JPH09157786A - Steel containing uniformly dispersed graphite, excellent in toughness, and its production - Google Patents

Steel containing uniformly dispersed graphite, excellent in toughness, and its production

Info

Publication number
JPH09157786A
JPH09157786A JP33767895A JP33767895A JPH09157786A JP H09157786 A JPH09157786 A JP H09157786A JP 33767895 A JP33767895 A JP 33767895A JP 33767895 A JP33767895 A JP 33767895A JP H09157786 A JPH09157786 A JP H09157786A
Authority
JP
Japan
Prior art keywords
graphite
temperature
cooling
steel
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33767895A
Other languages
Japanese (ja)
Other versions
JP3172075B2 (en
Inventor
Makoto Okonogi
真 小此木
Fusao Ishikawa
房男 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP33767895A priority Critical patent/JP3172075B2/en
Publication of JPH09157786A publication Critical patent/JPH09157786A/en
Application granted granted Critical
Publication of JP3172075B2 publication Critical patent/JP3172075B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a steel containing uniformly dispersed graphite, excellent in machinability and cold forgeability, by specifying the composition of a steel, incorporating specific numbers of composite grains of specific grain size, also incorporating graphite of specific grain size, and regulating the ratio of graphitization to a specific value. SOLUTION: A steel, having a composition consisting of, by weight, 0.10-1.0% C, 0.50-2.0% Si, 0.10-1.0% Mn, <=0.03% P, 0.001-0.10% S, 0.0001-0.01% B, 0.0002-0.02% N, <=0.1% Mg, and the balance Fe with inevitable impurities, is used. This steel is heated to a temp. between the Ar3 point and the solution heat treatment temp. of BN, hot-rolled, subjected to forced cooling from a temp. not lower than the Ar1 point down to a temp. not higher than the Ms point at (30 to 100) deg.C/sec average cooling rate, further subjected to natural cooling, and then to graphitizing treatment at 620-740 deg.C. By the above procedure, oxide and MnS grains of 0.1-5μm grain size are incorporated by (10<3> to 10<6> ) pieces/mm<2> and also graphite of <=5.0μm average grain size is incorporated, and further, the ratio of graphitization is regulated to >=80%. By this method, the steel containing uniformly dispersed graphite, excellent in toughness after quench-and-temper treatment, can be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は冷間加工(鍛造、切
削)後に焼入れ・焼戻して使用される棒鋼に関わり、特
に黒鉛を微細かつ均一に分散させることにより焼入れ・
焼戻し後の靭性に優れた黒鉛均一分散鋼およびその製造
方法に関わるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel bar that is used after quenching and tempering after cold working (forging, cutting), and in particular, by quenching the steel by finely and uniformly dispersing graphite.
The present invention relates to a graphite homogeneously dispersed steel excellent in toughness after tempering and a manufacturing method thereof.

【0002】[0002]

【従来の技術】中炭素鋼中のフェライト+パーライト組
織をフェライト+黒鉛の2相組織にすることによりその
冷間鍛造性および切削性が向上することは日本金属学会
誌vol.53(1989)P.206、日本金属学会
誌vol.52(1988)P.1285の研究論文に
報告されている。また工業的にも特公昭63−9580
号、特公昭53−15450号、特公昭53−1545
1号、特公昭53−46774号、特公昭53−536
7号、特公昭54−11773号、特開平2−1184
2号の各公報に開示されている。これらの従来技術で得
られる黒鉛粒径は特公昭53−46774号公報で述べ
られているように約30μm程度と粗大であり、この程
度の黒鉛粒径では焼入れ加熱の際に黒鉛が未分解のまま
残存し、あるいは炭素が拡散して黒鉛の存在していた箇
所が30μm程度の空孔として残存するという問題点が
残されていた。この欠点を解決するには黒鉛を微細に分
散させればよい。特開平2−111842号公報では黒
鉛微細化の具体的な方法として、BNを黒鉛の析出核と
して利用すること、酸素含有量を30ppm以下にする
ことが有効であることが開示されている。しかしこの方
法ではBNの分散状態が制御されていないため得られる
黒鉛粒径は約5〜10μm程度と微細化されているもの
の、焼入れ後には依然空孔は残存し靭性が低い。この理
由は、よく知られているようにBNは結晶粒界に偏析す
るという特徴があるためBNを核生成サイトとして析出
する黒鉛も粒界に析出し黒鉛分散は不均一となり、黒鉛
間距離の変動が大きくなりその最大値も大きくなる。特
に高周波加熱焼入れのような加熱保持時間が数秒と短い
場合には、黒鉛間距離の最大値が大きくなると炭素の拡
散が不十分となり均一なオーステナイト組織になりにく
い。このような鋼では、たとえ黒鉛粒径を小さくして黒
鉛の分解時間を短くしても、拡散律速となってマルテン
サイト+フェライトの混合組織となる。このような従来
鋼は、混在組織と空孔が原因で、破壊靭性値(衝撃値)
が低い欠点がある。
2. Description of the Related Art The improvement of cold forgeability and machinability by improving the ferrite + pearlite structure of a medium carbon steel into a two-phase structure of ferrite + graphite is described in Journal of the Japan Institute of Metals, vol. 53 (1989) p. 206, Journal of the Japan Institute of Metals, vol. 52 (1988) P.I. Reported in 1285 research papers. In addition, industrially, Japanese Patent Publication Sho 63-9580
No. 53-450
No. 1, JP-B-53-46774, JP-B-53-536
7, Japanese Patent Publication No. 54-11773, JP-A No. 2-1184
It is disclosed in each gazette of No. 2. The graphite particle size obtained by these prior arts is as coarse as about 30 μm, as described in JP-B-53-46774, and at such a graphite particle size, graphite is not decomposed during quenching and heating. However, there remains a problem that a portion where graphite is present due to diffusion of carbon remains as pores of about 30 μm. In order to solve this drawback, graphite may be finely dispersed. Japanese Patent Application Laid-Open No. 2-111842 discloses that, as a specific method of miniaturizing graphite, it is effective to use BN as a precipitation nucleus of graphite and to reduce the oxygen content to 30 ppm or less. However, in this method, since the dispersed state of BN is not controlled, the obtained graphite particle size is about 5 to 10 μm, but after the quenching, voids still remain and the toughness is low. The reason for this is that, as is well known, BN segregates at the crystal grain boundary, so that graphite, which precipitates BN as a nucleation site, also precipitates at the grain boundary, and the graphite dispersion becomes non-uniform. The fluctuation increases and its maximum value also increases. In particular, when the heating and holding time is as short as several seconds such as in induction heating and quenching, diffusion of carbon becomes insufficient and a uniform austenite structure is hard to be obtained when the maximum value of the distance between graphites becomes large. In such a steel, even if the graphite particle size is reduced to shorten the graphite decomposition time, a diffusion-controlled structure and a mixed structure of martensite + ferrite is formed. Such conventional steel has a fracture toughness value (impact value) due to the mixed structure and pores.
Has a low drawback.

【0003】微細な黒鉛を均一分散させるための従来技
術の製造方法について、黒鉛核発生箇所を導入して黒鉛
化を促進させるための従来知見が日本金属学会誌vo
l.30(1966)P.279、日本金属学会誌vo
l.43(1979)P.640に報告されている。黒
鉛核発生箇所としてマルテンサイト変態歪や加工歪を利
用し、黒鉛化の前処理として焼入れや冷間加工が有効で
あることが報告されている。日本金属学会誌vol.4
3(1979)P.640によると黒鉛分散状況は焼入
れ温度により大きく変化し、Ac1変態温度740℃付
近からの焼入れが最も黒鉛化微細化に有効であると報告
されている。また工業的にも炭素過飽和の状態(マルテ
ンサイト組織)とマルテンサイト変態歪を利用する方法
として特開昭49−67817号公報に開示されてい
る。これによると特定の化学組成を有する鋼を、熱延
後、750〜950℃に再加熱して焼入れしてマルテン
サイト変態させ、これを再々加熱し600〜750℃で
焼鈍することにより黒鉛分散鋼が得られている。また特
開平7−41851号公報には特定の成分からなる鋼を
BNおよびAlN固溶温度以上に加熱してから、800
〜950℃に加熱して焼ならし処理をし、その後300
〜600℃の温度域に一時的に保持するか、またはこの
保持を経ることなく直接650〜740℃の温度域に昇
温して5時間以上保持する焼鈍を施し鋼中Cを黒鉛化す
る製造方法が開示されている。しかしこれらの従来技術
の製造方法では黒鉛粒径が5μm以上と粗大であり焼入
れ焼戻し後の靭性値が低いことや、または黒鉛化処理に
長時間を有し熱処理コストが高いこと等の理由から、依
然実用化には至っていない。
Regarding the conventional manufacturing method for uniformly dispersing fine graphite, the conventional knowledge for promoting the graphitization by introducing the graphite nucleation site is vo.
l. 30 (1966) P.I. 279, Journal of the Japan Institute of Metals vo
l. 43 (1979) P.P. 640. It has been reported that martensitic transformation strain and work strain are used as graphite nucleation sites, and quenching and cold working are effective as pretreatment for graphitization. The Japan Institute of Metals, vol. 4
3 (1979) P.I. According to No. 640, it is reported that the graphite dispersion state greatly changes depending on the quenching temperature, and quenching from around the Ac1 transformation temperature of 740 ° C. is most effective for graphitization and refining. Further, industrially, it is disclosed in JP-A-49-67817 as a method of utilizing a carbon supersaturated state (martensite structure) and martensitic transformation strain. According to this, after hot rolling, a steel having a specific chemical composition is reheated to 750 to 950 ° C., quenched and martensite transformed, and then reheated again and annealed at 600 to 750 ° C. to obtain a graphite dispersed steel. Has been obtained. Further, in Japanese Patent Application Laid-Open No. 7-41851, a steel containing specific components is heated to a temperature of BN and AlN solid solution or higher, and then 800
Heat to ~ 950 ° C to normalize, then 300
Manufacture of graphitizing C in steel by temporarily holding it in the temperature range of 600 ° C to 600 ° C or by directly raising the temperature to the temperature range of 650 ° C to 740 ° C and holding it for 5 hours or more without going through this holding A method is disclosed. However, in these conventional manufacturing methods, the graphite particle size is as large as 5 μm or more and the toughness value after quenching and tempering is low, or because the graphitization treatment takes a long time and the heat treatment cost is high, etc. It has not yet been put to practical use.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記問題点
を解決するため案出されたものであり、成分及び製造条
件に改良を加えることにより、黒鉛の平均粒径(焼入れ
後の空孔の平均寸法)を小さくし、かつ、粒界に留まら
ずフェライト粒内にも黒鉛を均一に分散させた靭性に優
れた黒鉛均一分散鋼とその製造方法を提供するものであ
る。
SUMMARY OF THE INVENTION The present invention has been devised to solve the above problems, and the average particle size of graphite (voids after quenching) can be improved by improving the components and manufacturing conditions. The present invention provides a graphite homogeneously dispersed steel excellent in toughness in which graphite is uniformly dispersed in ferrite grains without remaining in grain boundaries, and a manufacturing method thereof.

【0005】[0005]

【課題を解決するための手段】本発明者らは種々検討を
重ねた結果、Mgを特定の量添加することにより、その
酸化物とMnS複合体がBNの核生成サイトとして機能
しフェライト結晶粒内に黒鉛が生成し黒鉛の均一分散が
実現可能であることを見出した。結晶粒界あるいは単独
BNが黒鉛サイトとなる場合と異なり、酸化物あるいは
酸化物とMnSの複合体は鋼中に均一にかつ微細に分散
しており、それらを生成サイトとするBNや黒鉛も鋼中
に均一に微細分散している。高周波加熱のように加熱保
持時間が短い場合にも従来鋼のようなマルテンサイト+
フェライト混合組織とはならず、また黒鉛が分解した後
の粗大な空孔も残存しないため、高い破壊靭性値が確保
できる。
Means for Solving the Problems As a result of various investigations by the present inventors, by adding a specific amount of Mg, the oxide and MnS complex function as a BN nucleation site, and ferrite crystal grains are obtained. It has been found that graphite is generated in the inside and uniform dispersion of graphite can be realized. Unlike the case where a grain boundary or a single BN serves as a graphite site, an oxide or a complex of an oxide and MnS is uniformly and finely dispersed in steel, and BN or graphite having these as production sites is also a steel. It is uniformly dispersed in the inside. Martensite like conventional steel + even when heating and holding time is short like high frequency heating
Since it does not have a ferrite mixed structure and no coarse pores remain after the graphite is decomposed, a high fracture toughness value can be secured.

【0006】本発明者らはこのような知見に基づいて、
従来困難であった黒鉛の均一分散化と微細化を実現し、
靭性に優れた冷間加工用黒鉛均一分散鋼およびその製造
方法を発明するに至った。その要旨は以下の通りであ
る。 (1)重量%で、C :0.10〜1.0%、Si:
0.50〜2.0%、Mn:0.10〜1.0%、P
:0.03%以下、S :0.001〜0.10%、
B :0.0001〜0.01%、N :0.0002
〜0.02%、Mg:0.1%以下を基本成分とし、残
部がFe及び不可避的不純物から成り、粒子径が0.1
〜5.0μmである酸化物または酸化物とMnSの複合
体の粒子を103〜106個/mm2含有し、かつ平均粒
径が5.0μm以下の黒鉛を有し、かつ黒鉛化率が80
%以上であることを特徴とする靭性に優れた黒鉛均一分
散鋼である。 (2)重量%で、C :0.10〜1.0%、Si:
0.50〜2.0%、Mn:0.10〜1.0%、P
:0.03%以下、S :0.001〜0.10%、
B :0.0001〜0.01%、N :0.0002
〜0.02%、Mg:0.1%以下、Mo:0.05〜
0.5%を基本成分とし、残部がFe及び不可避的不純
物から成り、粒子径が0.1〜5.0μmである酸化物
または酸化物とMnSの複合体の粒子を103〜106
/mm2含有し、かつ平均粒径が5.0μm以下の黒鉛
を有し、かつ黒鉛化率が80%以上であることを特徴と
する靭性に優れた黒鉛均一分散鋼である。 (3)(1)記載の成分から成る鋼を、Ar3とBNの
溶解度積:log[B][N]=−13970/T+
5.24で与えられるBN溶体化温度との間の温度範囲
内に加熱した後、熱間圧延し、冷却開始温度をAr1
以上の温度から平均冷却速度30〜100℃/secの
範囲で冷却終了温度Ms点以下へ強制冷却し、さらに自
然冷却し、次いで加熱温度620℃〜740℃の温度範
囲で黒鉛化処理することにより、平均粒径が5.0μm
以下の黒鉛を有し、かつ黒鉛化率が80%以上であるこ
とを特徴とする靭性に優れた黒鉛均一分散鋼の製造方法
である。 (4)(1)記載の成分から成る鋼を、BNの溶解度
積:log[B][N]=−13970/T+5.24
で与えられるBN溶体化温度以上に加熱した後、熱間圧
延し、冷却終了温度Ar1点以下まで冷却した後、Ar3
とBNの溶解度積:log[B][N]=−13970
/T+5.24で与えられるBN溶体化温度との間の温
度範囲内に再加熱した後、冷却開始温度をAr1点以上
の温度から平均冷却速度30〜100℃/secの範囲
で冷却終了温度Ms点以下へ強制冷却し、さらに自然冷
却し、次いで加熱温度620℃〜740℃の温度範囲で
黒鉛化処理することにより、平均粒径が5.0μm以下
の黒鉛を有し、かつ黒鉛化率が80%以上であることを
特徴とする靭性に優れた黒鉛均一分散鋼の製造方法であ
る。 (5)(2)記載の成分から成る鋼を、Ar3とBNの
溶解度積:log[B][N]=−13970/T+
5.24で与えられるBN溶体化温度との間の温度範囲
内に加熱した後、熱間圧延し、冷却開始温度をAr1
以上の温度から平均冷却速度30〜100℃/secの
範囲で冷却終了温度Ms点以下へ強制冷却し、さらに自
然冷却し、次いで加熱温度620℃〜740℃の温度範
囲で黒鉛化処理することにより、平均粒径が5.0μm
以下の黒鉛を有し、かつ黒鉛化率が80%以上であるこ
とを特徴とする靭性に優れた黒鉛均一分散鋼の製造方法
である。 (6)(2)記載の成分から成る鋼を、BNの溶解度
積:log[B][N]=−13970/T+5.24
で与えられるBN溶体化温度以上に加熱した後、熱間圧
延し、冷却終了温度Ar1点以下まで冷却した後、Ar3
とBNの溶解度積:log[B][N]=−13970
/T+5.24で与えられるBN溶体化温度との間の温
度範囲内に再加熱した後、冷却開始温度をAr1点以上
の温度から平均冷却速度30〜100℃/secの範囲
で冷却終了温度Ms点以下へ強制冷却し、さらに自然冷
却し、次いで加熱温度620℃〜740℃の温度範囲で
黒鉛化処理することにより、平均粒径が5.0μm以下
の黒鉛を有し、かつ黒鉛化率が80%以上であることを
特徴とする靭性に優れた黒鉛均一分散鋼の製造方法であ
る。
The present inventors, based on such findings,
Uniform dispersion and miniaturization of graphite, which were difficult in the past,
The inventors have invented a graphite uniformly dispersed steel for cold working which is excellent in toughness and a method for producing the same. The summary is as follows. (1)% by weight, C: 0.10 to 1.0%, Si:
0.50 to 2.0%, Mn: 0.10 to 1.0%, P
: 0.03% or less, S: 0.001 to 0.10%,
B: 0.0001 to 0.01%, N: 0.0002
.About.0.02%, Mg: 0.1% or less as a basic component, the balance consisting of Fe and unavoidable impurities, and a particle diameter of 0.1.
Containing 10 3 to 10 6 particles / mm 2 of an oxide or a composite of oxide and MnS having an average particle size of 5.0 μm or less and having a graphitization rate Is 80
% Or more, it is a graphite homogeneously dispersed steel excellent in toughness. (2) By weight%, C: 0.10 to 1.0%, Si:
0.50 to 2.0%, Mn: 0.10 to 1.0%, P
: 0.03% or less, S: 0.001 to 0.10%,
B: 0.0001 to 0.01%, N: 0.0002
~ 0.02%, Mg: 0.1% or less, Mo: 0.05 ~
10 3 to 10 6 particles of an oxide or a complex of oxide and MnS having a basic component of 0.5%, the balance of Fe and inevitable impurities, and a particle diameter of 0.1 to 5.0 μm. / Mm 2 and a graphite having an average particle size of 5.0 μm or less, and a graphitization ratio of 80% or more. (3) Solubility product of Ar 3 and BN: log [B] [N] =-13970 / T +
After heating within a temperature range between the BN solution temperature given by 5.24 and hot rolling, the cooling start temperature is from Ar 1 point or higher to an average cooling rate of 30 to 100 ° C./sec. The average particle diameter is 5.0 μm by forcibly cooling to the cooling end temperature Ms point or less, further natural cooling, and then graphitizing at a heating temperature range of 620 ° C. to 740 ° C.
A method for producing a uniformly dispersed graphite steel having excellent toughness, which comprises the following graphite and has a graphitization ratio of 80% or more. (4) The BN solubility product: log [B] [N] =-13970 / T + 5.24, for the steel consisting of the components described in (1).
After heating above the BN solution temperature given by, hot rolling is performed, and after cooling to a cooling end temperature Ar 1 point or less, Ar 3
And BN solubility product: log [B] [N] =-13970
/T+5.24, after reheating within a temperature range between the BN solution temperature and the cooling start temperature from the temperature of Ar 1 point or higher to the average cooling rate of 30 to 100 ° C / sec. Forced cooling to below the Ms point, further natural cooling, and then graphitization treatment at a heating temperature range of 620 ° C. to 740 ° C., whereby graphite having an average particle size of 5.0 μm or less and having a graphitization rate Is 80% or more and is a method for producing a graphite uniformly dispersed steel having excellent toughness. (5) Solubility product of Ar 3 and BN: log [B] [N] =-13970 / T +
After heating within a temperature range between the BN solution temperature given by 5.24 and hot rolling, the cooling start temperature is from Ar 1 point or higher to an average cooling rate of 30 to 100 ° C./sec. The average particle diameter is 5.0 μm by forcibly cooling to the cooling end temperature Ms point or less, further natural cooling, and then graphitizing at a heating temperature range of 620 ° C. to 740 ° C.
A method for producing a uniformly dispersed graphite steel having excellent toughness, which comprises the following graphite and has a graphitization ratio of 80% or more. (6) The BN solubility product: log [B] [N] =-13970 / T + 5.24 is applied to the steel composed of the components described in (2).
After heating above the BN solution temperature given by, hot rolling is performed, and after cooling to a cooling end temperature Ar 1 point or less, Ar 3
And BN solubility product: log [B] [N] =-13970
/T+5.24, after reheating within a temperature range between the BN solution temperature and the cooling start temperature from the temperature of Ar 1 point or higher to the average cooling rate of 30 to 100 ° C / sec. Forced cooling to below the Ms point, further natural cooling, and then graphitization treatment at a heating temperature range of 620 ° C. to 740 ° C., whereby graphite having an average particle size of 5.0 μm or less and having a graphitization rate Is 80% or more and is a method for producing a graphite uniformly dispersed steel having excellent toughness.

【0007】[0007]

【発明の実施の形態】本発明の化学成分の請求範囲を上
記のように定めた理由を以下に示す。
BEST MODE FOR CARRYING OUT THE INVENTION The reasons for defining the claims of the chemical components of the present invention as described above are shown below.

【0008】Cは焼入れ後の強度を確保するため、その
下限値を0.1%とした。上限は冷間加工後の熱処理に
おける焼き割れを防止するために1.0%とした。
C has a lower limit of 0.1% in order to secure the strength after quenching. The upper limit is 1.0% in order to prevent quench cracks in the heat treatment after cold working.

【0009】Siは鋼中の炭素原子との結合力が小さ
く、黒鉛化を促進する有力な元素の一つであることから
必須の元素である。焼入れ+焼鈍処理により十分な黒鉛
を析出させて高い黒鉛化率とするためにはSiを添加す
ることが必要であり、その下限値を0.5%とした。た
だしSi含有量が増大するとフェライト層が固溶硬化し
冷間加工性の劣化を招くので、上限値を2.0%とし
た。
Si is an essential element because it has a small bonding force with carbon atoms in steel and is one of the powerful elements for promoting graphitization. In order to deposit sufficient graphite by quenching + annealing to obtain a high graphitization rate, it is necessary to add Si, and the lower limit value was set to 0.5%. However, when the Si content increases, the ferrite layer solid-solution hardens and causes deterioration in cold workability. Therefore, the upper limit is set to 2.0%.

【0010】MnはSと結合してMnS介在物として存
在し、酸化物との複合体を形成し、黒鉛あるいはBNの
生成サイトとなることから必要な元素でもあることか
ら、その下限値を0.1%とした。ただしMn量が大き
くなると黒鉛化を著しく阻害するので上限値は1.0%
とした。
Mn is a necessary element because it binds to S and exists as MnS inclusions, forms a complex with an oxide, and serves as a site for producing graphite or BN. Therefore, its lower limit value is 0. It was set to 1%. However, if the amount of Mn becomes large, graphitization is significantly hindered, so the upper limit is 1.0%.
And

【0011】Pは鋼中で粒界偏析や中心偏析を起こし靭
性劣化の原因となるので、その上限値を0.03%とし
た。
Since P causes grain boundary segregation and center segregation in steel and causes deterioration of toughness, the upper limit of P is set to 0.03%.

【0012】SはMnと結合してMnS介在物として存
在し、酸化物の複合体を形成し、黒鉛あるいはBNの核
生成サイトとして有効である。ただし0.001%未満
ではBNの核生成サイトとしての効果が現れないことか
ら下限値を0.001%とした。またS量が多すぎると
冷間加工性を劣化させるため上限値を0.1%とした。
S binds to Mn and exists as MnS inclusions, forms an oxide complex, and is effective as a nucleation site for graphite or BN. However, if it is less than 0.001%, the effect as the BN nucleation site does not appear, so the lower limit was made 0.001%. If the S content is too large, the cold workability deteriorates, so the upper limit was set to 0.1%.

【0013】BはNと結合してBNを生成し黒鉛の析出
サイトとして機能する。このため黒鉛微細化に有効であ
る。微細化効果を得るには0.0001%以上を添加し
なければならない。ただし0.01%以上添加すると逆
に微細化効果が減少するため上限値を0.01%とし
た。
B combines with N to form BN and functions as a precipitation site for graphite. Therefore, it is effective for refining graphite. In order to obtain the miniaturization effect, 0.0001% or more must be added. However, if 0.01% or more is added, on the contrary, the refining effect is reduced, so the upper limit was made 0.01%.

【0014】NはBと結合してBNを生成する。0.0
001%〜0.01%のBをBNにするための必要な
量、つまり0.0002%〜0.02%である。
N combines with B to produce BN. 0.0
The amount necessary for converting 001% to 0.01% B into BN is 0.0002% to 0.02%.

【0015】Mgは酸化物を形成し、この酸化物または
酸化物とMnSの複合体の粒子は鋼中に均一に分散し、
黒鉛あるいはBNの核生成サイトを与え黒鉛を微細化す
る。ただし0.1%以上添加すると、微細化効果は飽和
し、靭性を劣化させる。
Mg forms an oxide, and particles of the oxide or a complex of the oxide and MnS are uniformly dispersed in the steel,
Nucleation sites of graphite or BN are given to miniaturize the graphite. However, if 0.1% or more is added, the refining effect is saturated and the toughness is deteriorated.

【0016】Moは焼入性を確保するために必要に応じ
て添加される。焼入性の効果を十分得るために、添加量
の下限値を0.05%とした、また0.5%を超えて添
加するとフェライト地の硬さが上昇し冷間加工性が損な
われるため上限値を0.5%とした。
Mo is added as necessary to ensure hardenability. In order to obtain a sufficient hardenability effect, the lower limit of the amount added is set to 0.05%, and if added in excess of 0.5%, the hardness of the ferrite base increases and cold workability is impaired. The upper limit was 0.5%.

【0017】本発明鋼は特定の範囲の大きさの酸化物ま
たは酸化物とMnSの複合体の粒子を特定の範囲の個数
含有する。この酸化物または酸化物とMnSの複合体の
粒子は鋼中に均一に分散し黒鉛あるいはBNの核生成サ
イトを与え、黒鉛を微細化する。しかしながら、酸化物
またはMnSと酸化物の個数が103個/mm2未満であ
れば黒鉛は均一に分散することなく、平均粒径5.0μ
mを超える黒鉛が形成する。個数の上限を106個/m
2としたのは0.1μm以上の酸化物をこれ以上増や
すのは困難だからである。なお、ここで、酸化物または
MnSと酸化物の複合体の粒子の粒径を0.1〜5.0
μmと限定したのは、0.1μm以下では核生成サイト
として無効であり、5.0μm超では酸化物自体が破壊
の起点となり靭性の劣化を招くためである。
The steel of the present invention contains a specific range of number of particles of an oxide or an oxide / MnS composite having a specific range of size. The particles of the oxide or the complex of the oxide and MnS are uniformly dispersed in the steel to provide nucleation sites of graphite or BN, and the graphite is miniaturized. However, if the number of oxides or MnS and the number of oxides is less than 10 3 / mm 2 , the graphite is not uniformly dispersed and the average particle size is 5.0 μm.
More than m graphite is formed. The upper limit of the number is 10 6 / m
The reason for setting m 2 is that it is difficult to increase the number of oxides of 0.1 μm or more. Here, the particle size of the particles of the oxide or the complex of MnS and the oxide is 0.1 to 5.0.
The reason why the thickness is limited to μm is that if it is 0.1 μm or less, it is ineffective as a nucleation site, and if it exceeds 5.0 μm, the oxide itself becomes a starting point of fracture and causes deterioration of toughness.

【0018】黒鉛の平均粒径は靭性(衝撃特性)の点か
らその上限を5μmとしなければならない。5μmを超
えると、焼入れ組織がフェライト+マルテンサイトの混
合組織となって衝撃値が低下する。
The upper limit of the average particle diameter of graphite must be 5 μm from the viewpoint of toughness (impact characteristics). If it exceeds 5 μm, the quenched structure becomes a mixed structure of ferrite and martensite, and the impact value decreases.

【0019】黒鉛化率は次式により算出した。The graphitization ratio was calculated by the following equation.

【0020】 (鋼中黒鉛含有量/鋼の炭素含有量)×100(%) フェライト地を十分に軟質化させるためには、黒鉛化率
は80%以上でなくてはならない。
(Graphite content in steel / carbon content in steel) × 100 (%) In order to sufficiently soften the ferrite base material, the graphitization ratio must be 80% or more.

【0021】本発明の製造条件を請求項3および請求項
5のように限定した理由を以下に示す。熱間圧延の際の
加熱温度は圧延後急冷を行いマルテンサイト組織にする
ためAr 3点以上でなくてはならない。しかしながら加
熱温度をBNの溶体化温度以上に加熱すると黒鉛析出サ
イトのBNが消滅し、黒鉛化した際、10μm程度の粗
大な黒鉛が形成される。そのため加熱温度の上限はBN
の固溶温度とした。ここでBNの固溶温度は溶解度積 log[B][N]=−13970/T+5.24 から求められるT(K)である。[B],[N]はそれ
ぞれB,Nの重量%である。冷却開始温度はマルテンサ
イト変態歪と圧延歪を同時に発生させて黒鉛析出サイト
および黒鉛化の際の炭素および鉄の拡散経路を確保する
ため、Ar1点以上でなければならない。冷却終了温度
は十分なマルテンサイト変態組織を得て黒鉛生成を容易
にするためMs点以下でなくてはならない。平均冷却速
度の下限値を30℃/sとしたのは、マルテンサイト変
態組織を得るために加工歪を残留させて黒鉛化を容易に
するためであり、上限値を100℃/sとしたのは、こ
れ以上で急冷却してもマルテンサイト変態量は増加しな
いためである。黒鉛化焼鈍温度の下限値を620℃、上
限値を740℃にしたのはこの温度範囲における黒鉛化
時間が最も短いためである。
The manufacturing conditions of the present invention are set forth in claim 3 and claim.
The reason why the limitation is made as in No. 5 is shown below. Hot rolling
As for heating temperature, quenching after rolling to martensite structure
For Ar ThreeIt must be above the point. However,
If the heating temperature is raised above the solution temperature of BN, the graphite precipitation
When BN disappears and is graphitized, coarse particles of about 10 μm
Large graphite is formed. Therefore, the upper limit of the heating temperature is BN
Was set as the solid solution temperature. Here, the solid solution temperature of BN is T (K) obtained from the solubility product log [B] [N] =-13970 / T + 5.24. [B] and [N] are
Weight% of B and N respectively. Cooling start temperature is Martensa
Graphite transformation site
And secure carbon and iron diffusion paths during graphitization
Therefore, Ar1Must be above the point. Cooling end temperature
Obtains sufficient martensitic transformation structure to facilitate graphite formation
Must be less than or equal to the Ms point. Average cooling speed
The lower limit of 30 ° C / s is the reason for the martensite change.
Easy to graphitize by leaving processing strain to obtain the microstructure
This is because the upper limit value is 100 ° C / s.
The martensitic transformation amount does not increase even if it is rapidly cooled above this temperature.
This is because Lower limit of graphitization annealing temperature is 620 ℃
The limit value of 740 ℃ is graphitization in this temperature range
This is because the time is the shortest.

【0022】本発明の製造条件を請求項4および請求項
6のように限定した理由を以下に示す。オフラインの加
熱炉にてBN析出処理を行うことを前提にBNの溶体化
温度以上に加熱して熱間圧延して、BNあるいはB偏析
帯を一旦オーステナイト中に固溶させる。その際の加熱
温度の下限はBNの固溶温度以上でなくてはならない。
ここでBNの固溶温度は溶解度積 log[B][N]=−13970/T+5.24 から求められるT(K)である。[B],[N]はそれ
ぞれB,Nの重量%である。その後Ar1以下まで水冷
または空冷により冷却する。MnSがBNの有効な核生
成サイトとしての機能を持つためには、MnSと鉄との
界面が非整合でなければならない。MnS/オーステナ
イトの界面の格子整合性は良好であるため、一旦フェラ
イト単相域まで冷却しなくてはならない。即ち冷却終了
温度はAr1点以下でなくてはならない。望ましくはよ
り多数のBN析出サイトを確保するため水冷による冷却
でMs点以下まで冷却する。その後BNを析出させるた
め再加熱する。加熱温度は加熱後の冷却の際、急冷を行
いマルテンサイト組織にするためAr3点以上でなくて
はならない。この熱処理中即ち加熱昇温中あるいは加熱
炉にて保定中に非整合MnSまたは酸化物あるいはγ粒
界を析出サイトとして微細かつ均一に分散したBNが形
成される。加熱温度がBNの溶体化温度以上になると黒
鉛析出サイトのBNが消滅し、黒鉛化した際、10μm
程度の粗大な黒鉛が形成される。そのため加熱温度の上
限はBNの固溶温度とした。ここでBNの固溶温度は溶
解度積 log[B][N]=−13970/T+5.24 から求められるT(K)である。[B],[N]はそれ
ぞれB,Nの重量%である。冷却開始温度はマルテンサ
イト変態歪と圧延歪を同時に発生させて黒鉛析出サイト
および黒鉛化の際の炭素および鉄の拡散経路を確保する
ため、Ar1点以上でなければならない。冷却終了温度
は十分なマルテンサイト変態組織を得て黒鉛生成を容易
にするためMs点以下でなくてはならない。平均冷却速
度の下限値を30℃/sとしたのは、マルテンサイト変
態組織を得るために加工歪を残留させて黒鉛化を容易に
するためであり、上限値を100℃/sとしたのは、こ
れ以上で急冷却してもマルテンサイト変態量は増加しな
いためである。黒鉛化焼鈍温度の下限値を620℃、上
限値を740℃にしたのはこの温度範囲における黒鉛化
時間が最も短いためである。
The reason why the manufacturing conditions of the present invention are limited as in claim 4 and claim 6 is as follows. Assuming that the BN precipitation treatment is performed in an offline heating furnace, the BN or B segregation zone is once solid-dissolved in austenite by heating to a solutionizing temperature of BN or higher and hot rolling. The lower limit of the heating temperature at that time must be higher than the solid solution temperature of BN.
Here, the solid solution temperature of BN is T (K) obtained from the solubility product log [B] [N] =-13970 / T + 5.24. [B] and [N] are% by weight of B and N, respectively. After that, it is cooled to below Ar 1 by water cooling or air cooling. In order for MnS to function as an effective nucleation site for BN, the interface between MnS and iron must be inconsistent. Since the lattice matching of the MnS / austenite interface is good, it is necessary to once cool to the ferrite single phase region. That is, the cooling end temperature must be below the Ar 1 point. Desirably, in order to secure a larger number of BN precipitation sites, cooling by water cooling is performed up to the Ms point or lower. Then, it is reheated to precipitate BN. The heating temperature must be at or above the Ar 3 point in order to rapidly cool the structure after heating to form a martensite structure. During this heat treatment, that is, during heating and temperature increase or during retention in a heating furnace, BN is formed in which fine and uniform dispersion is made by using non-matching MnS or oxide or γ grain boundaries as precipitation sites. When the heating temperature exceeds the solution temperature of BN, BN in the graphite precipitation site disappears, and when graphitized, 10 μm
Coarse graphite is formed. Therefore, the upper limit of the heating temperature is the solid solution temperature of BN. Here, the solid solution temperature of BN is T (K) obtained from the solubility product log [B] [N] =-13970 / T + 5.24. [B] and [N] are% by weight of B and N, respectively. The cooling start temperature must be at least Ar 1 point in order to simultaneously generate martensitic transformation strain and rolling strain to secure a graphite precipitation site and a diffusion route of carbon and iron during graphitization. The cooling end temperature must be below the Ms point in order to obtain a sufficient martensitic transformation structure and facilitate graphite formation. The lower limit of the average cooling rate is set to 30 ° C./s in order to facilitate the graphitization by leaving the processing strain in order to obtain the martensitic transformation structure, and the upper limit is set to 100 ° C./s. Is because the amount of martensitic transformation does not increase even if the material is rapidly cooled further. The lower limit of the graphitization annealing temperature is 620 ° C. and the upper limit is 740 ° C. because the graphitization time is the shortest in this temperature range.

【0023】[0023]

【実施例】以下に本発明の効果を実施例によりさらに具
体的に示す。
EXAMPLES The effects of the present invention will be more specifically described below with reference to examples.

【0024】表1に供試鋼の化学成分、黒鉛化率、0.
1〜5.0μmの酸化物またはMnSと酸化物の複合体
粒子数、黒鉛平均粒径、黒鉛間最大距離及び黒鉛化後に
焼入れ焼戻した場合のシャルピー吸収エネルギーを示
す。この際の製造条件は分塊圧延後空冷し、950℃に
再加熱し熱間圧延し、熱延ラインの延長線上に設置した
水冷装置により全表面に単位面積当たり0.3〜0.5
トンの冷却水を均一に散水することにより冷却した。そ
の後オフラインの焼鈍炉にて700℃で黒鉛化処理を行
なった。黒鉛化率は次式により算出した。
Table 1 shows the chemical composition and graphitization ratio of the test steel,
1 shows the number of oxide particles having a particle size of 1 to 5.0 μm or a composite of MnS and an oxide, the average particle diameter of graphite, the maximum distance between graphite particles, and the Charpy absorbed energy when quenching and tempering after graphitization. The production conditions at this time are: slab-rolling, air-cooling, reheating to 950 ° C., hot rolling, and 0.3 to 0.5 per unit area on the entire surface by a water cooling device installed on the extension line of the hot rolling line.
Tons of cooling water were uniformly sprayed to cool. After that, a graphitization treatment was performed at 700 ° C. in an off-line annealing furnace. The graphitization rate was calculated by the following formula.

【0025】 (鋼中黒鉛含有量/鋼の炭素含有量)×100(%) 鋼の炭素含有量は化学分析により定量した。黒鉛含有量
は平均黒鉛粒子径、密度及び黒鉛粒子数から算出した。
酸化物またはMnSと酸化物の複合体の粒子数は、抽出
レプリカ試料を作製し電子顕微鏡にて5000倍の写真
を20視野撮影し、粒子数を測定した。黒鉛粒径は黒鉛
粒子に電子線を照射して、反射電子線の強度を2値化し
て画像解析システムを利用して測定した。黒鉛粒間最大
距離は光学顕微鏡写真上に黒鉛が存在しない領域のみを
含むを含む円弧を描き、その直径の最大値を黒鉛間の最
大距離とした。シャルピー衝撃値は黒鉛析出状態の棒鋼
を用い、焼入れ(850℃×30分→水冷)、焼戻し
(600℃×60分→水冷)を行った後、2mmUノッ
チシャルピー衝撃試験片(JIS Z2202 No
3)を採取し、試験温度20℃でシャルピー衝撃試験を
行った。
(Graphite content in steel / carbon content in steel) × 100 (%) The carbon content in steel was quantified by chemical analysis. The graphite content was calculated from the average graphite particle size, density and the number of graphite particles.
Regarding the number of particles of the oxide or the complex of MnS and the oxide, an extraction replica sample was prepared, and a 5000 times photograph was taken in 20 fields of view with an electron microscope to measure the number of particles. The graphite particle diameter was measured by irradiating the graphite particles with an electron beam, binarizing the intensity of the reflected electron beam, and using an image analysis system. The maximum distance between the graphite grains was an arc including an area including no graphite on the optical micrograph, and the maximum value of the diameter was defined as the maximum distance between the graphite particles. The Charpy impact value was obtained by using a steel bar in the state of graphite precipitation, quenching (850 ° C × 30 minutes → water cooling), tempering (600 ° C × 60 minutes → water cooling), and then a 2 mm U-notch Charpy impact test piece (JIS Z2202 No.
3) was sampled and subjected to a Charpy impact test at a test temperature of 20 ° C.

【0026】表1に示したように本発明鋼の成分範囲を
満足する鋼1〜5はいずれも黒鉛平均粒径が5μm以下
であるのに対しMgの添加量が請求範囲を下回る鋼6〜
8あるいはSの添加量が請求範囲を下回る鋼7はいずれ
も7μm以上である。また黒鉛間の最大距離は本発明鋼
の成分範囲を満足する鋼1〜5は比較例の鋼6〜8と比
べ小さく黒鉛が均一微細分散していることがわかる。焼
入れ焼戻し後のシャルピー吸収エネルギーは鋼1〜5で
は比較例の鋼6〜8と比べ著しく大きく、本発明鋼は靭
性に優れていることがわかる。
As shown in Table 1, all of the steels 1 to 5 satisfying the composition range of the steel of the present invention have a graphite average particle size of 5 μm or less, while the addition amount of Mg is less than the claimed range.
The steel 7 in which the addition amount of 8 or S is less than the claimed range is 7 μm or more. Further, it is understood that the maximum distance between graphites is smaller in Steels 1 to 5 satisfying the composition range of the steel of the present invention than in Steels 6 to 8 in Comparative Examples, and the graphite is uniformly and finely dispersed. The Charpy absorbed energy after quenching and tempering is remarkably large in Steels 1 to 5 as compared with Steels 6 to 8 in Comparative Examples, indicating that the steels of the present invention have excellent toughness.

【0027】[0027]

【表1】 表2に本発明鋼を種々の条件で製造した際の製造条件を
示す。表3に黒鉛化率、黒鉛平均粒径、黒鉛間の最大距
離及び焼入れ焼戻し後のシャルピー衝撃値を示す。
[Table 1] Table 2 shows the manufacturing conditions when the steel of the present invention was manufactured under various conditions. Table 3 shows the graphitization ratio, the average graphite particle size, the maximum distance between graphites, and the Charpy impact value after quenching and tempering.

【0028】冷却開始温度、冷却終了温度は鋼材の表面
温度を放射温度計で測定した値であり、平均冷却速度は
冷却開始温度と冷却終了温度との差を冷却時間で除すこ
とにより求めた。表3に示したように本発明の製造条件
を満足するNo.1〜5はいずれも黒鉛平均粒径が5μ
m以下であるのに対し製造条件を満たさないNo.6〜
8はいずれも5μm以上である。また黒鉛間の最大距離
は本発明の製造条件を満足するNo.1〜5は比較例の
No.6〜8と比べ小さく黒鉛が均一微細分散している
ことがわかる。焼入れ焼戻し後のシャルピー吸収エネル
ギーはNo.1〜5では比較例のNo.6〜8と比べ著
しく大きく、本発明の製造条件は靭性に優れた黒鉛均一
分散鋼が製造可能であることがわかる。
The cooling start temperature and the cooling end temperature are values obtained by measuring the surface temperature of the steel material with a radiation thermometer, and the average cooling rate was obtained by dividing the difference between the cooling start temperature and the cooling end temperature by the cooling time. . As shown in Table 3, No. 1 satisfying the manufacturing conditions of the present invention. 1 to 5 all have an average graphite particle size of 5μ
No. which does not satisfy the manufacturing conditions, although it is less than m. 6 ~
All 8 are 5 μm or more. In addition, the maximum distance between graphites is No. 1 that satisfies the manufacturing conditions of the present invention. Nos. 1 to 5 are comparative examples. It can be seen that graphite is smaller than that of Nos. 6 to 8 and that graphite is uniformly dispersed. Charpy absorbed energy after quenching and tempering is No. Nos. 1 to 5 of Comparative Example. 6-8, which is remarkably large as compared with Nos. 6 to 8, and it can be seen that the production conditions of the present invention can produce a graphite uniformly dispersed steel excellent in toughness.

【0029】[0029]

【表2】 [Table 2]

【0030】[0030]

【表3】 [Table 3]

【0031】[0031]

【発明の効果】以上の実施例からも明らかなように本発
明によれば、切削性及び冷間鍛造性に優れ、かつ焼入れ
焼戻し後の靭性の優れた黒鉛均一分散鋼を提供すること
が可能であり、産業上の効果は極めて顕著なるものがあ
る。
As is apparent from the above examples, according to the present invention, it is possible to provide a graphite uniformly dispersed steel having excellent machinability and cold forgeability and excellent toughness after quenching and tempering. The industrial effects are extremely remarkable.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.10〜1.0%、 Si:0.50〜2.0%、 Mn:0.10〜1.0%、 P :0.03%以下、 S :0.001〜0.10%、 B :0.0001〜0.01%、 N :0.0002〜0.02%、 Mg:0.1%以下 を基本成分とし、残部がFe及び不可避的不純物から成
り、粒子径が0.1〜5.0μmである酸化物または酸
化物とMnSの複合体の粒子を103〜106個/mm2
含有し、かつ平均粒径が5.0μm以下の黒鉛を有し、
かつ黒鉛化率が80%以上であることを特徴とする靭性
に優れた黒鉛均一分散鋼。
1. By weight%, C: 0.10 to 1.0%, Si: 0.50 to 2.0%, Mn: 0.10 to 1.0%, P: 0.03% or less, S: 0.001 to 0.10%, B: 0.0001 to 0.01%, N: 0.0002 to 0.02%, Mg: 0.1% or less as a basic component, the balance being Fe and unavoidable. 10 3 to 10 6 particles / mm 2 of oxides or composites of oxides and MnS that are composed of specific impurities and have a particle diameter of 0.1 to 5.0 μm.
Containing graphite having an average particle size of 5.0 μm or less,
Further, a graphite uniformly dispersed steel excellent in toughness characterized by having a graphitization ratio of 80% or more.
【請求項2】 重量%で、 C :0.10〜1.0%、 Si:0.50〜2.0%、 Mn:0.10〜1.0%、 P :0.03%以下、 S :0.001〜0.10%、 B :0.0001〜0.01%、 N :0.0002〜0.02%、 Mg:0.1%以下、 Mo:0.05〜0.5% を基本成分とし、残部がFe及び不可避的不純物から成
り、粒子径が0.1〜5.0μmである酸化物または酸
化物とMnSの複合体の粒子を103〜106個/mm2
含有し、かつ平均粒径が5.0μm以下の黒鉛を有し、
かつ黒鉛化率が80%以上であることを特徴とする靭性
に優れた黒鉛均一分散鋼。
2. By weight%, C: 0.10 to 1.0%, Si: 0.50 to 2.0%, Mn: 0.10 to 1.0%, P: 0.03% or less, S: 0.001 to 0.10%, B: 0.0001 to 0.01%, N: 0.0002 to 0.02%, Mg: 0.1% or less, Mo: 0.05 to 0.5. % As a basic component, the balance consisting of Fe and unavoidable impurities, and 10 3 to 10 6 particles / mm 2 of an oxide or a composite of oxide and MnS having a particle diameter of 0.1 to 5.0 μm.
Containing graphite having an average particle size of 5.0 μm or less,
Further, a graphite uniformly dispersed steel excellent in toughness characterized by having a graphitization ratio of 80% or more.
【請求項3】 請求項1記載の成分から成る鋼を、Ar
3とBNの溶解度積:log[B][N]=−1397
0/T+5.24で与えられるBN溶体化温度との間の
温度範囲内に加熱した後、熱間圧延し、冷却開始温度を
Ar1点以上の温度から平均冷却速度30〜100℃/
secの範囲で冷却終了温度Ms点以下へ強制冷却し、
さらに自然冷却し、次いで加熱温度620℃〜740℃
の温度範囲で黒鉛化処理することにより、平均粒径が
5.0μm以下の黒鉛を有し、かつ黒鉛化率が80%以
上であることを特徴とする靭性に優れた黒鉛均一分散鋼
の製造方法。
3. A steel comprising the composition according to claim 1,
ThreeAnd BN solubility product: log [B] [N] = − 1397
Between the BN solution temperature given by 0 / T + 5.24
After heating within the temperature range, hot rolling is performed to set the cooling start temperature.
Ar1From the temperature above the point, the average cooling rate is 30 to 100 ° C /
Forced cooling to below the cooling end temperature Ms point in the range of sec,
Further natural cooling, then heating temperature 620 ℃ ~ 740 ℃
By graphitizing in the temperature range of
It has graphite of 5.0 μm or less and the graphitization rate is 80% or less.
Graphite uniform dispersion steel with excellent toughness characterized by the above
Manufacturing method.
【請求項4】 請求項1記載の成分から成る鋼を、BN
の溶解度積:log[B][N]=−13970/T+
5.24で与えられるBN溶体化温度以上に加熱した
後、熱間圧延し、冷却終了温度Ar1点以下まで冷却し
た後、Ar3とBNの溶解度積:log[B][N]=
−13970/T+5.24で与えられるBN溶体化温
度との間の温度範囲内に再加熱した後、冷却開始温度を
Ar1点以上の温度から平均冷却速度30〜100℃/
secの範囲で冷却終了温度Ms点以下へ強制冷却し、
さらに自然冷却し、次いで加熱温度620℃〜740℃
の温度範囲で黒鉛化処理することにより、平均粒径が
5.0μm以下の黒鉛を有し、かつ黒鉛化率が80%以
上であることを特徴とする靭性に優れた黒鉛均一分散鋼
の製造方法。
4. A steel comprising the composition according to claim 1,
Solubility product of: log [B] [N] =-13970 / T +
After heating above the BN solution temperature given by 5.24, hot rolling and cooling to the cooling end temperature Ar 1 point or less, then the solubility product of Ar 3 and BN: log [B] [N] =
After reheating within a temperature range between the BN solution temperature given by -13970 / T + 5.24, the cooling start temperature is from Ar 1 point or higher to an average cooling rate of 30 to 100 ° C /
Forced cooling to below the cooling end temperature Ms point in the range of sec,
Further natural cooling, then heating temperature 620 ℃ ~ 740 ℃
Of graphite having an average particle size of 5.0 μm or less and having a graphitization ratio of 80% or more by performing graphitization in the temperature range of 1. Method.
【請求項5】 請求項2記載の成分から成る鋼を、Ar
3とBNの溶解度積:log[B][N]=−1397
0/T+5.24で与えられるBN溶体化温度との間の
温度範囲内に加熱した後、熱間圧延し、冷却開始温度を
Ar1点以上の温度から平均冷却速度30〜100℃/
secの範囲で冷却終了温度Ms点以下へ強制冷却し、
さらに自然冷却し、次いで加熱温度620℃〜740℃
の温度範囲で黒鉛化処理することにより、平均粒径が
5.0μm以下の黒鉛を有し、かつ黒鉛化率が80%以
上であることを特徴とする靭性に優れた黒鉛均一分散鋼
の製造方法。
5. A steel comprising the composition according to claim 2,
Solubility product of 3 and BN: log [B] [N] =-1397
After heating within a temperature range between the BN solution temperature given by 0 / T + 5.24 and hot rolling, the cooling start temperature is from Ar 1 point or higher to an average cooling rate of 30 to 100 ° C. /
Forced cooling to below the cooling end temperature Ms point in the range of sec,
Further natural cooling, then heating temperature 620 ℃ ~ 740 ℃
Of graphite having an average particle size of 5.0 μm or less and having a graphitization ratio of 80% or more by performing graphitization in the temperature range of 1. Method.
【請求項6】 請求項2記載の成分から成る鋼を、BN
の溶解度積:log[B][N]=−13970/T+
5.24で与えられるBN溶体化温度以上に加熱した
後、熱間圧延し、冷却終了温度Ar1点以下まで冷却し
た後、Ar3とBNの溶解度積:log[B][N]=
−13970/T+5.24で与えられるBN溶体化温
度との間の温度範囲内に再加熱した後、冷却開始温度を
Ar1点以上の温度から平均冷却速度30〜100℃/
secの範囲で冷却終了温度Ms点以下へ強制冷却し、
さらに自然冷却し、次いで加熱温度620℃〜740℃
の温度範囲で黒鉛化処理することにより、平均粒径が
5.0μm以下の黒鉛を有し、かつ黒鉛化率が80%以
上であることを特徴とする靭性に優れた黒鉛均一分散鋼
の製造方法。
6. A steel comprising the composition according to claim 2,
Solubility product of: log [B] [N] =-13970 / T +
After heating above the BN solution temperature given by 5.24, hot rolling and cooling to the cooling end temperature Ar 1 point or less, then the solubility product of Ar 3 and BN: log [B] [N] =
After reheating within a temperature range between the BN solution temperature given by -13970 / T + 5.24, the cooling start temperature is from Ar 1 point or higher to an average cooling rate of 30 to 100 ° C /
Forced cooling to below the cooling end temperature Ms point in the range of sec,
Further natural cooling, then heating temperature 620 ℃ ~ 740 ℃
Of graphite having an average particle size of 5.0 μm or less and having a graphitization ratio of 80% or more by performing graphitization in the temperature range of 1. Method.
JP33767895A 1995-12-04 1995-12-04 Graphite uniformly dispersed steel excellent in toughness and method for producing the same Expired - Fee Related JP3172075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33767895A JP3172075B2 (en) 1995-12-04 1995-12-04 Graphite uniformly dispersed steel excellent in toughness and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33767895A JP3172075B2 (en) 1995-12-04 1995-12-04 Graphite uniformly dispersed steel excellent in toughness and method for producing the same

Publications (2)

Publication Number Publication Date
JPH09157786A true JPH09157786A (en) 1997-06-17
JP3172075B2 JP3172075B2 (en) 2001-06-04

Family

ID=18310935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33767895A Expired - Fee Related JP3172075B2 (en) 1995-12-04 1995-12-04 Graphite uniformly dispersed steel excellent in toughness and method for producing the same

Country Status (1)

Country Link
JP (1) JP3172075B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999045162A1 (en) * 1998-03-04 1999-09-10 Nippon Steel Corporation Steels for cold forging and process for producing the same
EP1184477A1 (en) * 2000-08-31 2002-03-06 Kabushiki Kaisha Kobe Seiko Sho Free machining steel for use in machine structure of excellent mechanical characteristics
KR100516520B1 (en) * 2001-12-27 2005-09-26 주식회사 포스코 Method for manufacturing high strength working product having low yield ratio
KR100516518B1 (en) * 2001-12-24 2005-09-26 주식회사 포스코 Steel having superior cold formability and delayed fracture resistance, and method for manufacturing working product made of it
KR100627484B1 (en) * 2004-11-24 2006-09-25 주식회사 포스코 Method of manufacturing graphite steel rod for machine structural use having lower decarburized surface property
KR100946147B1 (en) * 2002-12-26 2010-03-10 주식회사 포스코 Method of manufacturing Working product having superior earthquake-resistant property

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE223601T1 (en) 1993-03-25 2002-09-15 Mgi Software Corp IMAGE PROCESSING METHOD AND SYSTEM
JP2013030618A (en) 2011-07-28 2013-02-07 Rohm Co Ltd Semiconductor device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999045162A1 (en) * 1998-03-04 1999-09-10 Nippon Steel Corporation Steels for cold forging and process for producing the same
US6419761B1 (en) 1998-03-04 2002-07-16 Nippon Steel Corporation Steels for cold forging and process for producing the same
EP1184477A1 (en) * 2000-08-31 2002-03-06 Kabushiki Kaisha Kobe Seiko Sho Free machining steel for use in machine structure of excellent mechanical characteristics
US6579385B2 (en) 2000-08-31 2003-06-17 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Free machining steel for use in machine structure of excellent mechanical characteristics
KR100443341B1 (en) * 2000-08-31 2004-08-23 가부시키가이샤 고베 세이코쇼 Free machining steel for use in machine structure of excellent mechanical characteristics
KR100516518B1 (en) * 2001-12-24 2005-09-26 주식회사 포스코 Steel having superior cold formability and delayed fracture resistance, and method for manufacturing working product made of it
KR100516520B1 (en) * 2001-12-27 2005-09-26 주식회사 포스코 Method for manufacturing high strength working product having low yield ratio
KR100946147B1 (en) * 2002-12-26 2010-03-10 주식회사 포스코 Method of manufacturing Working product having superior earthquake-resistant property
KR100627484B1 (en) * 2004-11-24 2006-09-25 주식회사 포스코 Method of manufacturing graphite steel rod for machine structural use having lower decarburized surface property

Also Published As

Publication number Publication date
JP3172075B2 (en) 2001-06-04

Similar Documents

Publication Publication Date Title
JPH0971843A (en) High toughness oil tempered wire for spring and its production
JP2004143482A (en) High strength cold formed spring steel wire and its production method
JP2021509151A (en) Wire rods for cold heading, processed products using them, and their manufacturing methods
JPH11335777A (en) Case hardening steel excellent in cold workability and low carburizing strain characteristics, and its production
JP2002285278A (en) High strength and high ductility steel sheet with hyperfine crystal grain structure obtainable by subjecting plain low carbon steel to low strain working and annealing and production method therefor
JP3172075B2 (en) Graphite uniformly dispersed steel excellent in toughness and method for producing the same
JP2003073742A (en) Method for manufacturing high-carbon hot rolled steel sheet with high hardenability
JP2938101B2 (en) Manufacturing method of steel for cold forging
JPH05320749A (en) Production of ultrahigh strength steel
JP3262687B2 (en) Fine graphite uniformly dispersed steel for cold working with excellent toughness
JPH08283847A (en) Production of graphite steel for cold forging excellent in toughness
JPH11229074A (en) Graphite steel excellent in induction hardenability
JP3241748B2 (en) Steel material excellent in workability and hardenability and its manufacturing method
JPH05222450A (en) Production of high tensile steel plate
JP3602602B2 (en) Method for producing fine graphite uniformly dispersed steel bar for cold working with excellent toughness
JPS589816B2 (en) Manufacturing method of non-thermal rolled steel bar
JP3602603B2 (en) Method for producing fine graphite uniformly dispersed steel for cold working with excellent toughness
JP3093577B2 (en) Fine graphite uniformly dispersed steel bar with excellent toughness and method for producing the same
JP2767254B2 (en) Method for producing Cr-Mo case hardened steel
Banerjee et al. Development of hypoeutectoid graphitic steel for wires
JP3093576B2 (en) Fine graphite uniformly dispersed steel wire with excellent toughness and method for producing the same
JPH0617122A (en) Production of non-heattreated steel excellent in durability ratio
JPS62164823A (en) Production of reinforcing steel bar having excellent low temperature toughness
JPH10324947A (en) Steel with uniformly diffused graphite
JP3429911B2 (en) Fine graphite uniformly dispersed steel excellent in machinability and hardenability and its manufacturing method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010313

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080323

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090323

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090323

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120323

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 12

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140323

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees