このような課題に対して、回転多面鏡の外
径を大きくせずに回転多面鏡の反射面の数を増やすため
に、回転多面鏡で偏向されたビームを伝達光学系を用い
て再び回転多面鏡に入射させ偏向する方法が特開昭51
−32340号公報や特開昭53−97448号公報に
おいて提案されている。このうち特開昭51−3234
0号公報では比較的小さなビーム径を有するビームを回
転多面鏡に入射させ、偏向されたビームのビーム径を拡
大して回転多面鏡の反射面の回転に追随するように再度
回転多面鏡に入射させることにより、ビーム径の大きな
ビームを高い走査効率で偏向走査することを可能にして
いる。また、特開昭53−97448号公報では偏向器
により偏向されたビームを伝達光学系により再び偏向器
に導き、伝達光学系を射出したビームが偏向器の回転に
伴い光軸に対してなしていく角度方向を、偏向器の回転
方向と反対方向となるように伝達光学系を構成し、偏向
角を増幅させることを可能としている。
In order to solve such a problem, in order to increase the number of reflecting surfaces of the rotary polygon mirror without increasing the outer diameter of the rotary polygon mirror, a beam deflected by the rotary polygon mirror is used by a transmission optical system. A method of again injecting the light into the rotary polygon mirror and deflecting the light is disclosed in Japanese Patent Laid-Open No. 51-52
No. 32340 and JP-A-53-97448. Of these, JP-A-51-3234
In JP-A-0, a beam having a relatively small beam diameter is made incident on the rotating polygon mirror, the beam diameter of the deflected beam is enlarged, and the beam is made incident on the rotating polygon mirror again so as to follow the rotation of the reflecting surface of the rotating polygon mirror. By doing so, it is possible to deflect and scan a beam having a large beam diameter with high scanning efficiency. In JP-A-53-97448, the beam deflected by the deflector is guided to the deflector again by the transmission optical system, and the beam emitted from the transmission optical system is made to the optical axis as the deflector rotates. The transmission optical system is configured so that the angular direction to be turned is opposite to the rotation direction of the deflector, and the deflection angle can be amplified.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、走査速
度のさらなる高速化のために回転多面鏡の面数を増やし
ていった場合、上述の特開昭51−32340号公報で
提案されている方法では偏向角の増幅作用をほとんど持
たないため偏向角が小さくなり、被走査面で所定の像高
を得るためには光路長が長くなって装置の大型化を招い
てしまう。
However, when the number of surfaces of the rotary polygon mirror is increased in order to further increase the scanning speed, the method proposed in the above-mentioned Japanese Patent Laid-Open No. 51-32340 is used. Since it has almost no effect of amplifying the deflection angle, the deflection angle becomes small, and the optical path length becomes long in order to obtain a predetermined image height on the surface to be scanned, resulting in an increase in size of the apparatus.

【0007】一方、特開昭53−97448号公報で提
案されいる方式では回転多面鏡の反射面の数を増やした
場合でも伝達光学系の構成により偏向角を増幅させ広い
偏向角を得ることができる。しかし、最初に入射する反
射面と2度めに入射する反射面がほぼ共役となるように
伝達光学系が構成されているため、偏向角の増幅作用が
大きくなるように伝達光学系を構成しようとすると伝達
光学系の光学倍率が低くなり、2度めに偏向されるビー
ムのビーム径が小さくなってしまう。
On the other hand, in the method proposed in Japanese Patent Application Laid-Open No. 53-97448, even if the number of reflecting surfaces of the rotary polygon mirror is increased, the deflection angle can be amplified by the structure of the transmission optical system to obtain a wide deflection angle. it can. However, since the transmission optical system is configured so that the first reflecting surface and the second reflecting surface are substantially conjugate, the transmission optical system should be configured so that the amplification effect of the deflection angle is increased. Then, the optical magnification of the transmission optical system becomes low, and the beam diameter of the beam deflected the second time becomes small.

【0008】ところで、近年、レーザプリンタ等の画像
形成装置の高速化、高解像度化に伴い、走査光学系にお
いては高速化と同時に、高解像度化に対応するため被走
査面上でのビームスポットを小径化することが要求され
ている。このためビームの偏向装置においては走査速度
の高速化と同時に、ビーム径の大きなビームを偏向走査
することが要求される。ところが、特開昭53−974
48号公報で提案されいる方式では、このような走査速
度の高速化と偏向されるビームのビーム径を大きくして
高解像度化することを両立するのは困難である。
By the way, in recent years, with the increase in speed and resolution of image forming apparatuses such as laser printers, in the scanning optical system, simultaneously with the increase in speed, the beam spot on the surface to be scanned is changed to correspond to the increase in resolution. It is required to reduce the diameter. For this reason, in the beam deflecting device, it is required to increase the scanning speed and simultaneously deflect and scan a beam having a large beam diameter. However, JP-A-53-974
In the method proposed in Japanese Patent Laid-Open No. 48, it is difficult to achieve both high speed scanning and high resolution by increasing the beam diameter of the deflected beam.

【0009】このような要求に対して、伝達光学系を用
いた走査光学系において走査速度の高速化のために偏向
角の増幅作用を大きくし、かつ高解像度化のために最終
的に偏向されるビームのビーム径を大きくする方法とし
て、伝達光学を2組配して3度回転多面鏡によりビーム
を偏向する方法が考えられる。しかしながら、特開昭5
3−97448号公報に示される伝達光学系を2組用い
た場合、1度めに偏向されたビームを回転多面鏡に導く
第1の伝達光学系による偏向角の増幅作用があるため
に、2度めに偏向されたビームの偏向角は1度めに偏向
されたビームの偏向角よりも大きくなる。すると、2度
めに偏向されたビームを回転多面鏡に導く第2の伝達光
学系の開口数は第1の伝達光学系の開口数よりも大きく
なり、第2の伝達光学系における球面収差やコマ収差の
発生量が増大して被走査面における結像性能の劣化を招
くとともに、第2の伝達光学系の口径も大きくなるため
コスト高ともなってしまう。また、第1の伝達光学系の
偏向角の増幅作用がなくても第2の伝達光学系へ入射す
るビームのビーム径が大きければ同様にして結像性能の
劣化を招いてしまう。
In response to such a demand, in the scanning optical system using the transmission optical system, the amplifying action of the deflection angle is increased in order to increase the scanning speed, and finally the deflection is performed in order to increase the resolution. As a method of increasing the beam diameter of the beam to be reflected, a method of arranging two sets of transmission optics and deflecting the beam by a 3 degree rotating polygon mirror can be considered. However, Japanese Patent Application Laid-Open
In the case of using two sets of transmission optical systems disclosed in Japanese Patent Application Laid-Open No. 3-97448, there is an action of amplifying the deflection angle by the first transmission optical system that guides the beam deflected once to the rotary polygon mirror. The deflection angle of the beam deflected at a certain degree is larger than the deflection angle of the beam deflected at the first degree. Then, the numerical aperture of the second transfer optical system that guides the beam deflected a second time to the rotary polygon mirror becomes larger than the numerical aperture of the first transfer optical system, and spherical aberration in the second transfer optical system and The amount of coma aberration increases, which leads to deterioration of the imaging performance on the surface to be scanned, and the cost increases because the aperture of the second transmission optical system also increases. Further, even if there is no amplification effect of the deflection angle of the first transmission optical system, if the beam diameter of the beam incident on the second transmission optical system is large, the imaging performance is similarly deteriorated.

【0010】すなわち、本発明の目的とするところは、
2組の伝達光学系を配してビームを3度回転多面鏡に入
射させ、反射面の数が多い回転多面鏡を用いてビーム径
の大きなビームを広角に偏向走査しても、被走査面にお
ける結像性能の劣化がなくコスト高ともならない高速、
高解像度、高画質、低価格な自己増幅偏向走査光学系を
提供するものである。
That is, the object of the present invention is to
Even if a beam with a large beam diameter is deflected and scanned at a wide angle by using a rotating polygon mirror having a large number of reflecting surfaces, two sets of transmission optical systems are arranged to make the beam incident on the rotating polygon mirror. High-speed, with no deterioration in imaging performance and no increase in cost
The present invention provides a high-resolution, high-quality, low-cost self-amplifying deflection scanning optical system.

【0011】[0011]

【課題を解決するための手段】本発明の自己増幅偏向走
査光学系は回転運動によりビームを偏向する反射面を複
数有する回転多面鏡と、前記回転多面鏡の前記反射面で
1度めに偏向されたビームを前記回転多面鏡に導く第1
の伝達光学系と、前記第1の伝達光学系を射出し前記回
転多面鏡により2度めに偏向されたビームを前記回転多
面鏡に導く第2の伝達光学系を配し、前記回転多面鏡の
回転により1度めに偏向されるビームの偏向角よりも前
記第2の伝達光学系を射出し3度めに偏向されるビーム
の偏向角の方が大きくなるように前記第1の伝達光学系
および前記第2の伝達光学系を構成した自己増幅偏向走
査光学系であって、前記回転多面鏡の回転により2度め
に偏向されるビームの偏向角は1度めに偏向されるビー
ムの偏向角以下であることを特徴とする。
SUMMARY OF THE INVENTION A self-amplifying deflection scanning optical system according to the present invention comprises a rotary polygon mirror having a plurality of reflecting surfaces for deflecting a beam by a rotary motion, and the first reflecting surface of the rotary polygon mirror. For guiding the focused beam to the rotating polygon mirror
And a second transfer optical system for guiding the beam emitted from the first transfer optical system and deflected by the rotating polygon mirror to the second position to the rotating polygon mirror. Rotation of the first transmission optical system so that the deflection angle of the beam emitted from the second transmission optical system and deflected the third time is larger than the deflection angle of the beam deflected the first time. System and the second transmission optical system, which is a self-amplifying deflection scanning optical system, wherein the beam deflected a second time by the rotation of the rotary polygon mirror has a deflection angle of the beam deflected the first time. It is characterized in that it is less than the deflection angle.

【0012】また、本発明の自己増幅偏向走査光学系は
回転運動によりビームを偏向する反射面を複数有する回
転多面鏡と、前記回転多面鏡の前記反射面で1度めに偏
向されたビームを前記回転多面鏡に導く第1の伝達光学
系と、前記第1の伝達光学系を射出し前記回転多面鏡に
より2度めに偏向されたビームを前記回転多面鏡に導く
第2の伝達光学系を配し、前記回転多面鏡の回転により
1度めに偏向されるビームの偏向角よりも前記第2の伝
達光学系を射出し3度めに偏向されるビームの偏向角の
方が大きくなるように前記第1の伝達光学系および前記
第2の伝達光学系を構成した自己増幅偏向走査光学系で
あって、前記回転多面鏡により2度めに偏向されるビー
ムは平行ビームまたは集束ビームであることを特徴とす
る。
Further, the self-amplifying deflection scanning optical system of the present invention comprises a rotating polygon mirror having a plurality of reflecting surfaces for deflecting the beam by a rotational movement, and a beam deflected by the reflecting surface of the rotating polygon mirror for the first time. A first transfer optical system that guides the rotary polygon mirror, and a second transfer optical system that guides a beam emitted from the first transfer optical system and deflected by the rotary polygon mirror a second time to the rotary polygon mirror. And the deflection angle of the beam emitted from the second transfer optical system and deflected for the third degree becomes larger than the deflection angle of the beam deflected for the first time by the rotation of the rotary polygon mirror. In the self-amplifying deflection scanning optical system having the first transmission optical system and the second transmission optical system as described above, the beam deflected by the rotating polygon mirror for the second time is a parallel beam or a focused beam. It is characterized by being.

【0013】さらに、前記第1の伝達光学系および前記
第2の伝達光学系の光軸を通過し被走査面上の走査中心
を走査するビームは前記回転多面鏡の反射面へ1度め、
2度め、3度めとも主走査断面内において直角に入射す
ることを特徴とする。
Further, the beam that passes through the optical axes of the first transmission optical system and the second transmission optical system and scans the scanning center on the surface to be scanned is once moved to the reflection surface of the rotary polygon mirror.
The second and third degrees are characterized in that they are incident at right angles in the main scanning cross section.

【0014】さらにまた、前記第1の伝達光学系におい
て光軸上を通過するビーム以外のビームの主光線は前記
第1の伝達光学系の光軸と交差することを特徴とする。
Furthermore, the chief ray of a beam other than the beam passing on the optical axis in the first transfer optical system intersects with the optical axis of the first transfer optical system.

【0015】さらにまた、前記第1の伝達光学系を射出
し2度めに偏向されたビームは前記第1の伝達光学系を
構成する最終のレンズに再び入射することを特徴とす
る。
Furthermore, the beam which is emitted from the first transfer optical system and is deflected a second time is incident again on the final lens which constitutes the first transfer optical system.

【0016】さらにまた、前記第2の伝達光学系は前記
回転多面鏡に対向して設けられた平面鏡だけで構成され
ることを特徴とする。
Furthermore, the second transmission optical system is characterized in that it is composed only of a plane mirror provided facing the rotary polygon mirror.

【0017】[0017]

【発明の実施の形態】以下に本発明の実施の形態につい
て詳細に説明する。
Embodiments of the present invention will be described below in detail.

【0018】図1は本発明の基本的な原理を示す光学系
の主走査断面図であり、解り易くするために各光学要素
を光軸に沿って展開して示してある。図1において、1
は半導体レーザ等の光源を示し、2は光源1より射出し
た発散ビームを所定のビーム形状に整形するためのビー
ム整形光学系を示す。t1、t2、t3はそれぞれ同一の
図示していない回転多面鏡の反射面を示し、3は反射面
1で偏向されたビームを再び回転多面鏡の反射面t2
導くための第1の伝達光学系を、4は反射面t2で偏向
されたビームを再び回転多面鏡の反射面t3に導くため
の第2の伝達光学系を示す。ビーム整形光学系2、第1
の伝達光学系3および第2の伝達光学系4のそれぞれの
光軸は反射面t1およびt2を介して一致している。
FIG. 1 is a main-scan sectional view of an optical system showing the basic principle of the present invention, in which each optical element is shown in a developed state along the optical axis for easy understanding. In FIG. 1, 1
Denotes a light source such as a semiconductor laser, and 2 denotes a beam shaping optical system for shaping the divergent beam emitted from the light source 1 into a predetermined beam shape. Reference numerals t 1 , t 2 and t 3 respectively denote the same reflecting surface of the rotating polygon mirror (not shown), and 3 is for guiding the beam deflected by the reflecting surface t 1 to the reflecting surface t 2 of the rotating polygon mirror again. The first transfer optical system 4 is a second transfer optical system for guiding the beam deflected by the reflecting surface t 2 to the reflecting surface t 3 of the rotary polygon mirror again. Beam shaping optical system 2, 1st
The optical axes of the transmission optical system 3 and the second transmission optical system 4 are coincident with each other via the reflecting surfaces t 1 and t 2 .

【0019】光源1より射出したビームはビーム整形光
学系2を通過し、反射面t1に1度めに入射する。反射
面t1で反射されたビームは第1の伝達光学系3により
再び回転多面鏡に導かれ反射面t2に2度めに入射す
る。反射面t2で反射されたビームは第2の伝達光学系
4によりさらにもう一度回転多面鏡に導かれ反射面t3
に3度めに入射する。反射面t3で反射されたビームは
図示していないfθ光学系を経て図示していない被走査
面へと入射する。ビーム整形光学系2、第1の伝達光学
系3および第2の伝達光学系4のそれぞれの光軸が回転
多面鏡の反射面t1、t2、t3を介して一致する時の回
転多面鏡の回転角を0とし、この時に光源1から射出し
たビームは、第1の伝達光学系3および第2の伝達光学
系4のそれぞれの光軸を通過して被走査面上の走査中心
を走査するように、それぞれの光学要素が構成されてい
る。図1(a)に点線m1〜m5で示すのは、回転多面鏡
が回転角φ回転した場合に偏向されたビームの主光線で
ある。回転多面鏡が回転角φ回転することにより反射面
1は光軸に対してφ傾く。反射面t1に入射したビーム
は反射面t1により偏向されて、主光線m1は光軸に対し
て2φの角をなして射出する。この主光線m1の光軸に
対する角度を1度めの偏向角ω1(=2φ)とする。反
射面t1を射出したビームは、第1の伝達光学系3によ
り屈折させられ、主光線m2が反射面t2の回転角と同じ
回転方向で光軸に対してψ1の角をなすビームとなり、
光軸からの高さh1で反射面t2に入射する。入射したビ
ームは反射面t2により反射されて、主光線m3が光軸に
対して2φ−ψ1の角をなすビームm3となって射出す
る。このビームの主光線m3の光軸に対する角度を2度
めの偏向角ω2(=2φ−ψ1)とする。反射面t2を射
出したビームは第2の伝達光学系4により屈折させら
れ、主光線m4が反射面t3の回転角と逆の回転方向で光
軸に対してψ2の角をなすビームとなり、光軸からの高
さh2で反射面t3に入射する。入射したビームは反射面
3により反射され、主光線m5が光軸に対して2φ+ψ
2の角をなすビームとなって射出する。このビームの主
光線m5の光軸に対する角度を3度めの偏向角ω3(=2
φ+ψ2)とする。このように第2の伝達光学系4を射
出したビームの主光線m4は、光軸に対して反射面t4
回転角とは逆の回転方向の角ψ2をなして反射面t3へ入
射することにより、3度めの偏向角ω3を1度めの偏向
角ω1に対してψ1だけ増幅させている。反射面t2へ入
射するビームの主光線m2が光軸からの高さh1で反射面
2に入射するのは、ビームが反射面t2からはみ出さな
いよう反射面t2の回転に追従して入射するためであ
る。このh1ついては、回転多面鏡の内接円半径、反射
面数、回転角および反射面t2上でのビーム径を基に、
ビームが反射面からはみ出さない条件から許容量が算出
される。第1の伝達光学系3はh1が上述の許容量を満
たすように構成されている。反射面t3に入射するビー
ムの主光線m4の反射面t3上での高さh2も同様にし
て、ビームが反射面t3からはみ出さない条件から許容
量が算出され、算出された許容量を満たすように第2の
伝達光学系が構成されている。このような偏向角の増幅
作用により小さな回転多面鏡の回転角でも大きなビーム
の偏向角を得ることができ、回転多面鏡の面数を増やし
た場合でも偏向角を確保することが可能となって、走査
光学系を容易に高速化することができる。
The beam emitted from the light source 1 passes through the beam shaping optical system 2 and is incident on the reflecting surface t 1 for the first time. The beam reflected by the reflecting surface t 1 is again guided to the rotary polygon mirror by the first transmission optical system 3 and is incident on the reflecting surface t 2 for the second time. The beam reflected by the reflecting surface t 2 is further guided to the rotating polygon mirror by the second transfer optical system 4 and is again reflected by the reflecting surface t 3.
Incident on the third time. The beam reflected by the reflecting surface t 3 enters an unillustrated surface to be scanned through an unillustrated fθ optical system. The rotating polyhedron when the optical axes of the beam shaping optical system 2, the first transferring optical system 3 and the second transferring optical system 4 coincide with each other via the reflecting surfaces t 1 , t 2 and t 3 of the rotating polygonal mirror. The rotation angle of the mirror is set to 0, and the beam emitted from the light source 1 at this time passes through the respective optical axes of the first transmission optical system 3 and the second transmission optical system 4 to set the scanning center on the surface to be scanned. Each optical element is configured to scan. Dotted lines m 1 to m 5 shown in FIG. 1A are principal rays of the beam deflected when the rotary polygon mirror rotates by the rotation angle φ. When the rotary polygon mirror rotates by the rotation angle φ, the reflecting surface t 1 is inclined by φ with respect to the optical axis. Beam incident on the reflecting surface t 1 is deflected by the reflecting surface t 1, the main ray m 1 is emitted at an angle of 2φ with respect to the optical axis. The angle of the principal ray m 1 with respect to the optical axis is defined as the first deflection angle ω 1 (= 2φ). The beam emitted from the reflecting surface t 1 is refracted by the first transmission optical system 3, and the principal ray m 2 forms an angle of ψ 1 with respect to the optical axis in the same rotation direction as the rotation angle of the reflecting surface t 2. Becomes a beam,
It is incident on the reflecting surface t 2 at a height h 1 from the optical axis. The incident beam is reflected by the reflecting surface t 2 and the principal ray m 3 emerges as a beam m 3 forming an angle of 2φ−φ 1 with the optical axis. The angle of the principal ray m 3 of this beam with respect to the optical axis is defined as the second deflection angle ω 2 (= 2φ−ψ 1 ). The beam emitted from the reflecting surface t 2 is refracted by the second transmission optical system 4, and the principal ray m 4 makes an angle of ψ 2 with respect to the optical axis in a rotation direction opposite to the rotation angle of the reflecting surface t 3. It becomes a beam and enters the reflecting surface t 3 at a height h 2 from the optical axis. The incident beam is reflected by the reflecting surface t 3 , and the principal ray m 5 is 2φ + ψ with respect to the optical axis.
A beam with two angles is emitted. The angle of deflection of the principal ray m 5 of this beam with respect to the optical axis is the third deflection angle ω 3 (= 2
φ + ψ 2 ). In this way, the principal ray m 4 of the beam emitted from the second transmission optical system 4 forms an angle ψ 2 in the rotation direction opposite to the rotation angle of the reflection surface t 4 with respect to the optical axis, and the reflection surface t 3 By injecting the light into the third direction, the third deflection angle ω 3 is amplified by ψ 1 with respect to the first deflection angle ω 1 . The principal ray m 2 of the beam incident on the reflecting surface t 2 is incident on the reflecting surface t 2 at a height h 1 from the optical axis, the beam rotation of the reflecting surfaces t 2 so as not to protrude from the reflective surface t 2 This is because the incident light follows the. For this h 1 , based on the inscribed circle radius of the rotating polygon mirror, the number of reflecting surfaces, the rotation angle, and the beam diameter on the reflecting surface t 2 ,
The allowable amount is calculated from the condition that the beam does not protrude from the reflecting surface. The first transfer optical system 3 is configured so that h 1 satisfies the above-mentioned allowable amount. The height h 2 of the above reflection surface t 3 of the principal ray m 4 of the beam incident on the reflecting surface t 3 are similarly beam allowable amount is calculated from the condition that does not protrude from the reflecting surface t 3, it is calculated The second transfer optical system is configured to satisfy the allowable amount. With such an amplification effect of the deflection angle, a large beam deflection angle can be obtained even with a small rotation angle of the rotary polygon mirror, and the deflection angle can be secured even when the number of surfaces of the rotary polygon mirror is increased. The scanning optical system can be easily increased in speed.

【0020】ところで、伝達光学系を用いた自己増幅偏
向走査光学系においては、偏向点と伝達光学系により導
かれた次の偏向点とは、伝達光学系を介してほぼ光学的
共役関係にある。このため伝達光学系を1組しか用いな
い場合は、偏向角の増幅作用を大きくしようとすると伝
達光学系の光学倍率が小さくなり、2度めに偏向される
ビーム径が小さくなるという制約がある。1度めに偏向
されるビームの反射面上のビーム径を大きくすることに
より2度めに偏向されるビーム径を大きくすることもで
きるが、面数が多い回転多面鏡では反射面の辺の長さが
短いため、1度めに偏向されるビームが反射面からはみ
出さないようにすると走査効率が低下し、結果的に2度
めの偏向角が小さくなってしまう。なお走査効率とは3
60゜を回転多面鏡の面数で除算した角度に対する被走
査面上の走査領域を走査するための回転多面鏡の回転角
の割合を示し、走査効率を高めることにより同じ走査速
度(単位時間当たりの走査回数)であっても光源でのビ
ームのエネルギーを低減させたり、画像形成における画
像データ変調のためのデータクロックを低くすることが
できる。従って伝達光学系を1組しか用いない自己増幅
偏向走査光学系では高速化と高解像度化の両立に限界が
ある。本発明では2組の伝達光学系を用いて、ビームを
3度回転多面鏡により偏向することにより上述の制約に
捕らわれることなく走査光学系のさらなる高速化と高解
像度化を図ることができる。
In a self-amplifying deflection scanning optical system using a transmission optical system, the deflection point and the next deflection point guided by the transmission optical system have an almost optical conjugate relationship via the transmission optical system. . For this reason, when only one set of transmission optical system is used, there is a restriction that an attempt to increase the amplification effect of the deflection angle reduces the optical magnification of the transmission optical system and the beam diameter deflected the second time. . It is possible to increase the beam diameter of the beam deflected the second time by increasing the beam diameter of the beam deflected the first time on the reflection surface. Since the length is short, if the beam deflected for the first time does not stick out from the reflecting surface, the scanning efficiency is reduced, and as a result, the deflection angle for the second angle becomes small. The scanning efficiency is 3
The ratio of the rotation angle of the rotary polygon mirror for scanning the scanning area on the surface to be scanned to the angle obtained by dividing 60 ° by the number of faces of the rotary polygon mirror is shown. By increasing the scanning efficiency, the same scanning speed (per unit time) Even when the number of scans is less than 1, the energy of the beam at the light source can be reduced and the data clock for image data modulation in image formation can be lowered. Therefore, a self-amplifying deflection scanning optical system using only one set of transmission optical systems has a limit in achieving both high speed and high resolution. In the present invention, by using two sets of transmission optical systems, the beam is deflected by the three-degree rotating polygonal mirror, so that the scanning optical system can be further speeded up and the resolution can be increased without being restricted by the above-mentioned restrictions.

【0021】さらに本発明では第1の伝達光学系3を射
出したビームの主光線m2は、光軸に対して反射面t4
回転角と同じ回転方向に角ψ1をなして反射面t2へ入射
し、2度めの偏向角ω2は1度めの偏向角ω1に比べψ1
だけちいさくなるよう第1の伝達光学系3を構成してい
る。このため、第2の伝達光学系4の開口数を第1の伝
達光学系3と同じかそれ以下とすることができ、第2の
伝達光学系4での収差補正を良好にするとともに、第2
の伝達光学系4の口径も小さくなるため第2の伝達光学
系4の低価格化を図ることができる。
Further, in the present invention, the principal ray m 2 of the beam emitted from the first transmission optical system 3 forms an angle ψ 1 in the same rotation direction as the rotation angle of the reflection surface t 4 with respect to the optical axis, and the reflection surface is formed. At t 2 , the second deflection angle ω 2 is ψ 1 compared to the first deflection angle ω 1.
The first transmission optical system 3 is configured so as to be small. Therefore, the numerical aperture of the second transfer optical system 4 can be set to be equal to or smaller than that of the first transfer optical system 3, and the aberration correction in the second transfer optical system 4 can be made good, and Two
Since the diameter of the transfer optical system 4 is also small, the cost of the second transfer optical system 4 can be reduced.

【0022】次に本発明の光学系における基本的なビー
ムの結像関係について説明する。図1(b)は本発明の
光学系の結像関係を示す主走査断面図である。光源1よ
り放射状に射出したビームはビーム整形光学系2により
反射面t1の近傍の点Pに結像する集束ビームに整形さ
れて反射面t1に入射する。反射面t1を射出したビーム
は点Pで結像して後、発散ビームとして第1の伝達光学
系3に入射し、第1の伝達光学系3により平行ビームま
たは集束ビームに整形されて反射面t2に入射する。反
射面t2を射出したビームは平行ビームまたは集束ビー
ムとして第2の伝達光学系4に入射し、第2の伝達光学
系4により略平行ビームに整形され反射面t3により偏
向される。反射面t1の近傍に結像するようにビーム整
形光学系2からのビームが入射するのは、反射面t1
のビーム径w1を小さくして走査効率を高めるためであ
る。また、反射面t2により2度めに偏向されるビーム
を平行ビームまたは集束ビームとすることにより第2の
伝達光学系4に入射するビーム径が大きくなるのを防止
し、第2の伝達光学系4での収差補正を良好にすること
ができる。さらに、2度めに偏向されたビームの主光線
3と光軸との交点を点Q、第2の伝達光学系4を射出
したビームの主光線m4と光軸との交点を点Rとした場
合、主光線m3が光軸に対して高さh1で反射面t2へ入
射する構成のため点Qは反射面t2の手前に位置し、点
Qと点Rは第2の伝達光学系4を介して光学的共役関係
にある。このため、交点Rでのビーム径wRは交点Qで
のビーム径wQに第2の伝達光学系4の光学倍率を乗じ
た値となる。3度めに偏向されるビームはほぼ平行ビー
ムであるため交点Rでのビーム径wRと3度めに偏向さ
れるビーム径w3はほぼ等しく、w3はほぼwQに第2の
伝達光学系の光学倍率を乗じた値となる。前述したよう
に従来例の伝達光学系を用いた自己増幅偏向走査光学系
では偏向されるビーム径を変えずに偏向角の増幅作用を
大きくすると、伝達光学系へ入射するビーム径を大きく
しなければならず走査効率が低下してしまうという問題
がある。本発明では第2の伝達光学系4へ入射するビー
ム径である交点Qのビーム径wQを大きくしても、2度
めに偏向されるビームを集束ビームとすることで反射面
2上でのビーム径w2を小さくすることができ、偏向角
の増幅作用を大きくしても走査効率の低下を防止するこ
とができる。
Next, a basic image forming relationship of the beam in the optical system of the present invention will be described. FIG. 1B is a main-scan sectional view showing the image formation relationship of the optical system of the present invention. The injected beam radially from the light source 1 is shaped into a focused beam focused on the point P in the vicinity of the reflecting surface t 1 by a beam shaping optical system 2 enters the reflecting surface t 1. The beam emitted from the reflecting surface t 1 forms an image at a point P, then enters the first transfer optical system 3 as a divergent beam, is shaped into a parallel beam or a focused beam by the first transfer optical system 3, and is reflected. It is incident on the surface t 2 . The beam emitted from the reflecting surface t 2 enters the second transfer optical system 4 as a parallel beam or a focused beam, is shaped into a substantially parallel beam by the second transfer optical system 4, and is deflected by the reflecting surface t 3 . The beam from the beam shaping optical system 2 to image in the vicinity of the reflecting surface t 1 is incident is to increase the scanning efficiency by reducing the beam diameter w 1 on the reflecting surface t 1. Further, by making the beam deflected a second time by the reflecting surface t 2 into a parallel beam or a convergent beam, it is possible to prevent the beam diameter incident on the second transfer optical system 4 from increasing, and the second transfer optical system 4 is prevented. Aberration correction in the system 4 can be improved. Further, the intersection point between the principal ray m 3 of the beam deflected a second time and the optical axis is point Q, and the intersection point between the principal ray m 4 of the beam emitted from the second transmission optical system 4 and the optical axis is point R. In such a case, since the chief ray m 3 is incident on the reflecting surface t 2 at a height h 1 with respect to the optical axis, the point Q is located in front of the reflecting surface t 2 , and the points Q and R are the second points. Through the transmission optical system 4 of FIG. Therefore, the beam diameter w R at the intersection R becomes a value obtained by multiplying the beam diameter w Q at the intersection Q by the optical magnification of the second transfer optical system 4. Beam diameter w R and the beam diameter w 3 which is deflected Me 3 degrees at the third time point of intersection for beam deflected is substantially collimated beam R is approximately equal, w 3 and the second transmission almost w Q It is a value obtained by multiplying the optical magnification of the optical system. As described above, in the self-amplifying deflection scanning optical system using the transmission optical system of the conventional example, if the amplification effect of the deflection angle is increased without changing the deflected beam diameter, the beam diameter incident on the transmission optical system must be increased. However, there is a problem that the scanning efficiency is lowered. According to the present invention, even if the beam diameter w Q of the intersection Q, which is the beam diameter incident on the second transfer optical system 4, is increased, the beam deflected a second time is made a focused beam, so that the beam is reflected on the reflecting surface t 2 . It is possible to reduce the beam diameter w 2 at 1, and to prevent the reduction in scanning efficiency even if the amplification effect of the deflection angle is increased.

【0023】(実施例1)次に本発明の実際的な構成を
示す実施例について説明する。
(Embodiment 1) Next, an embodiment showing a practical configuration of the present invention will be described.

【0024】図2は本発明の第1の実施例を示す主走査
断面図である。この実施例では各光学要素は主走査断面
内に平面的に配置されており、各光学要素の光軸は同一
平面内にある。第1の伝達光学系は2枚のレンズ31、
32と1枚の折り返しミラー33から構成され、第2の
伝達光学系は2枚のレンズ41、42と2枚の折り返し
ミラー43、44から構成されている。光源である半導
体レーザ1より射出したビームはビーム整形光学系2を
通過し、回転多面鏡5の反射面t1に1度めに入射す
る。反射面t1で反射されたビームは第1の伝達光学系
を構成するレンズ31、折り返しミラー33、レンズ3
2を通過して再び回転多面鏡5に導かれ、反射面t2
2度めに入射する。反射面t2で反射されたビームは第
2の伝達光学系を構成するレンズ41、折り返しミラー
43、44、レンズ42を通過して、さらにもう一度回
転多面鏡5に導かれ反射面t3に3度めに入射する。反
射面t3で反射されたビームはfθ光学系6を通過して
被走査面7へと入射する。fθ光学系6は回転多面鏡5
により偏向されたビームが被走査面7上を等速に走査す
るとともに、像面湾曲を生じることなく被走査面7上に
ビームスポットを形成するように設計されている。図2
中の点線は回転多面鏡5により偏向され被走査面7の左
右の走査端を走査するビームの主光線を示す。これらの
主光線は反射面t2、t3へ回転多面鏡5の回転に伴う反
射面の動きに追従して入射するように第1および第2の
伝達光学系が構成されている。伝達光学系に用いられる
主走査断面内においてビームを折り返す折り返しミラー
の数は、反射面を追従する条件から、偏向されたビーム
の主光線が光軸と交差する回数が偶数回の場合は奇数
枚、交差する回数が奇数回の場合は偶数枚でなくてはな
らない。本実施例における第1の伝達光学系では偏向さ
れたビームは光軸と交差しないため主走査断面内におけ
る折り返しミラーは1枚であり、第2の伝達光学系では
偏向されたビームが光軸と1回交差するため折り返しミ
ラーは2枚としている。
FIG. 2 is a main-scan sectional view showing the first embodiment of the present invention. In this embodiment, the optical elements are arranged in a plane in the main scanning section, and the optical axes of the optical elements are in the same plane. The first transmission optical system includes two lenses 31,
32 and one folding mirror 33, and the second transmission optical system is composed of two lenses 41 and 42 and two folding mirrors 43 and 44. The beam emitted from the semiconductor laser 1 which is the light source passes through the beam shaping optical system 2 and is incident on the reflecting surface t 1 of the rotary polygon mirror 5 for the first time. The beam reflected by the reflecting surface t 1 is a lens 31, a folding mirror 33, and a lens 3 which constitute the first transmission optical system.
After passing through 2, the light is guided again to the rotary polygon mirror 5 and is incident on the reflecting surface t 2 for the second time. Beam reflected by the reflecting surface t2 the lens 41 constituting the second transmission optics, a folding mirror 43, passes through the lens 42, once again led to the rotary polygonal mirror 5 3 degrees to the reflecting surface t 3 Incident for The beam reflected by the reflecting surface t 3 passes through the fθ optical system 6 and enters the surface 7 to be scanned. The fθ optical system 6 is a rotary polygon mirror 5
The beam deflected by is scanned at a constant speed on the surface 7 to be scanned, and a beam spot is formed on the surface 7 to be scanned without causing field curvature. FIG.
The dotted line in the middle shows the chief ray of the beam deflected by the rotary polygon mirror 5 to scan the left and right scanning ends of the scanned surface 7. The first and second transmission optical systems are configured so that these chief rays are incident on the reflecting surfaces t 2 and t 3 following the movement of the reflecting surface due to the rotation of the rotary polygon mirror 5. The number of folding mirrors that fold the beam in the main scanning section used in the transmission optical system depends on the condition of following the reflecting surface, and if the number of times the principal ray of the deflected beam intersects the optical axis is an odd number, , If the number of crossing is odd, it must be an even number. Since the deflected beam does not intersect the optical axis in the first transmission optical system in this embodiment, there is only one folding mirror in the main scanning section, and in the second transmission optical system, the deflected beam does not coincide with the optical axis. Since it intersects once, the number of folding mirrors is two.

【0025】(実施例2)次に本発明の第2の実施例に
ついて説明する。図3は本発明の第2の実施例を示す主
走査断面図であり、図4は図3を光軸に沿って展開した
本実施例の副走査断面図である。本実施例では回転多面
鏡5の回転角が0の時、主走査断面内においてビーム整
形光学系2、第1および第2の伝達光学系のそれぞれの
光軸が回転多面鏡5の反射面t1、t2、t3と直角とな
るように構成されている。第1の伝達光学系3および第
2の伝達光学系4の光軸を通過し被走査面上の走査中心
を走査するビームは、反射面t1、t2、t3へ主走査断
面内において直角に入射する。回転多面鏡5のそれぞれ
の反射面に入射するビームは射出するビームとの干渉を
防ぐため、反射面に対して副走査方向に角度をなして反
射面に入射し、入射ビームと射出ビームを分離してい
る。第1の伝達光学系は2枚のレンズ31、32と3枚
の折り返しミラー33、34、35から構成され、第2
の伝達光学系は2枚のレンズ44、45と2枚の折り返
しミラー43、44から構成されている。光源である半
導体レーザ1より射出したビームはビーム整形光学系2
を通過し、回転多面鏡5の反射面t1に斜め下から1度
めに入射する。反射面t1で反射されたビームは入射ビ
ームとの干渉を避けて斜め上方向に射出し、第1の伝達
光学系を構成するレンズ31、折り返しミラー33、3
4、35およびレンズ32を通過して再び回転多面鏡5
に導かれ反射面t2に斜め上から2度めに入射する。反
射面t2で反射されたビームは入射ビームとの干渉を避
けて斜め下方向に射出し、第2の伝達光学系を構成する
レンズ41、折り返しミラー43、レンズ42、折り返
しミラー44を通過してさらにもう一度回転多面鏡5に
導かれ、反射面t3に斜め下から3度めに入射する。反
射面t3で反射されたビームは入射ビームとの干渉をさ
けて斜め上方向に射出しfθ光学系6を通過して被走査
面7へと入射する。図3中の点線は回転多面鏡5により
偏向され被走査面7の左右の走査端を走査するビームの
主光線を示し、これらの主光線は反射面t2、t3へ回転
多面鏡5の回転に伴う反射面の動きに追従して入射する
ように第1および第2の伝達光学系が構成されている。
(Second Embodiment) Next, a second embodiment of the present invention will be described. FIG. 3 is a main-scan sectional view showing a second embodiment of the present invention, and FIG. 4 is a sub-scan sectional view of the present embodiment developed from FIG. 3 along the optical axis. In this embodiment, when the rotation angle of the rotary polygon mirror 5 is 0, the optical axes of the beam shaping optical system 2 and the first and second transmission optical systems in the main scanning cross section are the reflecting surfaces t of the rotary polygon mirror 5. It is configured to be at a right angle to 1 , t 2 , and t 3 . The beam that passes through the optical axes of the first transfer optical system 3 and the second transfer optical system 4 and scans the scanning center on the surface to be scanned travels to the reflecting surfaces t 1 , t 2 , and t 3 in the main scanning section. It is incident at a right angle. The beams incident on the respective reflecting surfaces of the rotary polygon mirror 5 are incident on the reflecting surface at an angle in the sub-scanning direction with respect to the reflecting surfaces to prevent interference with the outgoing beams, and the incident beam and the outgoing beam are separated. doing. The first transmission optical system is composed of two lenses 31, 32 and three folding mirrors 33, 34, 35.
The transmission optical system is composed of two lenses 44 and 45 and two folding mirrors 43 and 44. The beam emitted from the semiconductor laser 1 which is the light source is a beam shaping optical system 2
, And enters the reflecting surface t 1 of the rotary polygon mirror 5 from diagonally below from the first time. The beam reflected by the reflecting surface t 1 is emitted obliquely upward while avoiding interference with the incident beam, and the lens 31, the folding mirrors 33, 3 constituting the first transmission optical system.
The rotary polygon mirror 5 is passed through the lenses 4 and 35 and the lens 32, and again.
And is incident on the reflecting surface t 2 from obliquely above for the second time. The beam reflected by the reflecting surface t 2 is emitted obliquely downward while avoiding interference with the incident beam, and passes through the lens 41, the folding mirror 43, the lens 42, and the folding mirror 44 that constitute the second transmission optical system. Then, it is guided again to the rotary polygon mirror 5 and is incident on the reflecting surface t 3 obliquely from below at the third angle. The beam reflected by the reflecting surface t 3 avoids interference with the incident beam, is emitted obliquely upward, passes through the fθ optical system 6, and is incident on the surface 7 to be scanned. Dotted lines in FIG. 3 indicate chief rays of a beam which is deflected by the rotary polygon mirror 5 and scans the left and right scanning ends of the scanned surface 7. These chief rays are directed to the reflecting surfaces t 2 and t 3 of the rotary polygon mirror 5. The first and second transmission optical systems are configured so that they are incident following the movement of the reflecting surface due to the rotation.

【0026】第1の実施例のように回転多面鏡を用いた
走査光学系において光軸と回転多面鏡の反射面が主走査
断面内において直角とならない構成では、回転多面鏡の
回転に伴う反射面の光軸方向への変位である偏向点変位
により、主光線の経路や収差など光学系の諸特性が光軸
に関して軸非対称となる。通常用いられる軸対称光学系
ではこれらの収差は補正不可能であるため走査光学系の
高精度化の妨げとなってしまう。光学系に軸非対称なレ
ンズ等を用いて軸非対称な収差を補正することもできる
が、光学系が極めて高価となってしまう。本実施例では
主走査断面内においてビーム整形光学系2、第1および
第2の伝達光学系のそれぞれの光軸が回転多面鏡5の回
転角が0の時、反射面t1、t2、t3と直角となるよ
うに構成することにより、光学系の諸特性が光軸に関し
て軸対称とすることができ、走査光学系のさらなる高精
度化を図ることができる。
In the scanning optical system using the rotary polygon mirror as in the first embodiment, in the structure in which the optical axis and the reflecting surface of the rotary polygon mirror do not form a right angle in the main scanning cross section, the reflection is caused by the rotation of the rotary polygon mirror. Due to the displacement of the deflection point, which is the displacement of the surface in the direction of the optical axis, various characteristics of the optical system such as the path of the chief ray and aberration become axially asymmetric with respect to the optical axis. These aberrations cannot be corrected by the commonly used axisymmetric optical system, which hinders the accuracy of the scanning optical system from increasing. It is possible to correct an axially asymmetric aberration by using an axially asymmetric lens or the like in the optical system, but the optical system becomes extremely expensive. In this embodiment, the optical axes of the beam shaping optical system 2 and the first and second transmission optical systems in the main scanning cross section are reflected surfaces t1, t2, t3 when the rotation angle of the rotary polygon mirror 5 is 0. By configuring so as to form a right angle, various characteristics of the optical system can be made axially symmetric with respect to the optical axis, and the accuracy of the scanning optical system can be further improved.

【0027】第1および第2の実施例に用いられる第1
の伝達光学系と第2の伝達光学系の代表的な設計例を以
下に示す。図5は本設計例のレンズ構成を示す主走査断
面図であり(a)の点線は走査端を走査するビームの主
光線を示し、(b)は走査中心を走査するビームの結像
関係を示す。図は解り易くするために第1および第2の
伝達光学系を光軸に沿って展開して示してある。本設計
例においては第1の伝達光学系を構成するレンズ31の
入射面s1および射出面s2は軸対称非球面であり、これ
以外のレンズ面は全て球面で構成されいる。本設計例の
光学諸元を表1に示す。なお、表中における各記号は以
下の通りである。
First used in the first and second embodiments
A typical design example of the transmission optical system and the second transmission optical system is shown below. 5A and 5B are main-scan sectional views showing the lens configuration of the present design example, where the dotted line in FIG. 5A shows the chief ray of the beam scanning the scanning end, and FIG. 5B shows the imaging relationship of the beam scanning the scanning center. Show. In the figure, the first and second transmission optical systems are shown expanded along the optical axis for the sake of easy understanding. In this design example, the entrance surface s 1 and the exit surface s 2 of the lens 31 forming the first transmission optical system are axisymmetric aspherical surfaces, and all other lens surfaces are spherical surfaces. Table 1 shows the optical specifications of this design example. The symbols in the table are as follows.

【0028】 si:面番号 ri:面番号iの曲率半径 di:面番号iからi+1の面までの軸上距離 ni:面番号iの屈折率 Ki、Ai、Bi、Ci、Di:面番号iが軸対称非球面の
場合に次式で示される軸対称非球面の非球面係数
S i : surface number r i : radius of curvature of surface number i d i : axial distance from surface number i to surface i + 1 ni : refractive index of surface number i K i , A i , B i , C i , D i : aspherical coefficient of an axisymmetric aspherical surface represented by the following equation when the surface number i is an axisymmetric aspherical surface

【0029】[0029]

【数1】 [Equation 1]

【0030】ただしzは光軸からの高さhにおける非球
面の点の非球面頂点の接平面からの距離である。 φ:走査中心から走査端までビームが走査される時の回
転多面鏡の回転角 Pr:回転多面鏡の内接円半径 L:反射面t1からビーム整形光学系を射出したビームの
結像点Pまでの光軸上の距離 ω1:1度めの偏向角 ω2:2度めの偏向角 ω3:3度めの偏向角 ψ1:走査端を走査するビームの主光線が反射面t2に入
射する時の光軸との傾角 ψ2:走査端を走査するビームの主光線が反射面t3に入
射する時の光軸との傾角 h1:走査端を走査するビームの主光線と反射面t2の交
点の光軸からの高さ h2:走査端を走査するビームの主光線と反射面t3の交
点の光軸からの高さ w1:走査中心を走査するビームの反射面t1上のビーム
径 w2:走査中心を走査するビームの反射面t2上のビーム
径 w3:走査中心を走査するビームの反射面t3上のビーム
Here, z is the distance from the tangent plane of the aspherical vertex of the aspherical point at the height h from the optical axis. phi: Rotation angle P r of the rotary polygonal mirror when the beam is scanned from the scanning center to a scanning end: inscribed circle of the rotating polygon mirror radius L: imaging of the beam emerging from the beam shaping optical system from the reflecting surface t 1 Distance on optical axis to point P ω 1 : Deflection angle at 1 ° ω 2 : Deflection angle at 2nd ω 3 : Deflection angle at 3rd ψ 1 : Principal ray of beam scanning at scanning end is reflected Tilt angle with respect to the optical axis when incident on the surface t 2 ψ 2 : Tilt angle with respect to the optical axis when the principal ray of the beam for scanning the scanning end enters the reflecting surface t 3 h 1 : For beam scanning at the scanning end principal ray and the reflection surface height from the optical axis at the intersection of t 2 h 2: height w from the optical axis at the intersection of the reflective surface t 3 the principal ray of the beam scanning the scan end 1: scanning the scan center Beam diameter on the reflecting surface t 1 of the beam w 2 : Beam diameter on the reflecting surface t 2 of the beam scanning the scanning center w 3 : Reflecting surface t of the beam scanning the scanning center Beam diameter on 3

【0031】[0031]

【表1】 [Table 1]

【0032】なお、本発明に用いられるビーム整形光学
系およびfθ光学系は一般に広く用いられる設計法によ
り容易に設計可能であり、ここではその構成を具体的に
記載することは省略する。
The beam shaping optical system and the fθ optical system used in the present invention can be easily designed by a generally widely used design method, and a detailed description of their configurations will be omitted here.

【0033】(実施例3)次に本発明の第3の実施例に
ついて説明する。図6は本発明の第3の実施例を示す主
走査断面図であり、図7は図6を光軸に沿って展開した
本実施例の副走査断面図である。本実施例では第2の実
施例と同様に、回転多面鏡5の回転角が0の時、主走査
断面内においてビーム整形光学系2、第1および第2の
伝達光学系のそれぞれの光軸が回転多面鏡5の反射面t
1、t2、t3に直角となるように構成されている。第1
の伝達光学系は2枚のレンズ31、32と2枚の折り返
しミラー33、35から構成され、第2の伝達光学系は
2枚のレンズ41、42と2枚の折り返しミラー43、
44から構成されている。図6中の点線は回転多面鏡5
により偏向され被走査面7の左右の走査端を走査するビ
ームの主光線を示し、本実施例では第1の伝達光学系の
レンズ31と32の間で偏向されたビームの主光線が光
軸と交差する構成となっている。
(Embodiment 3) Next, a third embodiment of the present invention will be described. FIG. 6 is a main-scan sectional view showing a third embodiment of the present invention, and FIG. 7 is a sub-scan sectional view of the present embodiment in which FIG. 6 is expanded along the optical axis. In this embodiment, as in the case of the second embodiment, when the rotation angle of the rotary polygon mirror 5 is 0, the optical axes of the beam shaping optical system 2, the first and second transmission optical systems in the main scanning cross section. Is the reflecting surface t of the rotary polygon mirror 5.
It is configured to be at a right angle to 1 , t 2 , and t 3 . First
The transmission optical system is composed of two lenses 31, 32 and two folding mirrors 33, 35, and the second transmission optical system is two lenses 41, 42 and two folding mirrors 43,
44. The dotted line in FIG. 6 is the rotary polygon mirror 5.
The principal ray of the beam which is deflected by and scans the left and right scanning ends of the surface to be scanned 7 is shown. In this embodiment, the principal ray of the beam deflected between the lenses 31 and 32 of the first transmission optical system is the optical axis. It is configured to intersect with.

【0034】本実施例では第1の伝達光学系のレンズ3
1とレンズ32の間で偏向されたビームの主光線を光軸
と交差させることにより、第1の伝達光学系の折り返し
ミラーの枚数を2枚とし、折り返しミラーの枚数を減ら
すことができる。
In this embodiment, the lens 3 of the first transmission optical system is used.
By intersecting the principal ray of the beam deflected between 1 and the lens 32 with the optical axis, the number of folding mirrors of the first transmission optical system can be set to 2, and the number of folding mirrors can be reduced.

【0035】第3の実施例に用いられる第1および第2
の伝達光学系の代表的な設計例を以下に示す。図8は本
設計例のレンズ構成を示す主走査断面図であり(a)の
点線は走査端を走査するビームの主光線を示し、(b)
は走査中心を走査ビームの結像関係を示す。図は解り易
くするために第1および第2の伝達光学系を光軸に沿っ
て展開して示してある。本設計例においては第1の伝達
光学系を構成するレンズ31の射出面s2のみ軸対称非
球面であり、これ以外のレンズ面は全て球面で構成され
いる。本設計例の光学諸元を表2に示す。なお、表中の
記号は表1の記号に準じる。
First and second used in the third embodiment
A typical design example of the transmission optical system is shown below. FIG. 8 is a main-scan sectional view showing the lens configuration of the present design example. The dotted line in (a) shows the chief ray of the beam scanning the scanning end, and (b).
Shows the image formation relationship of the scanning beam at the scanning center. In the figure, the first and second transmission optical systems are shown expanded along the optical axis for the sake of easy understanding. In this design example, only the exit surface s 2 of the lens 31 constituting the first transmission optical system is an axisymmetric aspherical surface, and all other lens surfaces are spherical surfaces. Table 2 shows the optical specifications of this design example. The symbols in the table conform to those in Table 1.

【0036】[0036]

【表2】 [Table 2]

【0037】(実施例4)次に本発明の第4の実施例に
ついて説明する。図9は本発明の第4の実施例を示す主
走査断面図であり、図10は図9を光軸に沿って展開し
た本実施例の副走査断面図である。本実施例では第2の
実施例と同様に、回転多面鏡5の回転角が0の時、主走
査断面内においてビーム整形光学系2、第1および第2
の伝達光学系のそれぞれの光軸が回転多面鏡5の反射面
1、t2、t3と直角になるように構成されている。第
1の伝達光学系は2枚のレンズ31、32と2枚の折り
返しミラー33、35から構成され、第2の伝達光学系
は3枚のレンズ32、41、42、2枚の折り返しミラ
ー43、44から構成されている。本実施例ではレンズ
32から射出したビームは反射面S2で反射された後、
再びレンズ32へ入射する構成となっており、レンズ3
2は第1および第2の伝達光学系の両方に含まれる。第
1の伝達光学系を通過しレンズ32を射出したビーム
は、斜め上方向から反射面t2へ入射して反射され、入
射ビームとの干渉を避けて斜め下方向に射出しレンズ3
2へ再び入射する。レンズ32を射出したビームはレン
ズ41、折り返しミラー43、レンズ42、折り返しミ
ラー44を通過して回転多面鏡5に導かれる。
(Fourth Embodiment) Next, a fourth embodiment of the present invention will be described. FIG. 9 is a main-scan sectional view showing a fourth embodiment of the present invention, and FIG. 10 is a sub-scan sectional view of the present embodiment in which FIG. 9 is expanded along the optical axis. In the present embodiment, as in the second embodiment, when the rotation angle of the rotary polygon mirror 5 is 0, the beam shaping optical system 2, the first and the second in the main scanning cross section.
Each of the optical axes of the transmission optical system is configured to be perpendicular to the reflecting surfaces t 1 , t 2 and t 3 of the rotary polygon mirror 5. The first transmission optical system is composed of two lenses 31, 32 and two folding mirrors 33, 35, and the second transmission optical system is three lenses 32, 41, 42 and two folding mirrors 43. , 44. In this embodiment, after the beam emitted from the lens 32 is reflected by the reflecting surface S 2 ,
It is configured to enter the lens 32 again, and the lens 3
2 is included in both the first and second transfer optics. The beam that has passed through the first transmission optical system and has exited the lens 32 is incident on the reflecting surface t 2 from an obliquely upper direction, is reflected, and exits obliquely downward to avoid interference with the incident beam, and the lens 3
It is incident on 2 again. The beam emitted from the lens 32 passes through the lens 41, the folding mirror 43, the lens 42, and the folding mirror 44, and is guided to the rotary polygon mirror 5.

【0038】本実施例ではレンズ32を第1および第2
の伝達光学系の両方に含まれる構成とすることにより、
走査光学系全体としてのレンズ枚数を増やすことなく、
第2の伝達光学系のレンズ枚数を増やすことができ、第
2の伝達光学系での収差補正を良好にすることができ
る。
In this embodiment, the lens 32 has the first and second lenses.
By including it in both of the transmission optics of
Without increasing the number of lenses in the scanning optical system as a whole,
The number of lenses in the second transfer optical system can be increased, and the aberration correction in the second transfer optical system can be improved.

【0039】第4の実施例に用いられる第1および第2
の伝達光学系の代表的な設計例を以下に示す。図11は
本設計例のレンズ構成を示す主走査断面図であり(a)
の点線は走査端を走査するビームの主光線を示し、
(b)は走査中心を走査するビームの結像関係を示す。
図は解り易くするために第1および第2の伝達光学系を
光軸に沿って展開して示してある。本設計例においては
第1の伝達光学系を構成するレンズ31の射出面s2
よび第2の伝達光学系を構成するレンズ42の入射面s
7、射出面s8は軸対称非球面レンズであり、これ以外の
レンズ面は全て球面で構成されいる。本設計例の光学諸
元を表3に示す。なお、表中の記号は表1の記号に準じ
る。
First and second used in the fourth embodiment
A typical design example of the transmission optical system is shown below. FIG. 11 is a main scanning sectional view showing the lens configuration of this design example (a).
The dotted line indicates the chief ray of the beam scanning the scan end,
(B) shows the imaging relationship of the beam scanning the scanning center.
In the figure, the first and second transmission optical systems are shown expanded along the optical axis for the sake of easy understanding. In this design example, the exit surface s 2 of the lens 31 forming the first transfer optical system and the entrance surface s of the lens 42 forming the second transfer optical system.
7 , the exit surface s 8 is an axisymmetric aspherical lens, and the other lens surfaces are all spherical surfaces. Table 3 shows the optical specifications of this design example. The symbols in the table conform to those in Table 1.

【0040】[0040]

【表3】 [Table 3]

【0041】(実施例5)次に本発明の第5の実施例に
ついて説明する。図12は本発明の第5の実施例を示す
主走査断面図であり、図13は図12を光軸に沿って展
開した本実施例の副走査断面図である。本実施例は第1
の実施例と同様に主走査断面内においてビーム整形光学
系、第1および第2の伝達光学系のそれぞれの光軸が回
転多面鏡5の回転角が0の時、反射面t1、t2と直角に
なるように構成されている。第1の伝達光学系は2枚の
レンズ31、32と2枚の折り返しミラー33、34か
ら構成され、第2の伝達光学系は回転多面鏡5に対向し
て設けられた平面鏡41で構成されている。図14に反
射面t2と平面鏡41での副走査方向のビームの振る舞
いを示す。第1の伝達光学系を通過し、反射面t2で反
射されたビームは図14に示すように入射ビームとの干
渉を避けて斜め下方向に射出し、第2の伝達光学系を構
成する平面鏡41で反射させられて、もう一度反射面t
2に斜め上から入射する。平面鏡41は反射面t2で反射
されたビームの干渉を避けるために副走査方向に薄く構
成されている。反射面t2で反射されたビームは入射ビ
ームとの干渉をさけて斜め下方向に射出しfθ光学系6
を通過して被走査面7へと入射する。
(Fifth Embodiment) Next, a fifth embodiment of the present invention will be described. FIG. 12 is a main-scan sectional view showing a fifth embodiment of the present invention, and FIG. 13 is a sub-scan sectional view of the present embodiment developed along the optical axis. This embodiment is the first
In the same manner as in the above embodiment, when the optical axes of the beam shaping optical system and the first and second transmission optical systems are 0 in the main scanning section and the rotation angle of the rotary polygon mirror 5 is 0, the reflecting surfaces t 1 , t 2 It is configured to be at a right angle to. The first transmission optical system is composed of two lenses 31, 32 and two folding mirrors 33, 34, and the second transmission optical system is composed of a plane mirror 41 provided facing the rotary polygon mirror 5. ing. FIG. 14 shows the behavior of the beam in the sub-scanning direction on the reflecting surface t 2 and the plane mirror 41. The beam that has passed through the first transfer optical system and is reflected by the reflecting surface t 2 is emitted obliquely downward while avoiding interference with the incident beam, as shown in FIG. 14, to form a second transfer optical system. The light is reflected by the plane mirror 41 and is reflected again t
Incident on 2 from above. The plane mirror 41 is made thin in the sub-scanning direction in order to avoid interference of the beam reflected by the reflecting surface t 2 . The beam reflected by the reflecting surface t 2 is emitted obliquely downward so as not to interfere with the incident beam and is emitted from the fθ optical system 6
And then enters the surface 7 to be scanned.

【0042】本実施例では第2の伝達光学系を平面鏡の
みで構成して、第2の伝達光学系を極めて簡素にするこ
とができ、低価格な走査光学系を構成することができ
る。
In the present embodiment, the second transmission optical system is composed of only plane mirrors, the second transmission optical system can be extremely simplified, and a low-cost scanning optical system can be constructed.

【0043】第5の実施例に用いられる第1および第2
の伝達光学系の代表的な設計例を以下に示す。図15は
本設計例のレンズ構成を示す主走査断面図であり(a)
の点線は走査端を走査するビームの主光線を示し、
(b)は走査中心を走査するビームの結像関係を示す。
図は解り易くするために第1および第2の伝達光学系を
光軸に沿って展開して示してある。本設計例においては
第1の伝達光学系を構成するレンズ31の入射面s1
よび射出面s2は軸対称非球面であり、これ以外のレン
ズ面は全て球面で構成されいる。本設計例の光学諸元を
表4に示す。なお、表中の記号は表1の記号に準じる。
First and Second Used in Fifth Embodiment
A typical design example of the transmission optical system is shown below. FIG. 15 is a main scanning sectional view showing a lens configuration of this design example (a).
The dotted line indicates the chief ray of the beam scanning the scan end,
(B) shows the imaging relationship of the beam scanning the scanning center.
In the figure, the first and second transmission optical systems are shown expanded along the optical axis for the sake of easy understanding. In this design example, the entrance surface s 1 and the exit surface s 2 of the lens 31 forming the first transmission optical system are axisymmetric aspherical surfaces, and all other lens surfaces are spherical surfaces. Table 4 shows the optical specifications of this design example. The symbols in the table conform to those in Table 1.

【0044】[0044]

【表4】 [Table 4]

【0045】いずれの実施例に関しても第1あるいは第
2の伝達光学系を構成するレンズをシリンドリカルレン
ズ、トーリックレンズなどのアナモフィックレンズとし
たり、伝達光学系内に副走査方向にのみ屈折力を有する
シリンドリカルレンズを付加することにより、ビームが
偏向される各反射面を副走査方向に関して光学的に共役
にすることができ反射面の倒れを光学的に補正すること
ができる。
In any of the embodiments, the lens forming the first or second transmission optical system may be an anamorphic lens such as a cylindrical lens or a toric lens, or the transmission optical system may have a refractive power only in the sub-scanning direction. By adding a lens, each reflecting surface on which the beam is deflected can be made optically conjugate with respect to the sub-scanning direction, and tilting of the reflecting surface can be optically corrected.

【0046】[0046]

【発明の効果】以上説明してきたように本発明の構成に
よれば、2組の伝達光学系を用いてビームを3度回転多
面鏡に入射させることで、小さい回転多面鏡の回転角で
あっても3度めに偏向されるビームの偏向角とビーム径
の両方を大きくすることができる。加えて回転多面鏡に
2度めに偏向されたビームの偏向角を1度めに偏向され
たビームの偏向角以下となるよう第1の伝達光学系を構
成したことにより、第2の伝達光学系の開口数を小さく
して第2の伝達光学系での収差補正を良好にするととも
に、口径も小さくでき、高速、高解像度、高精度、低価
格な自己増幅偏向走査光学系を提供することができる。
As described above, according to the configuration of the present invention, the beam is incident on the 3-degree rotating polygon mirror by using two sets of transmission optical systems, so that the rotating angle of the rotating polygon mirror is small. However, both the deflection angle and the beam diameter of the beam deflected for the third time can be increased. In addition, the first transmission optical system is configured so that the deflection angle of the beam deflected to the second degree by the rotating polygon mirror is equal to or less than the deflection angle of the beam deflected to the first degree. (EN) Provided is a self-amplifying deflection scanning optical system which has a small numerical aperture to improve aberration correction in the second transmission optical system and also has a small aperture, which is high-speed, high-resolution, high-precision, and low-priced. You can

【0047】また、回転多面鏡によって2度めに偏向さ
れるビームを平行ビームまたは集束ビームとすることに
より、第2の伝達光学系へ入射するビームのビーム径が
大きくなるのを防止して第2の伝達光学系での収差補正
を良好にすることができる。さらに3度めに偏向される
ビームのビーム径を変えず、かつ走査効率も低下させず
に第2の伝達光学系における偏向角の増幅作用を大きく
することができ、高速、高解像度、高精度な自己増幅偏
向走査光学系を提供することができる。
Further, by making the beam deflected a second time by the rotating polygonal mirror a parallel beam or a focused beam, it is possible to prevent the beam diameter of the beam incident on the second transmission optical system from increasing. Aberration correction in the second transmission optical system can be improved. Furthermore, the amplification effect of the deflection angle in the second transmission optical system can be increased without changing the beam diameter of the beam deflected the third time and without lowering the scanning efficiency. It is possible to provide a self-amplifying deflection scanning optical system.

【0048】さらに、第1の伝達光学系および第2の伝
達光学系の光軸を通過し被走査面上の走査中心を走査す
るビームは回転多面鏡の反射面へ1度め、2度め、3度
めとも主走査断面内において直角に入射する構成とする
ことにより、光学系が光軸に対して軸対称となるため、
軸非対称な収差の発生がなくなり、さらなる光学系の高
精度化を図ることができる。
Further, the beam that passes through the optical axes of the first transmission optical system and the second transmission optical system and scans the scanning center on the surface to be scanned is directed to the reflecting surface of the rotary polygon mirror once and then to the second. Since the optical system becomes axially symmetric with respect to the optical axis by making the light incident at a right angle in the main scanning cross section at the third time,
The occurrence of axially asymmetric aberration is eliminated, and the accuracy of the optical system can be further improved.

【0049】さらにまた、第1の伝達光学系において光
軸上を通過するビーム以外のビームの主光線が、第1の
伝達光学系の光軸と交差するよう第1の伝達光学系を構
成することにより、第1の伝達光学系を構成する折り返
しミラーの枚数を減らすことができ、さらなる光学系の
低価格化を図ることができる。
Furthermore, in the first transfer optical system, the first transfer optical system is constructed so that the chief ray of the beam other than the beam passing on the optical axis intersects the optical axis of the first transfer optical system. As a result, the number of folding mirrors that form the first transmission optical system can be reduced, and the cost of the optical system can be further reduced.

【0050】さらにまた、回転多面鏡により2度めに偏
向されたビームは第1の伝達光学系を構成する最終のレ
ンズに再び入射するように構成することにより、光学系
全体のレンズ枚数を増やさずに第2の伝達光学系を構成
するレンズ枚数を増やし、第2の伝達光学系での収差補
正を良好にすることができる。
Further, the beam deflected a second time by the rotary polygon mirror is made to enter the final lens constituting the first transmission optical system again, thereby increasing the number of lenses in the entire optical system. Instead, the number of lenses forming the second transfer optical system can be increased and the aberration correction in the second transfer optical system can be improved.

【0051】さらにまた、第2の伝達光学系を回転多面
鏡に対向して設けられた平面鏡だけで構成することによ
り、第2の伝達光学系を極めて簡素化でき、さらなる光
学系の低価格化を図ることができる。
Furthermore, by constructing the second transmission optical system only by the plane mirror provided facing the rotary polygonal mirror, the second transmission optical system can be extremely simplified, and the cost of the optical system can be further reduced. Can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の基本的な原理を示す光学系の主走査断
面図。
FIG. 1 is a main-scan sectional view of an optical system showing the basic principle of the present invention.

【図2】本発明の第1の実施例を示す主走査断面図。FIG. 2 is a main-scan sectional view showing the first embodiment of the present invention.

【図3】本発明の第2の実施例を示す主走査断面図。FIG. 3 is a main scanning sectional view showing a second embodiment of the present invention.

【図4】本発明の第2の実施例を示す副走査断面図。FIG. 4 is a sub-scan sectional view showing a second embodiment of the present invention.

【図5】第1および第2の実施例の設計例のレンズ構成
を示す主走査断面図。
FIG. 5 is a main-scan sectional view showing lens configurations of design examples of the first and second examples.

【図6】本発明の第3の実施例を示す主走査断面図。FIG. 6 is a main-scan sectional view showing a third embodiment of the present invention.

【図7】本発明の第3の実施例を示す副走査断面図。FIG. 7 is a sub-scan sectional view showing a third embodiment of the present invention.

【図8】本発明の第3の実施例の設計例のレンズ構成を
示す主走査断面図。
FIG. 8 is a main scanning sectional view showing the lens configuration of a design example of the third embodiment of the present invention.

【図9】本発明の第4の実施例を示す主走査断面図。FIG. 9 is a main-scan sectional view showing a fourth embodiment of the present invention.

【図10】本発明の第4の実施例を示す副走査断面図。FIG. 10 is a sub-scan sectional view showing a fourth embodiment of the present invention.

【図11】本発明の第4の実施例の設計例のレンズ構成
を示す主走査断面図。
FIG. 11 is a main scanning sectional view showing the lens configuration of a design example of the fourth embodiment of the present invention.

【図12】本発明の第5の実施例を示す主走査断面図。FIG. 12 is a main-scan sectional view showing a fifth embodiment of the present invention.

【図13】本発明の第5の実施例を示す副走査断面図。FIG. 13 is a sub-scan sectional view showing a fifth embodiment of the present invention.

【図14】本発明の第5の実施例の回転多面鏡への2度
めと3度めに入射するビームを示す副走査断面図。
FIG. 14 is a sub-scanning cross-sectional view showing a beam that is incident on a rotating polygon mirror according to a fifth embodiment of the present invention at the second and third times.

【図15】本発明の第5の実施例の設計例のレンズ構成
を示す主走査断面図。
FIG. 15 is a main-scan sectional view showing the lens configuration of a design example of the fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 光源 2 ビーム整形光学系 3 第1の伝達光学系 4 第2の伝達光学系 5 回転多面鏡 6 fθ光学系 7 被走査面 1 Light Source 2 Beam Shaping Optical System 3 First Transfer Optical System 4 Second Transfer Optical System 5 Rotating Polygonal Mirror 6 fθ Optical System 7 Scanned Surface

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高田 球 長野県諏訪市大和3丁目3番5号 セイコ ーエプソン株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kyumu Takada 3-3-5 Yamato, Suwa City, Nagano Seiko Epson Corporation

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 回転運動によりビームを偏向する反射面
を複数有する回転多面鏡と、前記回転多面鏡の前記反射
面で1度めに偏向されたビームを前記回転多面鏡に導く
第1の伝達光学系と、前記第1の伝達光学系を射出し前
記回転多面鏡により2度めに偏向されたビームを前記回
転多面鏡に導く第2の伝達光学系を配し、前記回転多面
鏡の回転により1度めに偏向されるビームの偏向角より
も前記第2の伝達光学系を射出し3度めに偏向されるビ
ームの偏向角の方が大きくなるように前記第1の伝達光
学系および前記第2の伝達光学系を構成した自己増幅偏
向走査光学系であって、前記回転多面鏡の回転により2
度めに偏向されるビームの偏向角は1度めに偏向される
ビームの偏向角以下であることを特徴とする自己増幅偏
向走査光学系。
1. A rotating polygon mirror having a plurality of reflecting surfaces for deflecting a beam by rotational movement, and a first transmission for guiding a beam deflected by the reflecting surface of the rotating polygon mirror to the rotating polygon mirror. An optical system and a second transmission optical system that emits the first transmission optical system and guides the beam deflected by the rotating polygon mirror to the second direction to the rotating polygon mirror are arranged, and rotation of the rotating polygon mirror is provided. By the first transfer optical system so that the deflection angle of the beam emitted from the second transfer optical system and deflected by the third degree becomes larger than the deflection angle of the beam deflected by the first transfer optical system. A self-amplifying deflection scanning optical system that constitutes the second transmission optical system, wherein
A self-amplifying deflection scanning optical system, wherein the deflection angle of the beam deflected at a certain degree is equal to or less than the deflection angle of the beam deflected at the first degree.
【請求項2】 回転運動によりビームを偏向する反射面
を複数有する回転多面鏡と、前記回転多面鏡の前記反射
面で1度めに偏向されたビームを前記回転多面鏡に導く
第1の伝達光学系と、前記第1の伝達光学系を射出し前
記回転多面鏡により2度めに偏向されたビームを前記回
転多面鏡に導く第2の伝達光学系を配し、前記回転多面
鏡の回転により1度めに偏向されるビームの偏向角より
も前記第2の伝達光学系を射出し3度めに偏向されるビ
ームの偏向角の方が大きくなるように前記第1の伝達光
学系および前記第2の伝達光学系を構成した自己増幅偏
向走査光学系であって、前記回転多面鏡により2度めに
偏向されるビームは平行ビームまたは集束ビームである
ことを特徴とする自己増幅偏向走査光学系。
2. A rotating polygon mirror having a plurality of reflecting surfaces for deflecting the beam by rotational movement, and a first transmission for guiding the beam deflected to the first by the reflecting surface of the rotating polygon mirror to the rotating polygon mirror. An optical system and a second transmission optical system that emits the first transmission optical system and guides the beam deflected by the rotating polygon mirror to the second direction to the rotating polygon mirror are arranged, and rotation of the rotating polygon mirror is provided. By the first transfer optical system so that the deflection angle of the beam emitted from the second transfer optical system and deflected by the third degree becomes larger than the deflection angle of the beam deflected by the first transfer optical system. A self-amplifying deflection scanning optical system constituting the second transfer optical system, wherein the beam deflected a second time by the rotating polygon mirror is a parallel beam or a focused beam. Optical system.
【請求項3】 前記第1の伝達光学系および前記第2の
伝達光学系の光軸を通過し被走査面上の走査中心を走査
するビームは、前記回転多面鏡の反射面へ1度め、2度
め、3度めとも主走査断面内において直角に入射するこ
とを特徴とする請求項1または2記載の自己増幅偏向走
査光学系。
3. The beam that passes through the optical axes of the first transmission optical system and the second transmission optical system and scans the scanning center on the surface to be scanned is once reflected on the reflection surface of the rotary polygon mirror. The self-amplifying deflection scanning optical system according to claim 1 or 2, wherein the second and third degrees are incident at right angles in the main scanning cross section.
【請求項4】 前記第1の伝達光学系において光軸上を
通過するビーム以外のビームの主光線は、前記第1の伝
達光学系の光軸と交差することを特徴とする請求項1ま
たは2記載の自己増幅偏向走査光学系。
4. The chief ray of a beam other than the beam passing on the optical axis in the first transfer optical system intersects the optical axis of the first transfer optical system. 2. The self-amplifying deflection scanning optical system described in 2.
【請求項5】 前記第1の伝達光学系を射出し2度めに
偏向されたビームは前記第1の伝達光学系を構成する最
終のレンズに再び入射することを特徴とする請求項3記
載の自己増幅偏向走査光学系。
5. The beam which is emitted from the first transfer optical system and is deflected a second time is incident again on the final lens which constitutes the first transfer optical system. Self-amplifying deflection scanning optical system.
【請求項6】 前記第2の伝達光学系は前記回転多面鏡
に対向して設けられた平面鏡だけで構成されることを特
徴とする請求項3記載の自己増幅走査光学系。
6. The self-amplifying scanning optical system according to claim 3, wherein the second transmission optical system is composed only of a plane mirror provided facing the rotary polygon mirror.
JP32265595A 1995-12-12 1995-12-12 Self-amplifying deflection scanning optical system Expired - Fee Related JP3680871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32265595A JP3680871B2 (en) 1995-12-12 1995-12-12 Self-amplifying deflection scanning optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32265595A JP3680871B2 (en) 1995-12-12 1995-12-12 Self-amplifying deflection scanning optical system

Publications (2)

Publication Number Publication Date
JPH09159963A true JPH09159963A (en) 1997-06-20
JP3680871B2 JP3680871B2 (en) 2005-08-10

Family

ID=18146127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32265595A Expired - Fee Related JP3680871B2 (en) 1995-12-12 1995-12-12 Self-amplifying deflection scanning optical system

Country Status (1)

Country Link
JP (1) JP3680871B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001004943A (en) * 1999-06-23 2001-01-12 Seiko Epson Corp Optical scanner
DE102007019017A1 (en) * 2007-04-19 2009-01-22 Ldt Laser Display Technology Gmbh Method and apparatus for projecting an image onto a screen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001004943A (en) * 1999-06-23 2001-01-12 Seiko Epson Corp Optical scanner
DE102007019017A1 (en) * 2007-04-19 2009-01-22 Ldt Laser Display Technology Gmbh Method and apparatus for projecting an image onto a screen

Also Published As

Publication number Publication date
JP3680871B2 (en) 2005-08-10

Similar Documents

Publication Publication Date Title
US5475522A (en) Optical scanner
JPH06123844A (en) Optical scanner
JP3869704B2 (en) Scanning optical system
US4674825A (en) Scanning optical system
US6512623B1 (en) Scanning optical device
JPH1138348A (en) Scanning image forming optical system, and optical scanning device
JP3680871B2 (en) Self-amplifying deflection scanning optical system
JPH11281911A (en) Optical scanning optical system
US5768028A (en) Scanning optics
JP3680893B2 (en) Optical scanning device
JPH09203875A (en) Optical scanning device
JP2003227998A (en) Scanning optical system
JPH1184304A (en) Optical scanner
JP3385678B2 (en) Optical scanning device
JPH11249040A (en) Optical scanning device
JP3381333B2 (en) Optical scanning device
JP3680891B2 (en) Optical scanning device
JPH1152277A (en) Optical scanner
JP3558847B2 (en) Multi-beam scanner
JP2520917B2 (en) Post-object type optical deflector
JP3725182B2 (en) Optical scanning device
JPH06281856A (en) Scanning image forming optical system and optical scanner
JPH09133888A (en) Optical scanning device
JP2000147404A (en) Multibeam scanner
JPH06130292A (en) Anamorphic ftheta lens and optical scanner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050510

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees