JPH09157742A - Manufacture of high tensile strength steel plate - Google Patents

Manufacture of high tensile strength steel plate

Info

Publication number
JPH09157742A
JPH09157742A JP31446595A JP31446595A JPH09157742A JP H09157742 A JPH09157742 A JP H09157742A JP 31446595 A JP31446595 A JP 31446595A JP 31446595 A JP31446595 A JP 31446595A JP H09157742 A JPH09157742 A JP H09157742A
Authority
JP
Japan
Prior art keywords
less
steel
temperature
cooling
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP31446595A
Other languages
Japanese (ja)
Inventor
Tatsuyuki Hirai
龍至 平井
Noriki Wada
典己 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP31446595A priority Critical patent/JPH09157742A/en
Publication of JPH09157742A publication Critical patent/JPH09157742A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a high tensile strength steel plate for welded structure, used for purposes requiring high precision stress design, reduced in dispersion of yield strength, and having high yield ratio, by specifying the composition of a steel and regulating the ferrite ratio before the initiation of accelerated cooling to a prescribed value or above, in a manufacturing method where accelerated cooling is performed after controlled rolling. SOLUTION: A steel slab, which has a composition containing, by weight, 0.04-0.18% C, 0.05-0.8% Si, 0.2-1.7% Mn, and <=0.07% Al, further containing one or more kinds among <=0.03% Ti, <=0.05% Nb, <=0.1% V, <=0.7% Cu, <=0.7% Ni, <=1.3% Cr, and <=0.8% Mo, each including 0%, and having the balance Fe, is prepared. This steel slab is hot-rolled at a finishing temp. Tf( deg.C) not lower than the T1( deg.C) represented by equation (1), and accelerated cooling is started at a cooling starting temp. Ts( deg.C) not higher than the T2( deg.C) represented by equation (2). By this method, the dispersion of yield strength, caused by the dispersion of the proportion of ferrite phases comprising in the steel and the unevenness of cooling, can be remarkably reduced while obviating the necessity of reheating.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、建築・土木用等
に使用され、高精度の応力設計が必要とされる溶接構造
用の低降伏比、高張力鋼板であって、特に個々の鋼板の
間、あるいは1枚の鋼板内において、降伏強度のばらつ
きの小さい鋼板の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low yield ratio, high tensile strength steel plate used for construction, civil engineering, etc., which requires a highly accurate stress design, and is particularly useful for individual steel plates. The present invention relates to a method for manufacturing a steel sheet with a small variation in yield strength within a single steel sheet or within a single steel sheet.

【0002】[0002]

【従来の技術】近年になって、大地震時の安全性確保の
観点から、柱の降伏に先行して梁を降伏させ、地震エネ
ルギーを吸収させることにより、柱の崩壊を防止する終
局耐力設計法が、建築等の構造物で適用され始めた。
2. Description of the Related Art In recent years, from the viewpoint of ensuring safety in the event of a large earthquake, the ultimate yield strength design that prevents the collapse of the column by yielding the beam prior to the column yielding and absorbing the seismic energy. The law has begun to be applied in structures such as buildings.

【0003】地震エネルギーを十分吸収するためには、
鋼材が大きく変形する必要があり、そのためには低降伏
比であることがまず要求される。また、設計者の意図通
りに、柱の降伏に先行して梁を降伏させるためには、こ
れに加えて鋼材の降伏強度のばらつきが小さいことも要
求される。
In order to sufficiently absorb the seismic energy,
The steel material needs to be largely deformed, which requires a low yield ratio. Further, in order to yield the beam prior to the yielding of the column as intended by the designer, in addition to this, it is also required that the yield strength of the steel material be small.

【0004】引張強度が490MPa以上の高張力鋼に
おいて、低降伏比を得るための技術として、例えば特開
昭64−52023号公報には、制御圧延、加速冷却後
に、フェライト及びオーステナイト二相域に再加熱し、
焼入を行うことにより、軟質のフェライト相と、硬質の
ベイナイト相あるいはマルテンサイト相との混合組織と
する方法が開示されている。この方法は再加熱を行って
おり、降伏強度のばらつきは小さいと予想されるが、熱
処理工程が増えるため生産効率は低下し、また製造コス
トが上昇する。
As a technique for obtaining a low yield ratio in high-strength steel having a tensile strength of 490 MPa or more, for example, Japanese Patent Laid-Open No. 64-52023 discloses a ferrite and austenite two-phase region after controlled rolling and accelerated cooling. Reheat,
A method of forming a mixed structure of a soft ferrite phase and a hard bainite phase or martensite phase by quenching is disclosed. This method reheats, and it is expected that the yield strength will not fluctuate much, but the production efficiency will decrease and the manufacturing cost will increase due to the increase in heat treatment steps.

【0005】一方、オンラインで混合組織を得る方法し
ては、特開昭55−41927号公報に、オーステナイ
ト域で制御圧延後に二相域まで空冷し、加速冷却を行う
製造方法が開示されている。この方法はオーステナイト
域において、高い減面率の圧延を行い、フェライト相の
析出を速めることにより、目的とする特性値の確保を目
指すものであるが、減面率が高いため、冷却開始温度の
僅かなばらつきにより、同一の鋼板内においても、変態
率のばらつきが大きくなる場合が多く、それにより降伏
強度のばらつきが著しくなることが懸念される。
On the other hand, as a method for obtaining a mixed structure online, Japanese Patent Application Laid-Open No. 55-41927 discloses a manufacturing method in which controlled rolling is performed in the austenite region, followed by air cooling to the two-phase region and accelerated cooling. . This method, in the austenite region, performs rolling with a high area reduction rate and accelerates the precipitation of the ferrite phase to aim at securing the target characteristic value.However, since the area reduction rate is high, the cooling start temperature Even with the same steel sheet, even a small variation often causes a large variation in the transformation rate, which may cause a significant variation in the yield strength.

【0006】特開平6−271934号公報に示されて
いる技術は、上記の特開昭64−52023号公報に示
された技術に対して、制御圧延後の加速冷却を600℃
程度の温度までに止め、再び二相域に加熱後に加速冷却
する方法である。
The technique disclosed in Japanese Unexamined Patent Publication No. Hei 6-271934 differs from the technique disclosed in Japanese Unexamined Patent Publication No. 64-52023 in that accelerated cooling after controlled rolling is 600 ° C.
This is a method in which the temperature is stopped to about a certain temperature, the two-phase region is heated again, and then accelerated cooling is performed.

【0007】この方法は、再加熱によりフェライト相の
量のばらつきを小さくし、同時に、最初の加速冷却の停
止温度を比較的高くして、再加熱処理のオンライン化を
計っている。しかし、特開昭64−52023号公報に
示されている技術に比較すると、オンライン化は容易に
はなったとは言え、再加熱処理であり生産効率の低下は
まぬがれ得ない。
In this method, the variation in the amount of the ferrite phase is reduced by reheating, and at the same time, the stop temperature of the first accelerated cooling is made relatively high, and the reheating treatment is performed online. However, as compared with the technique disclosed in Japanese Patent Laid-Open No. 64-52023, although it is easier to go online, it is a reheating treatment and a reduction in production efficiency cannot be avoided.

【0008】[0008]

【発明が解決しようとする課題】上記した様に、従来の
技術は特性値がばらつく、生産効率が低い等の問題点を
持つものである。したがって、再加熱を行わず、制御圧
延、加速冷却と言った生産性の優れたオンラインの工程
のみにより、降伏比が低く、かつ特性、特に降伏強度の
ばらつきが少なく、安価な建築用の高張力鋼板を製造す
る方法の開発が求められている。
As described above, the conventional techniques have problems that the characteristic values vary and the production efficiency is low. Therefore, without reheating, only high-productivity online processes such as controlled rolling and accelerated cooling have a low yield ratio, and there is little variation in properties, especially yield strength, and high tensile strength for inexpensive construction. Development of a method for manufacturing a steel sheet is required.

【0009】なお、本発明の方法により製造する鋼板の
特性の目標値は、降伏比:80%以下、降伏強度のばら
つきの指標として、降伏強度の変動幅3σ(σは標準偏
差、以後、3σYSと記す。):30MPa以下、引張
強度:490MPa以上である。
The target value of the characteristics of the steel sheet produced by the method of the present invention is as follows: yield ratio: 80% or less, and as an index of variation in yield strength, the variation range of yield strength 3σ (σ is standard deviation, hereinafter 3σYS ): 30 MPa or less, tensile strength: 490 MPa or more.

【0010】[0010]

【課題を解決するための手段】第1発明は、重量%で、
C:0.04〜0.18%、Si:0.05〜0.8
%、Mn:0.2〜1.7%、Al:0.07%以下を
含有し、さらに、、Ti:0.03%以下、Nb:0.
05%以下、V:0.1%以下、Cu:0.7%以下、
Ni:0.7%以下、Cr:1.3%以下、Mo:0.
8%以下(いずれも0を含む)の1種または2種以上を
含有し、残部が実質的にFe及び不可避的不純物からな
る鋼片を、仕上温度Tf(℃)が(1)式で表されるT
1(℃)以上で熱間圧延を行い、加速冷却を冷却開始温
度Ts(℃)が(2)式で表されるT2(℃)以下の温
度から開始する高張力鋼板の製造方法である。 T1(℃)=932−305×C(%)−78×Mn(%)−17×Cu(%) −52×Ni(%)−4×Cr(%)−4×Mo(%) ・・・・・・・・・・・・・・(1) T2(℃)=1001−350×C(%)−70×Mn(%)− 20×Cu(%)−60×Ni(%)−5×Cr(%)− 5×Mo(%)−0.15×Tf(℃)・・・・・・・(2) 〔なお、以後、仕上温度Tf(℃)はTfと、冷却開始
温度Ts(℃)はTsと、T1(℃)、T2(℃)はそ
れぞれ、T1、T2と、また、Ar3変態点(℃)はA
r3と略す。〕また、第2発明は、第1発明により製造
された鋼板に対して、さらに、450〜650℃に再加
熱して焼戻処理を行う高張力鋼板の製造方法である。
The first aspect of the present invention, in% by weight,
C: 0.04 to 0.18%, Si: 0.05 to 0.8
%, Mn: 0.2 to 1.7%, Al: 0.07% or less, and Ti: 0.03% or less, Nb: 0.
05% or less, V: 0.1% or less, Cu: 0.7% or less,
Ni: 0.7% or less, Cr: 1.3% or less, Mo: 0.
A steel piece containing 8% or less (including 0) of one kind or two kinds or more, and the balance substantially consisting of Fe and unavoidable impurities is represented by the finishing temperature Tf (° C) by the formula (1). Done T
This is a method for producing a high-strength steel sheet in which hot rolling is performed at 1 (° C.) or higher, and accelerated cooling is started from a temperature at which a cooling start temperature Ts (° C.) is T2 (° C.) or lower represented by the formula (2). T1 (° C) = 932-305 × C (%) − 78 × Mn (%) − 17 × Cu (%) − 52 × Ni (%)-4 × Cr (%)-4 × Mo (%) (1) T2 (° C.) = 1001-350 × C (%)-70 × Mn (%)-20 × Cu (%)-60 × Ni (%)- 5 × Cr (%) − 5 × Mo (%) − 0.15 × Tf (° C.) (2) [Note that the finishing temperature Tf (° C.) is Tf and the cooling start temperature. Ts (° C) is Ts, T1 (° C) and T2 (° C) are T1 and T2, respectively, and Ar3 transformation point (° C) is A.
Abbreviated as r3. The second invention is a method for producing a high-strength steel sheet, in which the steel sheet produced according to the first invention is further reheated to 450 to 650 ° C and tempered.

【0011】前記の課題を解決するため、本発明者らは
まず、特開昭55−41927号公報に開示されている
様な、制御圧延後に二相域から加速冷却を行う方法で製
造した、高張力鋼板の鋼板内における降伏強度のばらつ
きの原因を、詳細に調査した。
In order to solve the above-mentioned problems, the present inventors first produced a method by accelerated cooling from a two-phase region after controlled rolling, as disclosed in Japanese Patent Laid-Open No. 55-41927. The cause of the variation in the yield strength of the high-strength steel sheet was investigated in detail.

【0012】その結果、降伏強度のばらつきの程度は、
鋼板内のフェライト相の率(鋼中に占めるフェライト相
の割合。以後、フェライト率と記す。)のばらつきに加
え、加速冷却時の冷却むら(鋼板内における冷却速度の
ばらつき)に大きく影響を受けることを見いだした。
As a result, the degree of variation in yield strength is
In addition to variations in the rate of ferrite phase in the steel sheet (ratio of ferrite phase in the steel. Hereinafter referred to as ferrite rate), it is greatly affected by uneven cooling (variation in cooling rate within the steel sheet) during accelerated cooling. I found a thing.

【0013】そして、研究を重ね、加速冷却開始前のフ
ェライト率を一定値以上とすることにより、フェライト
率のばらつきや冷却むらに起因する、降伏強度のばらつ
きを、大きく減少させ得ることを見出した。
Further, through repeated studies, it was found that by setting the ferrite rate before the start of accelerated cooling to a certain value or more, the variations in yield strength due to variations in the ferrite rate and uneven cooling can be greatly reduced. .

【0014】すなわち、この方法を用いることにより、
1枚の鋼板内のみならず、鋼板間での、降伏強度のばら
つきを大幅に低減させることが可能となったものであ
る。
That is, by using this method,
It is possible to significantly reduce the variation in yield strength not only within one steel plate but also between steel plates.

【0015】以下に上記の条件を決定した限定理由を述
べる。Cは、鋼の強度を確保するため、鋼中に0.04
%以上含有させる必要があるが、0.18%を超えて含
有させると溶接性が著しく劣化する。したがって、Cの
含有量は0.04〜0.18%とする。
The reasons for limiting the above conditions will be described below. C is 0.04 in the steel in order to secure the strength of the steel.
%, It is necessary to contain at least 0.1%, but if the content exceeds 0.18%, the weldability deteriorates significantly. Therefore, the content of C is set to 0.04 to 0.18%.

【0016】Siは、脱酸剤として0.05%以上含有
させる必要であるが、0.8%を越えると溶接性や延靭
性を低下させる。したがって、Siの含有量は0.05
〜0.8%とする。
Si must be contained as a deoxidizing agent in an amount of 0.05% or more, but if it exceeds 0.8%, the weldability and ductility are reduced. Therefore, the Si content is 0.05
~ 0.8%.

【0017】Mnは、強度・靭性の向上に不可欠な元素
であり、その下限は0.2%である。一方、1.7%を
越えて多量に含有させると、焼入性が著しく上昇して溶
接時の割れ感受性が高くなる。したがって、Mnの含有
量は0.2〜1.7%とする。
Mn is an element essential for improving strength and toughness, and its lower limit is 0.2%. On the other hand, if a large amount is added in excess of 1.7%, the hardenability is remarkably increased and the crack susceptibility during welding is increased. Therefore, the Mn content is set to 0.2 to 1.7%.

【0018】Alは、脱酸作用を有する元素であるが、
脱酸作用はSiでも代替可能なため、下限値は特に規定
しない。一方、その含有量が0.07%を越えると、鋼
の清浄性を低下させ、溶接部の靭性を低下させる。した
がって、その上限値を0.07%とする。
Al is an element having a deoxidizing action,
Since the deoxidizing action can be replaced by Si, the lower limit value is not specified. On the other hand, if its content exceeds 0.07%, the cleanliness of the steel is reduced and the toughness of the welded portion is reduced. Therefore, the upper limit value is set to 0.07%.

【0019】Ti、Nb、V、Cr及びMoは、いずれ
も強度の向上に寄与する合金元素であり、必要に応じて
添加する。しかし、いずれの元素の場合も、その量が多
量になると溶接性や靭性の劣化を招く。おのおのの上限
値は、Ti:0.03%、Nb:0.05%、V:0.
1%、Cr:1.3%、Mo:0.8%とする。なお、
下限値はいずれも0である。
Ti, Nb, V, Cr and Mo are all alloying elements that contribute to the improvement of strength, and are added if necessary. However, in the case of any element, when the amount thereof is large, weldability and toughness are deteriorated. The upper limit of each is Ti: 0.03%, Nb: 0.05%, V: 0.
1%, Cr: 1.3%, Mo: 0.8%. In addition,
The lower limit values are all 0.

【0020】Cuは、強度を確保する上で有効な元素で
あるが、0.7%を越える多量のCuは熱間圧延時の割
れの原因となる。したがって、その上限値を0.7%と
する。下限値は0である。
Cu is an element effective in securing strength, but a large amount of Cu exceeding 0.7% causes cracking during hot rolling. Therefore, the upper limit value is 0.7%. The lower limit is 0.

【0021】Niも強度を確保する上で有効である。ま
た、Cuによる熱間圧延時の割れのの発生を防止する作
用も有する。しかし、0.7%程度でこれらの効果は飽
和する傾向にある。したがって、その上限値は0.7%
とする。Niも下限値は0である。
Ni is also effective in securing strength. It also has an effect of preventing the occurrence of cracking due to Cu during hot rolling. However, these effects tend to be saturated at about 0.7%. Therefore, the upper limit is 0.7%
And The lower limit of Ni is also 0.

【0022】次に、製造方法の限定理由について述べ
る。熱間圧延の仕上温度がAr3を下回ると(Ar3を
含まない。)、生成したフェライト相が加工を受けるた
め、降伏比が上昇する。本発明者らは制御圧延された高
張力鋼板のAr3に及ぼす成分と、Tfの関係を検討し
た結果、Ar3が(3)式で表せることを見出した。
Next, the reasons for limiting the manufacturing method will be described. When the finishing temperature of hot rolling is lower than Ar3 (excluding Ar3), the produced ferrite phase undergoes working, and the yield ratio increases. As a result of studying the relationship between Tf and the component exerted on Ar3 of the high-strength steel sheet subjected to controlled rolling, the present inventors have found that Ar3 can be expressed by equation (3).

【0023】すなわち、Ar3は成分とTfの関数であ
り、また、上記した様にTfはAr3以上である必要が
あるため、(3)及び(4)式より、Tfは(1)式で
表されるT1以上の温度とする。〔(3)式において、
Tf=Ar3としてTfを求めT1とする。〕なお、T
fの上限温度は、結晶粒が著しく大きくならないように
950℃以下とする。
That is, Ar3 is a function of the component and Tf, and since Tf needs to be Ar3 or more as described above, Tf is expressed by equation (1) from equations (3) and (4). The temperature is equal to or higher than T1. [In the formula (3),
Tf is obtained by setting Tf = Ar3 and set as T1. ] T
The upper limit temperature of f is 950 ° C. or less so that the crystal grains do not become extremely large.

【0024】 Ar3=1072−350×C(%)−90×Mn(%)−20×Cu (%)−60×Ni(%)−5×Cr(%)−5×Mo(%) −0.15×Tf ・・・・・・・・・(3) Tf≧Ar3 ・・・・・・・・・(4) T1=932−305×C(%)−78×Mn(%)−17×Cu(%)− 52×Ni(%)−4×Cr(%)−4×Mo(%) ・・・・・・・・・(1) 降伏比を下げるために、制御圧延後の加速冷却は軟質の
フェライト相が生成する二相域、すなわちAr3以下の
温度域から開始する必要がある。ただし、TsがAr3
以下であっても、フェライト率が多くない場合には、フ
ェライト率の変動にともない降伏強度のばらつきが生じ
る。また、降伏比低減の効果が十分でない。
Ar3 = 1072-350 × C (%)-90 × Mn (%)-20 × Cu (%)-60 × Ni (%)-5 × Cr (%)-5 × Mo (%)-0 .15 × Tf ・ ・ ・ ・ ・ ・ ・ ・ (3) Tf ≧ Ar3 ・ ・ ・ ・ ・ ・ (4) T1 = 932-305 × C (%)-78 × Mn (%)-17 XCu (%)-52xNi (%)-4xCr (%)-4xMo (%) (1) Acceleration after controlled rolling in order to lower the yield ratio. Cooling must be started in a two-phase region where a soft ferrite phase is formed, that is, a temperature region of Ar3 or lower. However, Ts is Ar3
Even if it is less than the above, when the ferrite ratio is not large, the yield strength varies with the change of the ferrite ratio. Further, the effect of reducing the yield ratio is not sufficient.

【0025】本発明者らは、降伏強度のばらつきに及ぼ
す加速冷却開始温度と、フェライト率の関係を詳細に検
討した。その結果、種々の成分の鋼において、フェライ
ト率がある一定値以上となる温度域から、加速冷却を開
始することにより、Tsがばらつくことによりフェライ
ト率がばらつく場合も、降伏強度のばらつきを著しく小
さくできることを見出した。
The present inventors have examined in detail the relationship between the accelerated cooling start temperature and the ferrite ratio that affect the variation in yield strength. As a result, in steels with various compositions, even if the ferrite ratio varies due to Ts variation by starting accelerated cooling from a temperature range where the ferrite rate is above a certain value, the variation in yield strength is significantly reduced. I found that I could do it.

【0026】さらに、フェライト率が上記の一定値以上
となる温度が(2)式のT2で表せることも見いだし
た。したがって、制御圧延後のTsは(2)式で表され
るT2以下の温度範囲で、必要とする強度等の機械的特
性を考慮して決定する。下限温度はAc1変態点(℃)
である。
Further, it was also found that the temperature at which the ferrite ratio becomes equal to or higher than the above constant value can be represented by T2 in the equation (2). Therefore, Ts after controlled rolling is determined in the temperature range of T2 or lower represented by the formula (2) in consideration of mechanical properties such as required strength. Lower limit temperature is Ac1 transformation point (℃)
It is.

【0027】 T2=1001−350×C(%)−70×Mn(%)−20×Cu(%)− 60×Ni(%)−5×Cr(%)−5×Mo(%) −0.15×Tf ・・・・・・・・・(2) 上記以外の製造条件、すなわち、熱間圧延時の加熱温
度、制御圧延の開始温度や圧下率、及び加速冷却の冷却
速度や停止温度等は、目的とする強度等の特性を考慮し
て決定すれば良く、本発明においては上記の成分範囲、
温度範囲以外の条件は特に規定しない。
T2 = 1001-350 × C (%)-70 × Mn (%)-20 × Cu (%)-60 × Ni (%)-5 × Cr (%)-5 × Mo (%)-0 .15 × Tf (2) Manufacturing conditions other than the above, that is, heating temperature during hot rolling, start temperature and reduction rate of controlled rolling, and cooling rate and stop temperature of accelerated cooling. Etc. may be determined in consideration of the characteristics such as the desired strength, and in the present invention, the above component range,
Conditions other than the temperature range are not specified.

【0028】低降伏比や降伏強度のばらつきの低減は、
上記した様な製造条件の限定により、十分に達成可能で
あるが、建築用材等において鋼板の歪みが厳しく制限さ
れる場合は、上記した様な条件下での圧延および冷却の
後に、再加熱による焼戻処理を施すことが有効である。
この歪み除去のための焼戻処理温度が、450℃未満の
場合は処理時間が長くなる。また、600℃を超えると
材質変化が著しくなる。したがって、その温度範囲を4
50〜600℃とする。
Reduction of the low yield ratio and the variation of the yield strength is
Although it is sufficiently achievable by limiting the production conditions as described above, if the distortion of the steel sheet is severely limited in construction materials, etc., by reheating after rolling and cooling under the conditions as described above. It is effective to apply tempering treatment.
If the tempering treatment temperature for removing the strain is less than 450 ° C., the treatment time becomes long. Further, when the temperature exceeds 600 ° C., the material changes significantly. Therefore, the temperature range is 4
It is set to 50 to 600 ° C.

【0029】[0029]

【実施例】以下に本発明の具体的な実施の形態を説明す
る。表1に示した本発明の範囲内の成分を有する220
mm厚の鋼片A、Bを工場で、1150℃加熱、制御圧
延、加速冷却により50mm厚の鋼板とした。
EXAMPLES Specific examples of the present invention will be described below. 220 with ingredients within the scope of the invention shown in Table 1
The steel plates A and B having a thickness of mm were heated to 1150 ° C. in the factory, controlled rolling, and accelerated cooling to obtain steel plates having a thickness of 50 mm.

【0030】[0030]

【表1】 [Table 1]

【0031】まず、制御圧延のTfを(1)式で表され
るT1に対して、−40〜+80℃の範囲で変化させて
その影響を調査した。この場合に、Tsは(2)式で表
されるT2に対して10℃低い温度に固定した。次に、
Tfを850℃に固定し、TsをT2に対して−40〜
+40℃の範囲で変化させた鋼板を製造してその影響を
見た。
First, the effect of controlled rolling was investigated by changing Tf in the range of -40 to + 80 ° C with respect to T1 represented by the equation (1). In this case, Ts was fixed at a temperature 10 ° C. lower than T2 represented by the formula (2). next,
Tf is fixed at 850 ° C. and Ts is −40 to T2.
The steel plate which changed in the range of +40 degreeC was manufactured, and the influence was seen.

【0032】特性の評価は上記の処理の後に、さらに、
これらの鋼板を550℃で焼戻処理をした状態において
行った。なお、いずれの場合も加速冷却時の冷却速度は
6℃/秒であり、冷却停止温度はA鋼は500℃以下、
B鋼は100℃以下とした。試験片は、鋼板中の互いに
離れた種々の位置より各20本採取した。
The characteristics are evaluated after the above-mentioned processing
These steel sheets were tempered at 550 ° C. In each case, the cooling rate during accelerated cooling was 6 ° C./sec, the cooling stop temperature was 500 ° C. or less for A steel,
Steel B was set to 100 ° C. or lower. Twenty test pieces were taken from various positions in the steel sheet that were separated from each other.

【0033】A鋼における、TfをT1に対して−40
〜+80℃の範囲で変化させた場合の平均降伏強度、平
均引張強さ、平均降伏比、ならびに鋼板内の降伏強度の
ばらつきとTfとの関係を図3に示す。また、B鋼にお
ける結果を図4に示した。
In steel A, Tf is -40 with respect to T1.
FIG. 3 shows the relationship between the average yield strength, the average tensile strength, the average yield ratio, the variation of the yield strength in the steel sheet, and Tf when the temperature is changed in the range of to + 80 ° C. Moreover, the result in B steel is shown in FIG.

【0034】図3及び図4から明らかな様に、Tsが
(2)式で表されるT2に対して低い本発明の条件の場
合は、3σYSはTfによらず30MPa以下である。
また、平均降伏比は、Tfを本発明の範囲であるT1以
上とすることにより、80%以下にすることができる。
一方、Tfを本発明の範囲外のT1未満の温度とした場
合は、平均降伏比が80%を超えていることがわかる。
(図において、Tf−T1が0または+の位置の点が実
施例を示す。−の位置の点は比較例である。)図1に、
A鋼においてTfを850℃に固定し、TsをT2に対
して−40〜+40℃の範囲で変化させた場合の結果を
示した。平均降伏比はTsが変化した場合も80%以下
であるが、Tsが(2)式で表されるT2を超える温度
の場合は、3σYSが30MPaを超えている。(図に
おいて、Ts−T1が0または−の位置の点が実施例を
示す。+の位置の点は比較例である。)また、図2はB
鋼のおける結果であるが、A鋼の場合と同様の傾向であ
る。
As is apparent from FIGS. 3 and 4, under the condition of the present invention in which Ts is lower than T2 represented by the equation (2), 3σYS is 30 MPa or less regardless of Tf.
The average yield ratio can be set to 80% or less by setting Tf to T1 or more, which is the range of the present invention.
On the other hand, when Tf is set to a temperature lower than T1 outside the range of the present invention, it is found that the average yield ratio exceeds 80%.
(In the figure, the points at the positions where Tf-T1 is 0 or + indicate the examples. The points at the -position are comparative examples.)
The results are shown in the case where Tf was fixed at 850 ° C. and the Ts was changed in the range of −40 to + 40 ° C. with respect to T2 in the A steel. The average yield ratio is 80% or less even when Ts changes, but when Ts exceeds T2 represented by the equation (2), 3σYS exceeds 30 MPa. (In the figure, the point where Ts-T1 is 0 or-indicates an example. The point where + is a comparative example.) Further, FIG.
This is the result for steel, but the tendency is similar to that for A steel.

【0035】表2に示す本発明の範囲内の成分を有す
る、220〜250mm厚の鋼片を工場で、1100〜
1200℃に加熱後、表3に示す条件の制御圧延、加速
冷却を行い、40〜75mm厚の鋼板を各条件とも3枚
づつ製造した。なお、加速冷却後には、焼戻処理を行っ
た鋼板と行っていない鋼板とがある。いずれの場合も加
速冷却時の冷却速度は6℃/秒、冷却停止温度は100
℃以下とした。
Steel pieces of 220 to 250 mm in thickness having the components within the scope of the present invention shown in Table 2 are manufactured in the factory at 1100 to 100 mm.
After heating to 1200 ° C., controlled rolling under the conditions shown in Table 3 and accelerated cooling were performed to manufacture three steel plates each having a thickness of 40 to 75 mm under each condition. After the accelerated cooling, there are steel sheets that have been tempered and steel sheets that have not been tempered. In both cases, the cooling rate during accelerated cooling was 6 ° C / sec, and the cooling stop temperature was 100.
The temperature was set to ℃ or below.

【0036】試験片は同一条件で製造した3枚の鋼板か
ら合計で20本(1枚の鋼板の互いに離れた、種々の位
置から、各6〜7本)づつ採取した。
A total of 20 test pieces (6 to 7 pieces from various positions of one steel sheet separated from each other) were collected from three steel sheets manufactured under the same conditions.

【0037】C1〜H1は本発明の実施例である。ま
た、C2〜H2、C3、G3はTfが低過ぎるか、Ts
が高過ぎるかの比較例である。
C1 to H1 are examples of the present invention. Also, C2 to H2, C3, and G3 have too low Tf or Ts.
Is a comparative example of whether is too high.

【0038】[0038]

【表2】 [Table 2]

【0039】[0039]

【表3】 [Table 3]

【0040】上記鋼板の平均降伏強度、平均引張強さ、
平均降伏比、ならびに鋼板内、及び鋼板間の3σYSを
表4に示す。本発明の方法により製造された鋼板はいず
れも、平均降伏比が80%以下、3σYSが30MPa
以下であり、低降伏比で、かつ鋼板内及び鋼板間の降伏
強度のばらつきも小さいことがわかる。
Average yield strength, average tensile strength,
Table 4 shows the average yield ratio and 3σYS in and between the steel sheets. Each of the steel sheets manufactured by the method of the present invention has an average yield ratio of 80% or less and 3σYS of 30 MPa.
It is found that the yield ratio is low and the variation of the yield strength within and between the steel sheets is small.

【0041】[0041]

【表4】 [Table 4]

【0042】これに対して、TfがT1より低い比較例
のC2、F2、G2は降伏比が80%を越えている。ま
た、TsがT2より高い比較例のC3、D2、E2、G
3、H2は、3σYSが30MPaを越えている。
On the other hand, the yield ratios of C2, F2 and G2 of the comparative examples having Tf lower than T1 exceeded 80%. Further, Cs, D2, E2, G of Comparative Examples in which Ts is higher than T2
3 and H2, 3σYS exceeds 30 MPa.

【0043】[0043]

【発明の効果】以上に示した様に、本発明により、生産
性に優れたオンライン制御圧延、加速冷却プロセスによ
り、引張強度:490MPa以上の高張力鋼板あって、
降伏比:80%以下、降伏強度のばらつき3σYS(降
伏強度の変動幅の3σ):30MPa以下と言う優れた
特性を持つ鋼板の製造を可能となった。本発明の製造方
法の完成により、建築・土木用等に使用される、高精度
の応力設計が必要とされる溶接構造用高張力鋼を、安価
に提供することが可能となった意義は極めて大きい。
As described above, according to the present invention, a high-strength steel sheet having a tensile strength of 490 MPa or more can be obtained by the online controlled rolling and the accelerated cooling process which are excellent in productivity.
It is possible to manufacture a steel sheet having excellent properties such as yield ratio: 80% or less, yield strength variation 3σYS (yield variation range 3σ): 30 MPa or less. With the completion of the manufacturing method of the present invention, it is possible to provide, at low cost, high-strength steel for welded structures that is used for construction, civil engineering, etc., and requires highly accurate stress design. large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】A鋼の平均降伏強度、引張強さ、降伏比、降伏
強度のばらつきとTsとの関係を示す図である。
FIG. 1 is a diagram showing a relationship between Ts and variations in average yield strength, tensile strength, yield ratio, and yield strength of A steel.

【図2】B鋼の平均降伏強度、引張強さ、降伏比、降伏
強度のばらつきとTsとの関係を示す図である。
FIG. 2 is a diagram showing the relationship between the average yield strength, the tensile strength, the yield ratio, the variation of the yield strength, and Ts of B steel.

【図3】A鋼の平均降伏強度、引張強さ、降伏比、降伏
強度のばらつきとTfとの関係を示す図である。
FIG. 3 is a diagram showing the relationship between the average yield strength, tensile strength, yield ratio, variation in yield strength, and Tf of steel A.

【図4】B鋼の平均降伏強度、引張強さ、降伏比、降伏
強度のばらつきとTfとの関係を示す図である。
FIG. 4 is a diagram showing the relationship between Tf and variations in average yield strength, tensile strength, yield ratio, and yield strength of B steel.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.04〜0.18%、
Si:0.05〜0.8%、Mn:0.2〜1.7%、
Al:0.07%以下を含有し、さらに、、Ti:0.
03%以下、Nb:0.05%以下、V:0.1%以
下、Cu:0.7%以下、Ni:0.7%以下、Cr:
1.3%以下、Mo:0.8%以下(いずれも0を含
む)の1種または2種以上を含有し、残部が実質的にF
e及び不可避的不純物からなる鋼片を、仕上温度Tf
(℃)が(1)式で表されるT1(℃)以上で熱間圧延
を行い、加速冷却を冷却開始温度Ts(℃)が(2)式
で表されるT2(℃)以下の温度から開始することを特
徴とする高張力鋼板の製造方法。 T1(℃)=932−305×C(%)−78×Mn(%)−17×Cu(%) −52×Ni(%)−4×Cr(%)−4×Mo(%)・・ ・・・・・・・(1) T2(℃)=1001−350×C(%)−70×Mn(%)− 20×Cu(%)−60×Ni(%)−5×Cr(%)− 5×Mo(%)−0.15×Tf(℃)・・・・・・・(2)
1. C: 0.04 to 0.18% by weight,
Si: 0.05 to 0.8%, Mn: 0.2 to 1.7%,
Al: 0.07% or less, and further, Ti: 0.
03% or less, Nb: 0.05% or less, V: 0.1% or less, Cu: 0.7% or less, Ni: 0.7% or less, Cr:
1.3% or less, Mo: 0.8% or less (all of which include 0), and one or more types are contained, and the balance is substantially F.
The steel piece composed of e and unavoidable impurities is finished at a finishing temperature Tf.
Hot rolling is performed at a temperature (° C) equal to or higher than T1 (° C) represented by the formula (1), and accelerated cooling is performed at a temperature Ts (° C) equal to or lower than T2 (° C) represented by the formula (2). A method for manufacturing a high-strength steel sheet, the method comprising: T1 (° C.) = 932-305 × C (%) − 78 × Mn (%) − 17 × Cu (%) − 52 × Ni (%)-4 × Cr (%)-4 × Mo (%). ........ (1) T2 (° C.) = 1001-350 × C (%)-70 × Mn (%)-20 × Cu (%)-60 × Ni (%)-5 × Cr (%) ) -5 x Mo (%) -0.15 x Tf (° C) ... (2)
【請求項2】 重量%で、C:0.04〜0.18%、
Si:0.05〜0.8%、Mn:0.2〜1.7%、
Al:0.07%以下を含有し、さらに、、Ti:0.
03%以下、Nb:0.05%以下、V:0.1%以
下、Cu:0.7%以下、Ni:0.7%以下、Cr:
1.3%以下、Mo:0.8%以下(いずれも0を含
む)の1種または2種以上を含有し、残部が実質的にF
e及び不可避的不純物からなる鋼片を、仕上温度Tf
(℃)が(1)式で表されるT1(℃)以上で熱間圧延
を行い、加速冷却を冷却開始温度Ts(℃)が(2)式
で表されるT2(℃)以下の温度から開始し、さらに4
50〜650℃の温度範囲に加熱して、焼戻処理を行う
ことを特徴とする高張力鋼板の製造方法。 T1(℃)=932−305×C(%)−78×Mn(%)−17×Cu(%) −52×Ni(%)−4×Cr(%)−4×Mo(%)・・ ・・・・・・・(1) T2(℃)=1001−350×C(%)−70×Mn(%)− 20×Cu(%)−60×Ni(%)−5×Cr(%)− 5×Mo(%)−0.15×Tf(℃)・・・・・・・(2)
2. C: 0.04 to 0.18% by weight,
Si: 0.05 to 0.8%, Mn: 0.2 to 1.7%,
Al: 0.07% or less, and further, Ti: 0.
03% or less, Nb: 0.05% or less, V: 0.1% or less, Cu: 0.7% or less, Ni: 0.7% or less, Cr:
1.3% or less, Mo: 0.8% or less (all of which include 0), and one or more types are contained, and the balance is substantially F.
The steel piece composed of e and unavoidable impurities is finished at a finishing temperature Tf.
Hot rolling is performed at a temperature (° C.) equal to or higher than T1 (° C.) represented by the formula (1), and accelerated cooling is performed at a temperature Ts (° C.) equal to or lower than T2 (° C.) represented by the formula (2). Starting from 4 more
A method for producing a high-tensile steel sheet, which comprises performing a tempering treatment by heating in a temperature range of 50 to 650 ° C. T1 (° C.) = 932-305 × C (%) − 78 × Mn (%) − 17 × Cu (%) − 52 × Ni (%)-4 × Cr (%)-4 × Mo (%) ... ........ (1) T2 (° C.) = 1001-350 × C (%)-70 × Mn (%)-20 × Cu (%)-60 × Ni (%)-5 × Cr (%) ) -5 x Mo (%) -0.15 x Tf (° C) ... (2)
JP31446595A 1995-12-01 1995-12-01 Manufacture of high tensile strength steel plate Withdrawn JPH09157742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31446595A JPH09157742A (en) 1995-12-01 1995-12-01 Manufacture of high tensile strength steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31446595A JPH09157742A (en) 1995-12-01 1995-12-01 Manufacture of high tensile strength steel plate

Publications (1)

Publication Number Publication Date
JPH09157742A true JPH09157742A (en) 1997-06-17

Family

ID=18053669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31446595A Withdrawn JPH09157742A (en) 1995-12-01 1995-12-01 Manufacture of high tensile strength steel plate

Country Status (1)

Country Link
JP (1) JPH09157742A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2548175A (en) * 2016-03-09 2017-09-13 Goodwin Plc A steel, a welding consumable and a cast steel product
JP2020020028A (en) * 2018-08-03 2020-02-06 株式会社神戸製鋼所 Steel sheet for circular steel tube having high strength, low yield ratio and excellent weldability, circular steel tube, and methods of producing them
JP2020020029A (en) * 2018-08-03 2020-02-06 株式会社神戸製鋼所 Steel sheet for circular steel tube having high strength, low yield ratio and excellent in weldability, circular steel tube, and methods of producing them

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2548175A (en) * 2016-03-09 2017-09-13 Goodwin Plc A steel, a welding consumable and a cast steel product
GB2548175B (en) * 2016-03-09 2018-10-03 Goodwin Plc A steel, a welding consumable and a cast steel product
JP2020020028A (en) * 2018-08-03 2020-02-06 株式会社神戸製鋼所 Steel sheet for circular steel tube having high strength, low yield ratio and excellent weldability, circular steel tube, and methods of producing them
JP2020020029A (en) * 2018-08-03 2020-02-06 株式会社神戸製鋼所 Steel sheet for circular steel tube having high strength, low yield ratio and excellent in weldability, circular steel tube, and methods of producing them

Similar Documents

Publication Publication Date Title
EP0796921B1 (en) Method of manufacturing thick steel product of high strength and high toughness having excellent weldability and minimal variation of structure and physical properties
JP3333414B2 (en) High-strength hot-rolled steel sheet for heat curing with excellent stretch flangeability and method for producing the same
JPS63286517A (en) Manufacture of high-tensile steel with low yielding ratio
JPH09157742A (en) Manufacture of high tensile strength steel plate
JPH0339418A (en) Production of steel stock for steel-frame structure minimal in reduction in elastic modulus at high temperature
JPH07109521A (en) Production of 600n/mm2 class steel tube with low yield ratio for construction use by cold forming
JP2001247930A (en) Rolled shape steel excellent in earthquake resistance and fire resistance and its producing method
JPH0257634A (en) Manufacture of high-strength steel plate and heat treatment for worked product of same
JPH0772299B2 (en) Manufacturing method of high yield steel plate with low yield ratio
JPH05125481A (en) High tensile strength steel material having high toughness and low yield ratio and its production
JP3180944B2 (en) Manufacturing method of taper plate for building and bridge
JP2002363642A (en) Method for producing rolled wide flange shape having low yield ratio and excellent toughness
JPH0445227A (en) Production of steel product with low yield ratio
JP2655956B2 (en) Manufacturing method of low yield ratio refractory steel sheet for building structure
JPH08215701A (en) Manufacture of high toughness thick steel plate without material anisotropy
JPH03191020A (en) Production of high-tensile wide flange shape with low yield ratio
JPH0920921A (en) Production of high toughness steel plate by means of separation
JPS6324012A (en) Production of low yielding ratio high-tensile steel plate by direct hardening and tempering method
JPH06340924A (en) Production of low yield ratio high tensile strength steel
JP2023506831A (en) Vibration control damper steel material with excellent impact toughness and its manufacturing method
JPH05171271A (en) Pr0duction of non-heattreated high tensile strength steel plate with low yield ratio
JPH02163314A (en) Manufacture of high tensile strength steel for cold working having low yield ratio
JPH04110418A (en) Manufacture of hot-rolled steel plate and heat treatment method of this worked product
JPH0641633A (en) Method for working high tensile strength steel small in rise of yield ratio
JPH06240351A (en) Production of thick steel plate free from material anisotropy

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030204