JPH09157849A - Production of thin film and apparatus for producing thin film - Google Patents

Production of thin film and apparatus for producing thin film

Info

Publication number
JPH09157849A
JPH09157849A JP32167795A JP32167795A JPH09157849A JP H09157849 A JPH09157849 A JP H09157849A JP 32167795 A JP32167795 A JP 32167795A JP 32167795 A JP32167795 A JP 32167795A JP H09157849 A JPH09157849 A JP H09157849A
Authority
JP
Japan
Prior art keywords
thin film
endless belt
endless
substrate
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32167795A
Other languages
Japanese (ja)
Other versions
JP3529922B2 (en
Inventor
Kazuyoshi Honda
和義 本田
Kaji Maezawa
可治 前澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP32167795A priority Critical patent/JP3529922B2/en
Publication of JPH09157849A publication Critical patent/JPH09157849A/en
Application granted granted Critical
Publication of JP3529922B2 publication Critical patent/JP3529922B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably obtain thin film, for magnetic recording media, etc., with a high productivity. SOLUTION: A long-sizes substrate 4 consisting of polyethylene terephthalate is un-wound in a direction 12 from an un-winding roll 3 in a vacuum vessel 2 evacuated to vacuum by a discharge system 1. This substrate travels along an endless belt 17. Among the rollers supporting this endless belt 17, the roller 18A is cooled by circulating oil which is a refrigerant, in the space disposed in the revolving shaft of the roller. The inner side of the endless belt 17 is provided with an auxiliary belt 19. The rollers 20D and 20E are cooled by the internal circulation of the refrigerant. After the substrate is pressed to the endless belt by a nip roll 15, the substrate is irradiated with an electron beam 14 from an electron gun 13. The substrate 4 is subjected to vapor deposition in an aperture of a shielding plate 9 by an evaporation crucible 7 irradiated with the electron beam 6. Gaseous oxygen is directed toward the substrate from the terminal side of the vapor deposition in the aperture of the shielding plate 9 to execute the reaction vapor deposition, by which a Co-O magnetic layer is formed on the substrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、磁気テープ等の薄
膜の製造方法及び製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for manufacturing a thin film such as a magnetic tape.

【0002】[0002]

【従来の技術】現代社会に於て薄膜の果たす役割は非常
に広範囲であり、日常生活の様々な部分において薄膜が
利用されている。これらの中でも包装紙、磁気テープ、
コンデンサ等の用途においては、高速大量生産に有利な
連続巻取り真空蒸着が行われている。即ち、図6のよう
に長尺の基板が円筒状キャンの周面に沿って走行中に電
子ビーム蒸着を行うことによって種々の薄膜の量産が出
来る。蒸発材料と基板材料を形成する薄膜の目的に合わ
せて選ぶと同時に、必要に応じて真空槽内に反応ガスを
導入することや、基板に電位を設けた状態で薄膜を形成
することによってによって所望の特性を持った薄膜を形
成することが出来る。例えば、磁気記録媒体の製造にお
いてはCo、Ni、Fe等の磁性元素を含む蒸発材料を
用い、真空槽中に酸素ガスを導入しながら反応蒸着を行
うことによって長尺の磁気記録媒体を得ることが出来
る。
2. Description of the Related Art The role of thin films in modern society is extremely widespread, and thin films are used in various parts of daily life. Among these, wrapping paper, magnetic tape,
In applications such as capacitors, continuous winding vacuum deposition is performed, which is advantageous for high-speed mass production. That is, as shown in FIG. 6, various thin films can be mass-produced by performing electron beam evaporation while a long substrate is running along the peripheral surface of the cylindrical can. The evaporation material and the material for the substrate are selected according to the purpose of forming the thin film, and at the same time, desired gas is introduced by introducing a reaction gas into the vacuum chamber or by forming the thin film with the potential applied to the substrate. It is possible to form a thin film having the characteristics of. For example, in the production of a magnetic recording medium, a long magnetic recording medium is obtained by using an evaporation material containing a magnetic element such as Co, Ni, and Fe and performing reactive vapor deposition while introducing oxygen gas into a vacuum chamber. Can be done.

【0003】また、連続巻取り真空蒸着法の生産性を更
に高める方法として、キャンの代わりにベルトを用いた
ベルト蒸着法がある(特開昭60−217524号公
報)。即ち図7のように、キャンの代わりにベルトを用
いて蒸着を行えば、非常に大きなキャンを用いた場合と
ほぼ同様の幾何学的な蒸着角度条件が、コンパクトな装
置で実現できる。ベルトの材料としては、無終端金属帯
をはじめとして種々のものが適用可能である。即ち、排
気系1によって真空排気された真空槽2の中で巻き出し
ロール3から回転方向12に沿って巻出された長尺基板
4は無終端帯(ベルト)17の表面に沿って走行中に電
子ビーム6を照射されている蒸発坩堝7より遮蔽板9の
開口部において蒸着を受けた後に、巻き取りロール10
に巻き取られる。さらに、遮蔽板開口部の蒸着終端側の
ガス導入ノズル8より酸素等のガスを前記基板に差し向
けることによって反応蒸着も可能である。また、高分子
基板と無終端帯の密着性を高めるために、高分子基板を
無終端帯にニップロール15によって押し当てた後に、
薄膜の形成に先立って密着用電子銃13から密着用電子
ビーム14を照射することも出来る。さらに、イオン源
を用いて基板の表面処理等を行うことが出来る。密着用
電子ビーム、イオン源は必要の無い場合は省略出来る。
このように、ベルト蒸着法は、幾何学的には薄膜の量産
に極めて適した方法である。
Further, as a method for further improving the productivity of the continuous winding vacuum vapor deposition method, there is a belt vapor deposition method using a belt instead of a can (Japanese Patent Laid-Open No. 217524/1985). That is, as shown in FIG. 7, if vapor deposition is performed using a belt instead of a can, a geometric vapor deposition angle condition almost similar to that when a very large can is used can be realized with a compact device. As the material for the belt, various materials such as an endless metal band can be applied. That is, the long substrate 4 unwound from the unwinding roll 3 along the rotation direction 12 in the vacuum chamber 2 evacuated by the exhaust system 1 is running along the surface of the endless belt (belt) 17. After receiving vapor deposition at the opening of the shielding plate 9 from the evaporation crucible 7 which is being irradiated with the electron beam 6, the take-up roll 10
It is wound up. Furthermore, reactive vapor deposition is also possible by directing a gas such as oxygen from the gas introduction nozzle 8 at the vapor deposition terminal side of the opening of the shielding plate to the substrate. Further, in order to enhance the adhesion between the polymer substrate and the endless belt, the polymer substrate is pressed against the endless belt by the nip roll 15,
It is also possible to irradiate the contact electron beam 14 from the contact electron gun 13 prior to forming the thin film. Further, the surface treatment of the substrate can be performed using the ion source. The electron beam for adhesion and the ion source can be omitted if unnecessary.
Thus, the belt deposition method is geometrically extremely suitable for mass production of thin films.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、この方
式には解決すべき課題もある。即ち、キャン方式では熱
容量の大きいキャンが支持体となり、その上に高分子基
板が走行するので蒸着時の基板の熱損傷が起きにくいの
に対し、ベルト方式では支持体であるベルトの熱容量が
小さい。従って基板の熱損傷を防ぐためにはキャン方式
以上の工夫が必要であり、この問題を解決せねばベルト
方式の高生産性を活かすことが出来ない。
However, this method has some problems to be solved. That is, in the can system, the can having a large heat capacity serves as a support, and the polymer substrate runs on it, so that the substrate is less likely to be damaged by heat during vapor deposition, whereas in the belt system, the heat capacity of the belt as a support is small. . Therefore, in order to prevent the heat damage to the substrate, it is necessary to devise more than the can method, and if this problem is not solved, the high productivity of the belt method cannot be utilized.

【0005】本発明は前記課題を解決するため、基板の
熱損傷を防ぎ、高い生産性で安定に薄膜が得られる製造
方法およびそれを実施するための製造装置を提供するこ
とを目的とする。
In order to solve the above problems, it is an object of the present invention to provide a manufacturing method capable of preventing a substrate from being damaged by heat and stably obtaining a thin film with high productivity, and a manufacturing apparatus for carrying out the manufacturing method.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するた
め、本発明の第一の薄膜の製造方法は、真空中で複数の
ローラに沿って回転する第一の無終端帯に沿って走行す
る長尺の基板上に薄膜を形成する薄膜の製造方法におい
て、第一の無終端帯の内側に複数のローラに沿って回転
する第二の無終端帯を存在させ、第二の無終端帯を冷却
し、第一の無終端帯と第二の無終端帯を接触させながら
薄膜を形成することを特徴とする。第二の無終端帯はロ
ーラ内部に冷媒を循環させることによって冷却できる。
前記構成においては、第一の無終端帯と第二の無終端帯
との接触する長さが薄膜の形成域の長さの25%以上で
あることが好ましい。また前記構成においては、第二の
無終端帯に代えて第一の無終端帯の内側に冷却部材を接
触させ、前記無終端帯を前記冷却部材に接触させながら
動かし、前記冷却部材と前記無終端帯の間に固体潤滑剤
を塗布するのも好ましい。また前記構成においては、無
終端帯と冷却部材との接触する長さが薄膜の形成域の長
さの25%以上であることが好ましい。
In order to achieve the above-mentioned object, the first method for producing a thin film of the present invention runs in a vacuum along a first endless belt rotating along a plurality of rollers. In a thin film manufacturing method for forming a thin film on a long substrate, a second endless belt rotating along a plurality of rollers is present inside the first endless belt, and a second endless belt is formed. It is characterized in that the thin film is formed by cooling and bringing the first endless zone and the second endless zone into contact with each other. The second endless zone can be cooled by circulating a refrigerant inside the roller.
In the above structure, the contact length between the first endless zone and the second endless zone is preferably 25% or more of the length of the thin film formation region. Further, in the above configuration, instead of the second endless belt, the cooling member is brought into contact with the inside of the first endless belt, and the endless belt is moved while being brought into contact with the cooling member, and the cooling member and the endless belt are moved. It is also preferred to apply a solid lubricant between the end zones. Further, in the above structure, it is preferable that the length of contact between the endless belt and the cooling member is 25% or more of the length of the thin film formation region.

【0007】次に本発明の第二の製造方法は、真空中で
複数のローラに沿って回転する無終端帯に沿って走行す
る長尺の基板上に薄膜を形成する薄膜の製造方法におい
て、前記無終端帯の少なくとも内側表面の輻射率を40
%以上とすることを特徴とする。輻射率の調整は、無終
端帯の少なくとも内側表面の色を塗装またはメッキで変
えることによって行うことができる。
Next, a second manufacturing method of the present invention is a thin film manufacturing method for forming a thin film on a long substrate running along an endless belt rotating along a plurality of rollers in a vacuum. The emissivity of at least the inner surface of the endless zone is 40
% Or more. The emissivity can be adjusted by changing the color of at least the inner surface of the endless belt by painting or plating.

【0008】次に本発明の第三の製造方法は、真空中で
複数のローラに沿って回転する無終端帯に沿って走行す
る長尺の基板上に薄膜を形成する薄膜の製造方法におい
て、前記ローラの少なくとも一つを冷却すると同時に前
記無終端帯を加熱しながら回転させたあと、加熱を終了
してローラを冷却しながら薄膜を形成することを特徴と
する。このときローラはローラ内部に冷媒を循環させる
ことによって冷却することができる。
Next, a third manufacturing method of the present invention is a thin film manufacturing method for forming a thin film on a long substrate which runs along an endless belt rotating along a plurality of rollers in vacuum. At least one of the rollers is cooled and at the same time the endless belt is rotated while being heated, and then heating is terminated to cool the roller to form a thin film. At this time, the roller can be cooled by circulating a refrigerant inside the roller.

【0009】次に本発明の第一の製造装置は、真空中で
周回する第一の無終端帯の表面に沿って長尺の基板を走
行させる搬送手段と、前記第一の無終端帯に前記基板が
沿った状態で前記基板上に薄膜を形成する手段とを備え
た薄膜の製造装置において、前記第一の無終端帯の内側
に、薄膜の形成領域に相当する部分で前記第一の無終端
帯に接触して周回する冷却された第二の無終端帯を備え
たことを特徴とする。前記構成においては、第一の無終
端帯と第二の無終端帯とが接触する長さが薄膜の形成域
の長さの25%以上であることが好ましい。また前記構
成においては、第二の無終端帯に代えて前記第一の無終
端帯の内側に、薄膜の形成領域に相当する部分で前記第
一の無終端帯に接触する冷却部材を備えることも好まし
い。前記冷却部材は、冷却された銅ブロックまたはステ
ンレス(SUS)板であってもよい。また前記構成にお
いては、冷却部材と無終端帯との接触する長さが薄膜の
形成域の長さの25%以上であることが好ましい。
Next, the first manufacturing apparatus of the present invention comprises a conveying means for causing a long substrate to travel along the surface of a first endless belt which circulates in a vacuum, and the first endless belt. In a thin film manufacturing apparatus comprising a means for forming a thin film on the substrate in a state where the substrate is along, inside the first endless zone, a portion corresponding to a thin film forming region is formed. It is characterized in that it is provided with a cooled second endless zone that contacts the endless zone and circulates. In the above structure, the contact length between the first endless zone and the second endless zone is preferably 25% or more of the length of the thin film formation region. Further, in the above structure, a cooling member that comes into contact with the first endless zone at a portion corresponding to a thin film formation region is provided inside the first endless zone instead of the second endless zone. Is also preferable. The cooling member may be a cooled copper block or a stainless (SUS) plate. Further, in the above structure, it is preferable that the length of contact between the cooling member and the endless belt is 25% or more of the length of the thin film formation region.

【0010】次に本発明の第二の製造装置は、真空中で
周回する無終端帯の表面に沿って長尺の基板を走行させ
る搬送手段と、前記無終端帯に前記基板が沿った状態で
前記基板上に薄膜を形成する手段とを備えた薄膜製造装
置において、前記無終端帯の少なくとも内側表面の輻射
率が40%以上であることを特徴とする。
Next, the second manufacturing apparatus of the present invention is a state in which the long substrate is made to travel along the surface of the endless belt that circulates in a vacuum, and the substrate is placed along the endless belt. And a means for forming a thin film on the substrate, wherein the emissivity of at least the inner surface of the endless zone is 40% or more.

【0011】次に本発明の第三の製造装置は、真空中で
周回する無終端帯の表面に沿って長尺の基板を走行させ
る搬送手段と、前記無終端帯に前記基板が沿った状態で
前記基板上に薄膜を形成する手段とを備えた薄膜製造装
置において、前記無終端帯を予備加熱する加熱手段を備
えたことを特徴とする。加熱手段としては例えば遠赤外
線ランプがあげられる。
Next, a third manufacturing apparatus of the present invention is a state in which a long substrate is run along a surface of an endless belt that circulates in a vacuum, and a state in which the substrate is along the endless belt. And a means for forming a thin film on the substrate, wherein a heating means for preheating the endless zone is provided. Examples of the heating means include a far infrared lamp.

【0012】[0012]

【発明の実施の形態】前記本発明の第一の薄膜の製造方
法によれば、真空中で複数のローラに沿って回転する第
一の無終端帯に沿って走行する長尺の基板上に薄膜を形
成する薄膜の製造方法において、前記第一の無終端帯の
内側に複数のローラに沿って回転する第二の無終端帯を
存在させ、前記第二の無終端帯を冷却し、前記第一の無
終端帯と前記第二の無終端帯を接触させながら薄膜を形
成することにより、第一の無終端帯が、冷却された第二
の無終端帯に接触するので、第一の無終端体の冷却を強
化することが出来る。
BEST MODE FOR CARRYING OUT THE INVENTION According to the first method for manufacturing a thin film of the present invention, a long substrate running along a first endless belt rotating along a plurality of rollers in a vacuum is formed. In a method for producing a thin film for forming a thin film, a second endless belt rotating along a plurality of rollers is present inside the first endless belt, and the second endless belt is cooled, By forming a thin film while contacting the first endless zone and the second endless zone, the first endless zone comes into contact with the cooled second endless zone. The cooling of the endless body can be enhanced.

【0013】また、第二の無終端帯に代えて第一の無終
端帯の内側に冷却部材を接触させ、前記無終端帯を前記
冷却部材に接触させながら動かし、前記冷却部材と前記
無終端帯の間に固体潤滑剤を塗布するという本発明の好
ましい例によれば、冷却部材と無終端帯の磨耗を防ぎ、
無終端体の冷却を強化することが出来る。第一の無終端
帯と第二の無終端帯との接触長、または無終端帯と冷却
部材との接触長が薄膜の形成域の長さの25%以上であ
るという本発明の好ましい例によれば、熱損傷を防止す
る効果が特に高い。
Further, instead of the second endless belt, a cooling member is brought into contact with the inside of the first endless belt, and the endless belt is moved while being brought into contact with the cooling member to move the cooling member and the endless belt. According to a preferred embodiment of the present invention of applying a solid lubricant between the strips, the cooling member and the endless strips are prevented from wearing,
The cooling of the endless body can be enhanced. In a preferred example of the present invention, the contact length between the first endless zone and the second endless zone, or the contact length between the endless zone and the cooling member is 25% or more of the length of the thin film forming region. According to this, the effect of preventing heat damage is particularly high.

【0014】前記本発明の第二の製造方法によれば、真
空中で複数のローラに沿って回転する無終端帯に沿って
走行する長尺の基板上に薄膜を形成する薄膜の製造方法
において、前記無終端帯の少なくとも内側表面の輻射率
を40%以上とすることによって薄膜形成中の無終端帯
の温度上昇を小さくすることが出来る。
According to the second manufacturing method of the present invention, in the method of manufacturing a thin film, a thin film is formed on a long substrate which runs along an endless belt rotating along a plurality of rollers in a vacuum. By setting the emissivity of at least the inner surface of the endless zone to 40% or more, the temperature rise of the endless zone during thin film formation can be reduced.

【0015】前記本発明の第三の製造方法によれば、真
空中で複数のローラに沿って回転する無終端帯に沿って
走行する長尺の基板上に薄膜を形成する薄膜の製造方法
において、前記ローラの少なくとも一つを冷却すると同
時に前記無終端帯を加熱しながら回転させた後に加熱を
終了して前記ローラの冷却を継続しながら薄膜を形成す
ることによって、薄膜形成初期の急激な熱負荷変化に伴
う、無終端帯の変形を防止することが出来るので、基板
の熱変形を防止することが出来る。
According to the third manufacturing method of the present invention, in the method of manufacturing a thin film, a thin film is formed on a long substrate which runs along an endless belt rotating along a plurality of rollers in a vacuum. When at least one of the rollers is cooled and at the same time the endless belt is rotated while being heated, heating is terminated and a thin film is formed while cooling of the roller is continued, whereby rapid heat at the initial stage of thin film formation. Since it is possible to prevent deformation of the endless belt due to load change, it is possible to prevent thermal deformation of the substrate.

【0016】次に本発明の製造装置によれば、本発明の
製造方法を効果的に実施することができる。本発明の第
三の製造装置において、無終端帯を予備加熱する加熱手
段が遠赤外線ランプであると、簡易な構成で加熱するこ
とができ好ましい。
Next, according to the manufacturing apparatus of the present invention, the manufacturing method of the present invention can be effectively implemented. In the third manufacturing apparatus of the present invention, it is preferable that the heating means for preheating the endless zone is a far-infrared lamp because heating can be performed with a simple configuration.

【0017】[0017]

【実施例】以下実施例を用いて本発明を具体的に説明す
る。 (実施例1)本発明の第1の実施例について説明する。
図1は本実施例の製造装置の構成を示す概略図である。
真空槽2は排気系1によって真空排気される。真空槽2
の大きさは長さ1000cm、幅1500cm、高さ2
000cmである。幅30cm、厚さ10μmのポリエ
チレンテレフタレート長尺基板4は巻き出しロール3か
ら回転方向12に沿って巻出され、無終端帯17の表面
に沿って走行する。無終端帯17は周長4000cm、
幅600cmである。長尺基板4の走行速度は50m/
分であった。無終端帯17を支える3本の主ローラ18
A、18B、および18Cのうち、蒸着開始部分に最も
近いローラ18Aを冷却した。冷却は、ローラ内の回転
軸から冷媒である油を導入して循環させることによって
行った。無終端帯17の内側に、無終端帯よりも周長の
短い無終端補助ベルト19を設けたが、その位置関係は
補助ベルトによって無終端帯が5mm外側に膨らむよう
な位置とした。補助ベルトは周長1500cm、幅55
0cmである。補助ベルトを支える3本のローラ20
D、20E、および20Fの内、無終端帯に近い2本、
ローラ20Dと20Eを冷媒の内部循環によって冷却し
た。冷却方法は前記ローラ18Aと同様である。高分子
基板と無終端帯の密着性を高めるために、高分子基板を
無終端帯にニップロール15によって押し当てた後に、
薄膜の形成に先立って密着用電子銃13から密着用電子
ビーム14を照射した。
The present invention will be specifically described below with reference to examples. (Embodiment 1) A first embodiment of the present invention will be described.
FIG. 1 is a schematic diagram showing the configuration of the manufacturing apparatus of this embodiment.
The vacuum chamber 2 is evacuated by the exhaust system 1. Vacuum chamber 2
Is 1000 cm long, 1500 cm wide, and 2 high
It is 000 cm. A polyethylene terephthalate long substrate 4 having a width of 30 cm and a thickness of 10 μm is unwound from the unwinding roll 3 along the rotation direction 12 and runs along the surface of the endless belt 17. The endless belt 17 has a circumference of 4000 cm,
The width is 600 cm. The traveling speed of the long substrate 4 is 50 m /
Minutes. Three main rollers 18 supporting the endless belt 17
Of A, 18B, and 18C, the roller 18A closest to the vapor deposition start portion was cooled. Cooling was performed by introducing oil, which is a refrigerant, from a rotating shaft in the roller and circulating the oil. An endless auxiliary belt 19 having a shorter peripheral length than the endless belt 17 was provided inside the endless belt 17, but the positional relationship was such that the endless belt bulges outward by 5 mm due to the auxiliary belt. Auxiliary belt has a circumference of 1500 cm and a width of 55
0 cm. Three rollers 20 that support the auxiliary belt
Of D, 20E, and 20F, two near the endless band,
The rollers 20D and 20E were cooled by internal circulation of the refrigerant. The cooling method is the same as that of the roller 18A. In order to improve the adhesion between the polymer substrate and the endless belt, the polymer substrate is pressed against the endless belt by the nip roll 15,
Prior to the formation of the thin film, the electron gun 13 for contact was irradiated with the electron beam 14 for contact.

【0018】走行中の長尺基板4は、電子ビーム6を照
射されている蒸発坩堝7より遮蔽板9の開口部において
蒸着される。高分子基板への蒸気入射角は、基板法線か
ら80度から45度の範囲とした。ガス導入ノズル8の
方向はノズルの延長線が無終端帯17と平行になるよう
にした。その後、長尺基板4は巻き取りロール10に巻
き取られる。また、遮蔽板9の開口部の蒸着終端側より
酸素ガスを前記基板に差し向けることによって反応蒸着
を行った。成膜中の蒸着室の真空度は約5×10-5torr
である。
The running long substrate 4 is vapor-deposited at the opening of the shield plate 9 from the evaporation crucible 7 which is being irradiated with the electron beam 6. The vapor incident angle on the polymer substrate was in the range of 80 to 45 degrees from the substrate normal. The gas introduction nozzle 8 was oriented so that the extension line of the nozzle was parallel to the endless belt 17. Then, the long substrate 4 is wound up by the winding roll 10. Further, reactive vapor deposition was performed by directing oxygen gas toward the substrate from the vapor deposition terminal side of the opening of the shield plate 9. The degree of vacuum in the deposition chamber during film formation is about 5 × 10 -5 torr
It is.

【0019】本実施例では高分子基板上に薄膜磁気テー
プに用いる層厚150nmのCo−O磁性層を形成し
た。磁性層の膜厚は、ガイドローラ16間に設置した透
過光式膜厚計23を用いて蒸着を行いながら観測し、電
子銃の投入電力を調整することによって制御した。透過
光式膜厚計は可視光源とCdS光電変換素子24を用い
て構成した。無終端帯の長さの内、蒸着に関与する部分
の長さ(蒸着域)を80cmとし、補助ベルトと無終端
帯の接触長と主ローラ18Aの温度及びローラ20Dお
よび20Eの冷媒温度を変えて蒸着を行い、基板の熱損
傷を調べた。その結果を表1に示す。なお、補助ベルト
と無終端帯の接触部分は蒸着域の中央部とした。表1に
は補助ベルトを用いない場合の結果も併せて示した(番
号1〜3)。表1に示すように、補助ベルトを用いない
場合には主ローラ18Aを−20℃まで冷却しないと基
板の熱損傷が発生した。これに対して補助ベルトを用い
た場合には主ローラの冷却を弱めることが出来る。ま
た、接触長が10cmと20cmの場合では熱損傷防止
の効果が異なることから、接触長によって蒸着中の無終
端帯の温度上昇防止に差があるものと思われる。表1か
ら冷却した補助ベルトを用いることにより、熱損傷を防
止する効果があることと、望ましくは接触長が蒸着域の
25%以上であることが分かる。
In this example, a Co—O magnetic layer having a layer thickness of 150 nm used for a thin film magnetic tape was formed on a polymer substrate. The film thickness of the magnetic layer was controlled by adjusting the input power of the electron gun by observing the film thickness using a transmitted light type film thickness meter 23 installed between the guide rollers 16 while adjusting the film thickness. The transmitted light type film thickness meter was constructed using a visible light source and a CdS photoelectric conversion element 24. Of the length of the endless belt, the length of the portion involved in vapor deposition (vapor deposition area) is set to 80 cm, and the contact length between the auxiliary belt and the endless belt, the temperature of the main roller 18A, and the refrigerant temperature of the rollers 20D and 20E are changed. Evaporation was performed to examine the substrate for thermal damage. Table 1 shows the results. The contact portion between the auxiliary belt and the endless belt was the central portion of the vapor deposition zone. Table 1 also shows the results when the auxiliary belt was not used (Nos. 1 to 3). As shown in Table 1, when the auxiliary belt was not used, heat damage to the substrate occurred unless the main roller 18A was cooled to -20 ° C. On the other hand, when the auxiliary belt is used, the cooling of the main roller can be weakened. Further, since the effect of preventing thermal damage is different when the contact length is 10 cm and 20 cm, it seems that there is a difference in the temperature rise prevention of the endless zone during vapor deposition depending on the contact length. It can be seen from Table 1 that the use of the cooled auxiliary belt has the effect of preventing heat damage and that the contact length is preferably 25% or more of the vapor deposition area.

【0020】[0020]

【表1】 [Table 1]

【0021】(実施例2)本発明の第2の実施例につい
て説明する。図2は本実施例の製造装置の構成を示す概
略図である。排気系1によって真空排気された真空槽2
の中で巻き出しロール3から回転方向12に沿って巻出
された長尺基板4は無終端帯17の表面に沿って走行中
に電子ビーム6を照射されている蒸発坩堝7より遮蔽板
9の開口部において蒸着を受けた後に、巻き取りロール
10に巻き取られる。無終端帯を支える3本の主ローラ
18A、18B、および18Cの内、蒸着開始部分に最
も近いローラ18Aを冷媒の内部循環によって冷却し
た。無終端帯の内側に冷却部材21を配置した。冷却部
材21は蒸着幅と同じ幅のものを用い、押し当てること
によって無終端帯が外側へ3mm膨らむような位置とし
た。冷却部材21に沿って前記無終端帯を摺動させ、か
つ前記冷却部材と前記無終端帯の間に、磨耗を防ぐため
の固体潤滑剤として二硫化モリブデンを塗布した。ここ
で冷却部材として銅ブロックを用いた。この銅ブロック
は冷却水かヘリウムなどで冷却しておいた。銅ブロック
の他にステンレス(SUS)板であってもよい。固体潤
滑剤は二硫化モリブデンの他にグラファイト、WS
2(二硫化タングステン)、Wなどを用いてもよい。ま
た、開口部の蒸着終端側より酸素ガスを前記基板に差し
向けることによって反応蒸着を行った。また、高分子基
板と無終端帯の密着性を高めるために、高分子基板を無
終端帯17にニップロール15によって押し当てた後
に、薄膜の形成に先立って密着用電子銃13から密着用
電子ビーム14を照射した。
(Embodiment 2) A second embodiment of the present invention will be described. FIG. 2 is a schematic diagram showing the configuration of the manufacturing apparatus of this embodiment. Vacuum chamber 2 evacuated by exhaust system 1
The long substrate 4 unwound from the unwinding roll 3 along the rotation direction 12 is shielded by the evaporation crucible 7 which is irradiated with the electron beam 6 while traveling along the surface of the endless belt 17 by the shield plate 9 After being subjected to vapor deposition at the opening, the film is taken up by the take-up roll 10. Of the three main rollers 18A, 18B, and 18C that support the endless belt, the roller 18A closest to the vapor deposition start portion was cooled by the internal circulation of the refrigerant. The cooling member 21 was arranged inside the endless belt. The cooling member 21 has the same width as the vapor deposition width, and is set at a position where the endless belt bulges outward by 3 mm when pressed. The endless belt was slid along the cooling member 21, and molybdenum disulfide was applied between the cooling member and the endless belt as a solid lubricant for preventing wear. Here, a copper block was used as the cooling member. This copper block was cooled with cooling water or helium. A stainless steel (SUS) plate may be used instead of the copper block. Solid lubricants include molybdenum disulfide, graphite, WS
2 (tungsten disulfide), W or the like may be used. Further, reactive vapor deposition was performed by directing oxygen gas toward the substrate from the vapor deposition terminal side of the opening. Further, in order to enhance the adhesion between the polymer substrate and the endless belt, the polymer substrate is pressed against the endless belt 17 by the nip rolls 15, and then the contact electron gun 13 is used to form a contact electron beam prior to the formation of the thin film. 14 were irradiated.

【0022】高分子基板として30cm幅、10μm厚
のポリエチレンテレフタレートを用い、薄膜磁気テープ
に用いる層厚150nmのCo−O磁性層を形成した。
高分子基板への蒸気入射角は、基板法線から80度から
45度の範囲とした。ガス導入ノズル8の方向はノズル
の延長線が無終端帯17と平行になるようにした。ま
た、成膜中の蒸着室の真空度は約5×10-5torrであ
る。磁性層の膜厚は、ガイドローラ16間に設置した透
過光式膜厚計23を用いて蒸着を行いながら観測し、電
子銃の投入電力を調整することによって制御した。透過
光式膜厚計は可視光源とCdS光電変換素子24を用い
て構成した。
As a polymer substrate, polyethylene terephthalate having a width of 30 cm and a thickness of 10 μm was used to form a Co—O magnetic layer having a layer thickness of 150 nm used for a thin film magnetic tape.
The vapor incident angle on the polymer substrate was in the range of 80 to 45 degrees from the substrate normal. The gas introduction nozzle 8 was oriented so that the extension line of the nozzle was parallel to the endless belt 17. The degree of vacuum in the vapor deposition chamber during film formation is about 5 × 10 −5 torr. The film thickness of the magnetic layer was controlled by adjusting the input power of the electron gun by observing the film thickness using a transmitted light type film thickness meter 23 installed between the guide rollers 16 while adjusting the film thickness. The transmitted light type film thickness meter was constructed using a visible light source and a CdS photoelectric conversion element 24.

【0023】無終端帯の長さの内、蒸着に関与する部分
の長さ(蒸着域)を80cmとし、冷却部材21と無終
端帯17の接触長と主ローラ18Aの温度及び冷却部材
の冷媒温度を変えて蒸着を行い、基板の熱損傷を調べ
た。冷却部材の温度は冷却部材内部の冷媒の温度を変え
て変化させた。なお、接触部分は蒸着域の中央部とし
た。その結果を表2に示す。表1には冷却部材を用いな
い場合の結果も併せて示した(番号1〜3)。
Of the length of the endless zone, the length of the portion involved in vapor deposition (vapor deposition zone) is 80 cm, the contact length between the cooling member 21 and the endless zone 17, the temperature of the main roller 18A, and the coolant of the cooling member. Vapor deposition was performed at different temperatures, and the heat damage of the substrate was examined. The temperature of the cooling member was changed by changing the temperature of the refrigerant inside the cooling member. The contact portion was the central portion of the vapor deposition area. Table 2 shows the results. Table 1 also shows the results when the cooling member was not used (Nos. 1 to 3).

【0024】表2から分かるように、冷却部材を用いる
ことによって基板の熱損傷を効果的に防止することが出
来、本実施例の条件では特に接触長が蒸着域の25%以
上で安定な蒸着が出来た。なお、固体潤滑剤を塗布しな
い場合には、摺動による無終端帯の内面の損傷がひどく
て実用には適さないことが分かった。また、他の種類の
潤滑剤を用いた場合にも同様の結果が得られた。表2か
ら冷却部材と潤滑剤を組合せて用いれば、無終端帯と冷
却部材が摺動した状態でも基板の熱損傷防止に効果があ
ること、及び望ましくは接触長が蒸着域の25%以上で
あることが分かる。
As can be seen from Table 2, thermal damage to the substrate can be effectively prevented by using the cooling member. Under the conditions of this embodiment, the vapor deposition is stable when the contact length is 25% or more of the vapor deposition zone. Was completed. It was found that when the solid lubricant was not applied, the inner surface of the endless belt was seriously damaged by sliding and was not suitable for practical use. Similar results were also obtained when other types of lubricants were used. It can be seen from Table 2 that the combination of the cooling member and the lubricant is effective in preventing thermal damage to the substrate even when the endless belt and the cooling member are in sliding contact, and it is desirable that the contact length is 25% or more of the vapor deposition area. I know there is.

【0025】[0025]

【表2】 [Table 2]

【0026】(実施例3)本発明の第3の実施例につい
て説明する。図3は本実施例の製造装置の構成を示す概
略図である。排気系1によって真空排気された真空槽2
の中で巻き出しロール3から回転方向12に沿って巻出
された長尺基板4は無終端帯17の表面に沿って走行中
に電子ビーム6を照射されている蒸発坩堝7より遮蔽板
9の開口部において蒸着を受けた後に、巻き取りロール
10に巻き取られる。また、開口部の蒸着終端側より酸
素ガスを前記基板に差し向けることによって反応蒸着を
行った。また、高分子基板と無終端帯の密着性を高める
ために、高分子基板を無終端帯17にニップロール15
によって押し当てた後に、薄膜の形成に先立って密着用
電子銃13から密着用電子ビーム14を照射した。
(Embodiment 3) A third embodiment of the present invention will be described. FIG. 3 is a schematic diagram showing the configuration of the manufacturing apparatus of this embodiment. Vacuum chamber 2 evacuated by exhaust system 1
The long substrate 4 unwound from the unwinding roll 3 along the rotation direction 12 is shielded by the evaporation crucible 7 which is irradiated with the electron beam 6 while traveling along the surface of the endless belt 17 by the shield plate 9 After being subjected to vapor deposition at the opening, the film is taken up by the take-up roll 10. Further, reactive vapor deposition was performed by directing oxygen gas toward the substrate from the vapor deposition terminal side of the opening. Further, in order to enhance the adhesion between the polymer substrate and the endless belt, the polymer substrate is placed on the endless belt 17 with the nip roll 15
Then, the contact electron beam 14 was irradiated from the contact electron gun 13 prior to the formation of the thin film.

【0027】高分子基板として30cm幅、10μm厚
のポリエチレンテレフタレートを用い、層厚150〜3
00nmのCo−O磁性層を形成した。高分子基板への
蒸気入射角は、基板法線から80度から45度の範囲と
した。ガス導入ノズル8の方向はノズルの延長線が無終
端帯17と平行になるようにした。無終端帯を支えるロ
ーラの内、蒸着開始部分に最も近いローラ18Aを冷媒
の内部循環によって冷却した。また、成膜中の蒸着室の
真空度は約5×10-5torrである。
As the polymer substrate, polyethylene terephthalate having a width of 30 cm and a thickness of 10 μm is used, and the layer thickness is 150 to 3
A 00 nm Co-O magnetic layer was formed. The vapor incident angle on the polymer substrate was in the range of 80 to 45 degrees from the substrate normal. The gas introduction nozzle 8 was oriented so that the extension line of the nozzle was parallel to the endless belt 17. Among the rollers supporting the endless belt, the roller 18A closest to the vapor deposition start portion was cooled by the internal circulation of the refrigerant. The degree of vacuum in the vapor deposition chamber during film formation is about 5 × 10 −5 torr.

【0028】磁性層の膜厚は、ガイドローラ16間に設
置した透過光式膜厚計23を用いて蒸着を行いながら観
測し、電子銃の投入電力を調整することによって制御し
た。透過光式膜厚計は可視光源とCdS光電変換素子2
4を用いて構成した。
The film thickness of the magnetic layer was observed by using a transmitted light type film thickness meter 23 installed between the guide rollers 16 during vapor deposition, and was controlled by adjusting the electric power supplied to the electron gun. The transmitted light type film thickness meter includes a visible light source and a CdS photoelectric conversion element 2
4 was used.

【0029】塗装またはメッキによって無終端帯の内側
表面の色またはつやを微調整することにより無終端帯の
内側表面の輻射率を10〜40%の範囲内で変えた。輻
射率は無終端帯と同じ材料の小片を用いて市販の輻射率
計を用いて測定した。主ローラ18Aの温度を変えて蒸
着することにより、輻射率と蒸着時の熱損傷の関係を調
べた。その結果を表3に示す。表3から分かるように、
輻射率が高い場合ほど蒸着時の熱損傷が起きにくい。例
えば輻射率が10%の場合には主ローラ18Aの温度を
−20℃としても磁性層厚が300nmの場合には基板
の熱損傷が発生するが、輻射率が20%の場合には熱損
傷は発生しない。これは、蒸着時の熱負荷をベルト面か
らの輻射によって若干逃がすことが出来るためと思われ
る。特に輻射率40%以上では主ローラの冷却を10℃
以上弱めることができるので工業的価値が大きい。
The emissivity of the inner surface of the endless belt was changed within the range of 10 to 40% by finely adjusting the color or gloss of the inner surface of the endless belt by painting or plating. The emissivity was measured using a commercially available emissometer using a small piece of the same material as the endless band. By evaporating while changing the temperature of the main roller 18A, the relationship between the emissivity and the thermal damage during vapor deposition was examined. Table 3 shows the results. As can be seen from Table 3,
The higher the emissivity, the less likely thermal damage will occur during vapor deposition. For example, when the emissivity is 10%, heat damage to the substrate occurs when the magnetic layer thickness is 300 nm even when the temperature of the main roller 18A is set to -20 ° C, but when the emissivity is 20%, heat damage occurs. Does not occur. It is considered that this is because the heat load during vapor deposition can be released to some extent by radiation from the belt surface. Especially when the emissivity is 40% or more, the main roller is cooled by 10 ° C.
Since it can be weakened, it has great industrial value.

【0030】[0030]

【表3】 [Table 3]

【0031】(実施例4)本発明の第4の実施例につい
て説明する。図4は本実施例の製造装置の構成を示す概
略図である。排気系1によって真空排気された真空槽2
の中で巻き出しロール3から回転方向12に沿って巻出
された長尺基板4は無終端帯17の表面に沿って走行中
に電子ビーム6を照射されている蒸発坩堝7より遮蔽板
9の開口部において蒸着を受けた後に、巻き取りロール
10に巻き取られる。無終端帯を支えるローラの内、蒸
着開始部分に最も近いローラ18Aを冷媒の内部循環に
よって冷却した。蒸着に先立って、主ローラ18Aを溶
媒の内部循環により冷却すると共に予備加熱源22のヒ
ータを用いて無終端帯を加熱しながら回転させた。ヒー
タには遠赤外線ランプを用いた。その後ヒータ加熱を終
了して主ローラ18Aの冷却を継続しながら薄膜の形成
を開始した。また、開口部の蒸着終端側より酸素ガスを
前記基板に差し向けることによって反応蒸着を行った。
また、高分子基板と無終端帯の密着性を高めるために、
高分子基板を無終端帯にニップロール15によって押し
当てた後に、薄膜の形成に先立って密着用電子銃13か
ら密着用電子ビーム14を照射した。
(Embodiment 4) A fourth embodiment of the present invention will be described. FIG. 4 is a schematic diagram showing the configuration of the manufacturing apparatus of this embodiment. Vacuum chamber 2 evacuated by exhaust system 1
The long substrate 4 unwound from the unwinding roll 3 along the rotation direction 12 is shielded by the evaporation crucible 7 which is irradiated with the electron beam 6 while traveling along the surface of the endless belt 17 by the shield plate 9 After being subjected to vapor deposition at the opening, the film is taken up by the take-up roll 10. Among the rollers supporting the endless belt, the roller 18A closest to the vapor deposition start portion was cooled by the internal circulation of the refrigerant. Prior to vapor deposition, the main roller 18A was cooled by internal circulation of the solvent, and the endless belt was rotated while being heated by using the heater of the preheating source 22. A far infrared lamp was used for the heater. After that, the heating of the heater was completed and the formation of the thin film was started while continuing the cooling of the main roller 18A. Further, reactive vapor deposition was performed by directing oxygen gas toward the substrate from the vapor deposition terminal side of the opening.
Also, in order to improve the adhesion between the polymer substrate and the endless belt,
After the polymer substrate was pressed against the endless band by the nip roll 15, the electron beam 14 for adhesion was irradiated from the electron gun 13 for adhesion before forming the thin film.

【0032】高分子基板として30cm幅、10μm厚
のポリエチレンテレフタレートを用い、薄膜磁気テープ
に用いる層厚150nmのCo−O磁性層を形成した。
高分子基板への蒸気入射角は、基板法線から80度から
45度の範囲とした。ガス導入ノズル8の方向はノズル
の延長線が無終端帯17と平行になるようにした。ま
た、成膜中の蒸着室の真空度は約5×10-5torrであ
る。
As a polymer substrate, polyethylene terephthalate having a width of 30 cm and a thickness of 10 μm was used to form a Co—O magnetic layer having a layer thickness of 150 nm used for a thin film magnetic tape.
The vapor incident angle on the polymer substrate was in the range of 80 to 45 degrees from the substrate normal. The gas introduction nozzle 8 was oriented so that the extension line of the nozzle was parallel to the endless belt 17. The degree of vacuum in the vapor deposition chamber during film formation is about 5 × 10 −5 torr.

【0033】磁性層の膜厚は、ガイドローラ16間に設
置した透過光式膜厚計23を用いて蒸着を行いながら観
測し、電子銃の投入電力を調整することによって制御し
た。透過光式膜厚計は可視光源とCdS光電変換素子2
4を用いて構成した。
The film thickness of the magnetic layer was observed while performing vapor deposition using a transmitted light film thickness meter 23 installed between the guide rollers 16, and was controlled by adjusting the electric power input to the electron gun. The transmitted light type film thickness meter includes a visible light source and a CdS photoelectric conversion element 2
4 was used.

【0034】ヒータ電力と蒸着膜の膜厚を変えて薄膜を
形成し、熱損傷との関係を調べた。その結果を図5に示
す。図5から分かるように、ヒータ加熱を予め行うこと
によって、基板の熱損傷は生じにくくなる。この理由は
以下のように考えられる。即ち、予備加熱無しに蒸着を
開始すると、急激に熱負荷が増加するために、無終端帯
の熱変形も急激に起こる。これによって基板と無終端帯
の密着性が低下し、熱損傷が発生し易い。これに対し
て、予備加熱を行った場合には予備加熱によって無終端
帯の熱変形が起きるので蒸着開始までには熱変形後の定
常状態に達する。従って蒸着開始時の急激な熱負荷の増
加や熱変形を低減することが出来、基板の熱損傷も発生
しにくいのである。
A thin film was formed by changing the heater power and the film thickness of the vapor deposition film, and the relationship with heat damage was investigated. The result is shown in FIG. As can be seen from FIG. 5, the heating of the heater in advance makes it difficult for the substrate to be damaged by heat. The reason for this is considered as follows. That is, when vapor deposition is started without preheating, the thermal load rapidly increases, so that thermal deformation of the endless zone also rapidly occurs. As a result, the adhesion between the substrate and the endless belt is lowered, and thermal damage is likely to occur. On the other hand, when preheating is performed, thermal deformation of the endless zone occurs due to preheating, and thus a steady state after thermal deformation is reached by the start of vapor deposition. Therefore, it is possible to reduce a rapid increase in heat load and thermal deformation at the start of vapor deposition, and the substrate is less likely to be damaged by heat.

【0035】以上の実施例1〜4において、基板として
ポリエチレンテレフタレートを用いた場合についてのみ
述べたが、ポリエチレンナフタレート、ポリエステル、
ポリアミド、ポリイミドその他の高分子基板をはじめと
する他の種々の基板材料も用いることが出来る。さら
に、実施例としては薄膜としてCo−O磁性層を形成す
る場合についてのみ述べたが、Co−Ni−O磁性層を
形成する場合にも同様の結果が得られている。本発明は
無終端帯及び高分子基板にかかる熱負荷に対する課題を
解決するものであるから、反応ガス雰囲気の有無やその
種類に限定されるものでもない。従って、薄膜磁性層の
みならず、他の薄膜を形成する場合にも本発明は有効で
ある。また、薄膜の形成に先立って、別の下地層を形成
した後に薄膜を形成する場合についても本実施例の構成
が有効である。従って磁性材料に限らず、Si等の様々
な材料と、酸素等の反応ガスとの反応蒸着においても本
実施例を適用することが出来るほか、例えば液晶配向
膜、透明電極膜、コンデンサの形成などにおいて、本実
施例を応用することにより、従来の真空蒸着では得られ
なかった高い生産性で薄膜の安定供給が可能となる。ま
た、蒸着の入射角についても、本発明の効果が実施例に
示した角度に限定されるものではなく、目的用途に応じ
て適宜入射角を最適化した上で本実施例を適用すること
によって生産性が向上し得る。
In the above Examples 1 to 4, only the case where polyethylene terephthalate was used as the substrate was described, but polyethylene naphthalate, polyester,
Various other substrate materials including polyamide, polyimide and other polymeric substrates can also be used. Further, as an example, only the case of forming a Co—O magnetic layer as a thin film has been described, but similar results are obtained when a Co—Ni—O magnetic layer is formed. Since the present invention solves the problem of the endless zone and the heat load applied to the polymer substrate, it is not limited to the presence or absence of the reaction gas atmosphere and its type. Therefore, the present invention is effective not only when forming a thin film magnetic layer but also when forming another thin film. The configuration of this embodiment is also effective when the thin film is formed after another underlayer is formed prior to the formation of the thin film. Therefore, the present embodiment can be applied not only to magnetic materials but also to reactive vapor deposition of various materials such as Si and a reaction gas such as oxygen, and for example, formation of liquid crystal alignment film, transparent electrode film, capacitor, etc. In this regard, by applying this embodiment, it is possible to stably supply a thin film with high productivity, which cannot be obtained by the conventional vacuum deposition. Also, regarding the incident angle of vapor deposition, the effect of the present invention is not limited to the angle shown in the embodiment, and by applying the present embodiment after appropriately optimizing the incident angle according to the intended use. Productivity can be improved.

【0036】[0036]

【発明の効果】以上の様に本発明の薄膜の製造方法及び
製造装置によれば、基板の熱損傷を防ぎ、高い生産性で
安定に薄膜を得ることができる。
As described above, according to the thin film manufacturing method and the thin film manufacturing apparatus of the present invention, it is possible to prevent the substrate from being damaged by heat and to stably obtain a thin film with high productivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施例1の製造装置を示す概略図FIG. 1 is a schematic diagram showing a manufacturing apparatus according to a first embodiment of the present invention.

【図2】 本発明の実施例2の製造装置を示す概略図FIG. 2 is a schematic diagram showing a manufacturing apparatus according to a second embodiment of the present invention.

【図3】 本発明の実施例3の製造装置を示す概略図FIG. 3 is a schematic diagram showing a manufacturing apparatus according to a third embodiment of the present invention.

【図4】 本発明の実施例4の製造装置を示す概略図FIG. 4 is a schematic diagram showing a manufacturing apparatus according to a fourth embodiment of the present invention.

【図5】 本発明の実施例4での予備加熱と熱損傷の関
係を示すグラフ図
FIG. 5 is a graph showing the relationship between preheating and thermal damage in Example 4 of the present invention.

【図6】 従来例のキャンを用いた連続蒸着法による薄
膜の製造装置を示す概略図
FIG. 6 is a schematic view showing an apparatus for producing a thin film by a continuous vapor deposition method using a conventional can.

【図7】 従来例の無終端帯を用いた連続蒸着法による
薄膜の製造装置を示す概略図
FIG. 7 is a schematic view showing an apparatus for producing a thin film by a continuous vapor deposition method using a conventional endless zone.

【符号の説明】[Explanation of symbols]

1 排気系 2 真空槽 3 巻き出しロール 4 長尺基板 5 キャン 6 電子ビーム 7 蒸発坩堝 8 ガス導入ノズル 9 遮蔽板 10 巻き取りロール 11 ガイドロール 12 回転方向 13 密着用電子銃 14 密着用電子ビーム 15 ニップロール 16 ガイドローラ 17 無終端帯 18 主ローラ 19 補助ベルト 20 補助ローラ 21 冷却部材 22 予備加熱源 23 透過光式膜厚計 24 CdS光電変換素子 DESCRIPTION OF SYMBOLS 1 Exhaust system 2 Vacuum tank 3 Unwinding roll 4 Long substrate 5 Can 6 Electron beam 7 Evaporating crucible 8 Gas introduction nozzle 9 Shielding plate 10 Winding roll 11 Guide roll 12 Rotation direction 13 Adhesion electron gun 14 Adhesion electron beam 15 Nip roll 16 Guide roller 17 Endless belt 18 Main roller 19 Auxiliary belt 20 Auxiliary roller 21 Cooling member 22 Preheating source 23 Transmitted light film thickness meter 24 CdS photoelectric conversion element

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 真空中で複数のローラに沿って回転する
第一の無終端帯に沿って走行する長尺の基板上に薄膜を
形成する薄膜の製造方法において、前記第一の無終端帯
の内側に複数のローラに沿って回転する第二の無終端帯
を存在させ、前記第二の無終端帯を冷却し、前記第一の
無終端帯と前記第二の無終端帯を接触させながら薄膜を
形成することを特徴とする薄膜の製造方法。
1. A method for producing a thin film, which comprises forming a thin film on a long substrate running along a first endless belt rotating along a plurality of rollers in a vacuum, wherein the first endless belt is used. A second endless belt rotating along a plurality of rollers is present inside of, the second endless belt is cooled, and the first endless belt and the second endless belt are brought into contact with each other. A method of manufacturing a thin film, which comprises forming a thin film.
【請求項2】 第一の無終端帯と第二の無終端帯との接
触する長さが薄膜の形成域の長さの25%以上である請
求項1記載の薄膜の製造方法。
2. The method for producing a thin film according to claim 1, wherein the length of contact between the first endless zone and the second endless zone is 25% or more of the length of the thin film forming region.
【請求項3】 請求項1に記載の薄膜の製造方法におい
て、第二の無終端帯に代えて第一の無終端帯の内側に冷
却部材を接触させ、前記無終端帯を前記冷却部材に接触
させながら動かし、前記冷却部材と前記無終端帯の間に
固体潤滑剤を塗布する薄膜の製造方法。
3. The method of manufacturing a thin film according to claim 1, wherein a cooling member is contacted with the inside of the first endless band instead of the second endless band, and the endless band is attached to the cooling member. A method for producing a thin film, which is moved while being in contact with each other and applying a solid lubricant between the cooling member and the endless zone.
【請求項4】 無終端帯と冷却部材との接触する長さが
薄膜の形成域の長さの25%以上である請求項3記載の
薄膜の製造方法。
4. The method for producing a thin film according to claim 3, wherein the length of contact between the endless belt and the cooling member is 25% or more of the length of the thin film forming region.
【請求項5】 真空中で複数のローラに沿って回転する
無終端帯に沿って走行する長尺の基板上に薄膜を形成す
る薄膜の製造方法において、前記無終端帯の少なくとも
内側表面の輻射率を40%以上とすることを特徴とする
薄膜の製造方法。
5. A method for producing a thin film, which comprises forming a thin film on a long substrate which runs along an endless belt rotating along a plurality of rollers in a vacuum, wherein at least the inner surface of the endless belt is radiated. A method for producing a thin film, wherein the rate is 40% or more.
【請求項6】 真空中で複数のローラに沿って回転する
無終端帯に沿って走行する長尺の基板上に薄膜を形成す
る薄膜の製造方法において、前記ローラの少なくとも一
つを冷却すると同時に前記無終端帯を加熱しながら回転
させたあと、前記加熱を終了して前記ローラを冷却しな
がら薄膜を形成することを特徴とする薄膜の製造方法。
6. A method of manufacturing a thin film, wherein a thin film is formed on a long substrate that runs along an endless belt that rotates along a plurality of rollers in a vacuum, and at least one of the rollers is cooled at the same time. A method for producing a thin film, comprising: rotating the endless belt while heating it, then ending the heating and cooling the roller to form the thin film.
【請求項7】 真空中で周回する第一の無終端帯の表面
に沿って長尺の基板を走行させる搬送手段と、前記第一
の無終端帯に前記基板が沿った状態で前記基板上に薄膜
を形成する手段とを備えた薄膜製造装置において、前記
第一の無終端帯の内側に、薄膜の形成領域に相当する部
分で前記第一の無終端帯に接触して周回する冷却された
第二の無終端帯を備えたことを特徴とする薄膜製造装
置。
7. A transport means for moving a long substrate along the surface of a first endless belt that circulates in a vacuum, and a substrate on the substrate in a state where the substrate is along the first endless belt. And a means for forming a thin film on the inside of the first endless zone, the portion corresponding to the thin film forming region is in contact with the first endless zone and is cooled. And a second endless zone.
【請求項8】 第一の無終端帯と第二の無終端帯とが接
触する長さが薄膜の形成域の長さの25%以上である請
求項7記載の薄膜製造装置。
8. The thin film manufacturing apparatus according to claim 7, wherein the contact length of the first endless zone and the second endless zone is 25% or more of the length of the thin film forming region.
【請求項9】 請求項7に記載の薄膜製造装置におい
て、第二の無終端帯に代えて前記第一の無終端帯の内側
に、薄膜の形成領域に相当する部分で前記第一の無終端
帯に接触する冷却部材を備えた薄膜製造装置。
9. The thin film manufacturing apparatus according to claim 7, wherein a portion corresponding to a thin film forming region is provided inside the first endless zone instead of the second endless zone. A thin film manufacturing apparatus equipped with a cooling member that contacts the terminal zone.
【請求項10】冷却部材が冷却された銅ブロックまたは
冷却されたステンレス板である請求項9記載の薄膜製造
装置。
10. The thin film manufacturing apparatus according to claim 9, wherein the cooling member is a cooled copper block or a cooled stainless plate.
【請求項11】冷却部材と無終端帯との接触する長さが
薄膜の形成域の長さの25%以上である請求項9記載の
薄膜製造装置。
11. The thin film manufacturing apparatus according to claim 9, wherein the length of contact between the cooling member and the endless belt is 25% or more of the length of the thin film forming region.
【請求項12】真空中で周回する無終端帯の表面に沿っ
て長尺の基板を走行させる搬送手段と、前記無終端帯に
前記基板が沿った状態で前記基板上に薄膜を形成する手
段とを備えた薄膜製造装置において、前記無終端帯の少
なくとも内側表面の輻射率が40%以上であることを特
徴とする薄膜製造装置。
12. A transport means for running a long substrate along the surface of an endless belt that circulates in a vacuum, and a means for forming a thin film on the substrate with the substrate along the endless belt. A thin film manufacturing apparatus comprising: a thin film manufacturing apparatus, wherein the emissivity of at least the inner surface of the endless zone is 40% or more.
【請求項13】真空中で周回する無終端帯の表面に沿っ
て長尺の基板を走行させる搬送手段と、前記無終端帯に
前記基板が沿った状態で前記基板上に薄膜を形成する手
段とを備えた薄膜製造装置において、前記無終端帯を予
備加熱する加熱手段を備えたことを特徴とする薄膜製造
装置。
13. A transport means for moving a long substrate along the surface of an endless belt that circulates in a vacuum, and a means for forming a thin film on the substrate with the substrate along the endless belt. A thin film manufacturing apparatus comprising: a heating means for preheating the endless zone.
【請求項14】加熱手段が遠赤外線ランプである請求項
13記載の薄膜製造装置。
14. The thin film manufacturing apparatus according to claim 13, wherein the heating means is a far infrared lamp.
JP32167795A 1995-12-11 1995-12-11 Thin film manufacturing method and thin film manufacturing apparatus Expired - Fee Related JP3529922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32167795A JP3529922B2 (en) 1995-12-11 1995-12-11 Thin film manufacturing method and thin film manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32167795A JP3529922B2 (en) 1995-12-11 1995-12-11 Thin film manufacturing method and thin film manufacturing apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003380993A Division JP2004131850A (en) 2003-11-11 2003-11-11 Method and apparatus for manufacturing thin film

Publications (2)

Publication Number Publication Date
JPH09157849A true JPH09157849A (en) 1997-06-17
JP3529922B2 JP3529922B2 (en) 2004-05-24

Family

ID=18135191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32167795A Expired - Fee Related JP3529922B2 (en) 1995-12-11 1995-12-11 Thin film manufacturing method and thin film manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP3529922B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110117279A1 (en) * 2008-02-20 2011-05-19 Panasonic Corporation Thin film forming method and film forming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110117279A1 (en) * 2008-02-20 2011-05-19 Panasonic Corporation Thin film forming method and film forming apparatus

Also Published As

Publication number Publication date
JP3529922B2 (en) 2004-05-24

Similar Documents

Publication Publication Date Title
US6312524B1 (en) Plasma CVD apparatus
US4489124A (en) Process for forming thin film, heat treatment process of thin film sheet, and heat treatment apparatus therefor
US5180433A (en) Evaporation apparatus
JP4103368B2 (en) Method and apparatus for producing film with metal oxide film
JPH09157849A (en) Production of thin film and apparatus for producing thin film
US5935335A (en) Film-forming apparatus and film-forming method
US3911162A (en) System for vapor deposition of thin films
JP2011058079A (en) Apparatus and method for forming thin film
TW202134451A (en) Vacuum heat treatment device for foil base materials and heat treatment method for foil base materials
JP2004131850A (en) Method and apparatus for manufacturing thin film
JP2007100162A (en) Thin film deposition method, method for producing magnetic recording medium, and thin film deposition system
JP3871735B2 (en) Film forming device for metal foil substrate
JPH06215372A (en) Production and apparatus for production of magnetic recording medium
US4446170A (en) Method of manufacturing a magnetic recording film of a thin metallic film type
EP0329116B1 (en) Method for manufacturing perpendicular magnetic recording medium
JPS59124038A (en) Manufacture of magnetic recording medium
JP3672949B2 (en) Vapor deposition equipment
JP2801498B2 (en) Thin film manufacturing equipment
JPS61159573A (en) Vacuum depositing apparatus
JP2008024990A (en) Thin film deposition system, thin film deposition method, and high performance thin film
JPH06145982A (en) Thin film forming device
JPS59150083A (en) Vacuum deposition device
JPH10130815A (en) Thin film deposition system
JPH11193460A (en) Winding device in vacuum vessel
JPS61289533A (en) Manufacture of magnetic recording medium and its device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040226

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees